

NIH Public Access

Author Manuscript

Fissue Antigens. Author manuscript; available in PMC 2012 November 01.

Published in final edited form as:

Tissue Antigens. 2009 December ; 74(6): 508–513. doi:10.1111/j.1399-0039.2009.01374.x.

Four Locus High Resolution HLA typing in a Sample of Mexican Americans

William Klitz¹, Loren Gragert², Martin Maiers², Bin Tu³, Ana Lazaro³, Ruyan Yang³, Qihong Xu³, Carly Masaberg³, Jennifer Ng³, and Carolyn Katovich Hurley³

¹Public Health Institute, Oakland, CA and University of California, Berkeley

²National Marrow Donor Program, Minneapolis MN

³Georgetown University, Washington, DC

Abstract

Mexicans are the most common minority population of the United States. From a sample of 553 bone marrow donor registrants of self-described Mexican ancestry, HLA loci A, C, B and DRB1 were typed by high resolution SBT methods. A total of 47, 34, 76 and 46 distinct alleles at A, C, B and DRB1 respectively were identified, including 3 new alleles. The four locus haplotype frequency distribution was extremely skewed with only 53.9% of 1,106 chromosomes present with more than one estimated copy. Haplotypes of Native American origin were identified. These data form an initial basis for determining the requirements for an adequate donor pool for stem cell transplantation in this population.

Introduction

The United States is one of the most ethnically diverse countries in the world. After European Americans, the largest single ethnic group in the United States are Mexican Americans, who constitute approximately 9% of the US population (23.7 million individuals in 2004) (ref census) Furthermore, the Hispanic population, principally due to Mexican American increases, is expected to triple in the next 50 years (ref pewhispanic web)

An essential first step for determining the necessary size of a bone marrow registry capable matching donors to unrelated patients is a complete high resolution HLA sample of each ethnic group. To this end we present the results of sequence based typing on four HLA loci in a sample of 553 individuals of Mexican American ancestry.

Subjects and Methods

Sample population

The study population included 553 individuals from the United States self identified as having Mexican ancestry who were consecutively recruited as volunteers for a bone marrow donor registry from June, 2006 through August, 2006. Because of the recruitment setting, individuals are unlikely to be related and are likely to originate from different areas of the United States. Because these individuals are part of the larger US population, genetic contributions from other populations cannot be excluded simply on the basis of self-identification.

Identification of HLA alleles

Genomic DNA was prepared using the QIAamp 96 DNA blood kit (Qiagen Valencia, CA). Each individual was initially typed at intermediate resolution for HLA-A,-B,-C,-DRB1 by

sequence specific probe based hybridization using the One Lambda LABType® SSO Kit (One Lambda, Canoga Park, California) following manufacturer's protocols. To identify the HLA-A,-B,-C alleles carried by each individual, PCR primers were used to amplify each locus as previously described (1). Applied Biosystems Big Dye terminator chemistry and sequencing primers were used to obtain the sequences of both strands of exons 2 and 3. DRB1 alleles were amplified and sequenced using the AlleleSEQR class II kit (Abbott Molecular Inc, Des Plaines, IL). Allele group specific amplification primers from the kit, chosen based on the probe hybridization results, were used to isolate DRB1 alleles for sequencing. Additional in-house PCR and sequencing primers were added when needed to resolve alternative genotypes. Reactions products were identified with Applied Biosystems 3730xl DNA analyzer (PE Applied Biosystems, Foster City, CA) and sequence interpretation used Assign software (Conexio Genomics, Applecross, Western Australia) and was based on ImMunoGeneTics (IMGT)/HLA database release 2.7 (2).

With a few exceptions, alleles identical in exons 2 and 3 (class I) or exon 2 (DRB1) were not resolved. Unresolved alleles of this type, i.e., encode allelic products that vary in amino acid sequence outside of the antigen binding site, are indicated by the use of a "g" following the name of the lowest numbered allele in the group. For example, A*02010101g includes alleles A*02010101, A*0209, A*0243N, A*0266 as well as synonymous alleles A*02010102L and A*020108. A listing of these unresolved alleles can be found at http://www.ebi.ac.uk/imgt/hla/ambig.html (2) under database release 2.7. The exceptions included A*24020101g, B*510101g, and Cw*04010101g in which additional testing was performed to distinguish among these alleles. Exon 4 amplification and sequencing was performed when the result was A*24020101g or B*510101g and exon 5-8 amplification and sequencing was used when the result was Cw*04010101g. Null alleles included within B*15010101g (B*15010102N) and Cw*030301g (Cw*0320N) were excluded by examination of sequences in intron 1 (deletion) or exon 1 (stop codon), respectively.

For those class I samples yielding alternative allele combinations (i.e., alternative genotypes) (2), either allele specific sequencing primers or allele specific PCR amplification was used to identify the specific allele combination. For example, the genotype A*01010101g, A*02010101g can not be distinguished from A*0236, A*3604. For these samples, the A*02 allele was amplified separately and sequencing used to distinguish A*02010101g from A*0236. In-house primer sequences used for all loci are available at www.dodmarrow.org.

Potentially new alleles were isolated and characterized as previously described (4-6). DNA sequencing of PCR products included primers annealing to both DNA strands for at least two independent PCR reactions. Allele designations were assigned by the WHO Nomenclature Committee for Factors of the HLA System (3).

The likelihood of Native American origins for each allele in the Mexican American sample was assessed from tables available from a previous study which assembled high resolution HLA alleles in four major US census groups (African Americans, Asia and Pacific Islanders, European Americans, and Hispanics), based on National Marrow Donor Program records (7), and having haplotype samples sizes of 4,822, 3,544, 15,740 and 3,998 individuals, respectively. The Hispanic sample comprises a diverse group of individuals from distinct genetic and cultural backgrounds, but the largest component of this group consists of Mexican Americans. The Maiers et al. (7) tables of allele and haplotype frequencies are at four digit resolution, so comparisons to the Mexican Americans were made at that same level of resolution.

Haplotype Estimation and Hardy Weinberg Testing

To estimate haplotype frequencies from unphased phenotypes, we used an implementation of the EM algorithm (8). Haplotype frequencies were calculated at high-resolution for A-B-DRB1, A-C-B-DRB1, and A-C-B haplotypes. Exact tests for Hardy-Weinberg equilibrium were run for each locus (9). Single locus and haplotype heterozygosities were calculated as $(1-\Sigma pi^2)$, where pi is the frequency of the ith allele or haplotype.

Results

The four HLA loci proved to be highly polymorphic in the Mexican American population sample of 1,106 haplotypes with the HLA A, C, B and DRB1 loci having 47, 34, 76, and 46 alleles respectively (Table 1). An exact test for Hardy Weinberg equilibrium in each of the four HLA loci demonstrated an absence of deviations from expected genotypic ratios (P values: 0.314 (A), 0.841 (C), 0.839 (B), 0.078 (DRB1)).

Three novel alleles were identified in the study (Table 2); each was observed in one individual. A*230302 differs by a silent substitution at codon 126. The CTG codon is shared by the majority of HLA-A alleles. In B*2739, codon 72 is polymorphic but the vast majority of alleles carry CAG (Gln). The substitution to a leucine codon is a new variant at this position. For DRB1*0716, the altered codon is polymorphic but the vast majority of alleles carry CGG (Arg). The substitution to a glycine codon is a new variant at this position.

In comparing the Mexican American alleles to the census-categorized ethnic groups (African Americans, Asian Pacific Islanders, Caucasians, and Hispanics from Ref 7), the non-Mexican American component of the Hispanics became evident in that all common Mexican American alleles were present in the Hispanic group, but at a consistently lower frequency. In order to reveal alleles likely to have originated from Native Americans we have highlighted alleles which were many times less frequent or entirely absent in the African American and European American than in the Mexican American samples in Table 1.

The distribution of allele frequencies is similar across the four loci with an extreme right skew in each case. The most common alleles range from 19.7% for HLA A*02010101g to 6.8% for B*350101, with a long tail of rare alleles present at all four loci. Excluding novel alleles, four alleles observed in only one or two individuals are not considered common or well-documented in human populations (10): A*0258, A*3109, Cw*0717, and B*390104. These alleles have been described in individuals of Hispanic origin or in an individual with unknown ancestry (A*3109) carrying several other alleles previously found in Hispanics. The resolution of typing also allowed us to discriminate among alleles in five clusters which are identical in commonly typed exons including A*24020101g (all either A*24020101 or *24020102L), B*510101g (all B*510101), and Cw*040101010 g (B*15010102N) and Cw*030301g (Cw*0320N) clusters.

The observed heterozygosities exceed 90% for each locus, ranging from 91.2% for HLA A, to 97.6% for the most polymorphic locus, HLA B. An important contribution to the fact that heterozygosities in the Mexican Americans were not higher still is due to the high frequencies of alleles contributed by the European component. For example, A*0201 in Europeans has a frequency of 29.6%, and thus through admixture pushed the Mexican American frequency of this same allele to 19.6%, thereby accounting for nearly half (0.196^2) of the 8.8% homozygosity at this locus.

The frequency distribution of the four locus haplotypes from the 1,106 chromosomes was extremely skewed: 186 haplotypes had more than one estimated copy and constituted 54.9% of the sample, the 406 singleton haplotypes constituted 36.7%, and 9.2% of the estimated haplotypes (totaling 93 chromosomes) were unresolved with less than one observed copy. The 20 most common four locus haplotypes (Table 3) gives an idea of the importance of the common European-source haplotypes to the HLA portion of the Mexican American gene pool. The most common haplotype in Mexican Americans is the well known European haplotype A1-B8-DR3 with a frequency of 1.8%. Haplotypes ranked 2 and 3 are of pre-Hispanic American origin, each having no observed copies in the NMDP European American sample. A total of seven haplotypes on this list are clearly of American origin, with twelve apparently European and one ambiguous. Several of these haplotypes are assigned to Europe despite having a lower frequency in the European Americans than in the Mexican Americans. The haplotype ranking of European American haplotypes shows that the top 5 haplotypes are on the list and that the others have rank frequencies from 11 to 70. These relatively high frequencies suggest a European origin. In addition we suggest that the several cases in which the observed haplotypes are actually higher in frequency in the Mexican Americans that the European Americans may be due to the fact that the European contingent invading this part of the New World were immigrants from Iberian Europe and not the Northern and Central Europeans most strongly represented in the category "European Americans". Thus the explanation may lie in the fact that Iberian HLA frequencies are somewhat distinctive, thus the European American comparison is an inexact representation of the European component of Mexican Americans.

Discussion

Mexico, the source of Mexican Americans, was originally populated by Amerindians and then later colonized by Europeans. Today the population of Mexico includes individuals with both European and Native American ancestry. The extent of contributions of these two ancestral source groups to the mixed populations from across Latin American countries varies [11]. Based on genomewide markers, studies of the US Mexican American population have estimated the composition of Mexican Americans to be approximately equivalent from each of the two founder groups [12,13].

Significant contributions of European and African alleles to the Mexican Americans are evident for many of the most common alleles, including A*0101g, A*0201g, A*0202, A*3002, A*2301, A*3001, A*6802, A*3303, C*0202, C*0602, C*0701, C*0702, C*1601, B*0702, B*0801g, B*1501g, B*4402, B*4501g, and DRB1*0101, DRB1*0301, DRB1*0701, DRB1*1301, DRB1*1101, DRB1*1503.

We would like to point out the presence of alleles A*2601, B*3801 and DRB1*0402, found at moderate frequencies in Mexican Americans. These alleles are pieces of the well known Jewish haplotype 2601-3801-0402. We suggest that these haplotypes may have arrived with the "conversos" fleeing the Jewish expulsions in Spain of 1492 and before (14). Evidence of this haplotype in Latin America has been pointed out previously (15).

Broadly speaking this work constitutes an addition to extensive previous HLA reports at the DNA level of studies on Mexican samples, both Native and on populations of mixed origin (15-23). A genomic screen on a number of Latino population samples from the Americas has shown that Mexican Americans from Los Angeles are substantially identical in a genetic sense to Latinos sampled from Mexico proper (12). This suggests that the HLA frequency information presented here on Mexican Americans in the United States might be useful for blood stem cell transplantation in Mexico, but will require further sampling from both sides of the Mexican-United States border to clarify this possibility.

Acknowledgments

This research is supported by funding from the Office of Naval Research N00014-06-1-0726 (C.K.H., J.N.). The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Navy, the Department of Defense, or the U.S. government.

References

(http://www.census.gov/Press-Release/www/releases/archives/ facts_for_features_special_editions/006687.html)(http://pewhispanic.org/reports/report.php? ReportID=85)

- Tu B, Mack SJ, Lazaro A, Lancaster A, Thomson G, Cao K, Chen M, Ling G, Hartzman R, Ng J, Hurley CK. HLA-A, -B, -C, -DRB1 allele and haplotype frequencies in an African American population. Tissue Antigens. 2007; 69:73–85. [PubMed: 17212710]
- Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SG. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 2003; 31:311–314. [PubMed: 12520010]
- Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Geraghty DE, Hansen JA, Hurley CK, Mach B, Mayr WR, Parham P, Petersdorf EW, Sasazuki T, Schreuder GM, Strominger JL, Svejgaard A, Terasaki PI, Trowsdale J. Nomenclature for factors of the HLA system, 2004. Tissue Antigens. 2005; 65:301–369. [PubMed: 15787720]
- 4. Lazaro AM, Xiao Y, Cao K, Masaberg C, Nichol L, Ng J, Hurley CK, Posch PE. Thirty two novel HLA-A alleles identified during intermediate resolution testing. Tissue Antigens. 2007; 71:165–8. [PubMed: 18069934]
- Lazaro AM, Xiao Y, Cao K, Masaberg C, Nichol L, Ng J, Hurley CK, Posch PE. Expanding Diversity at HLA-B Locus: Twenty eight Novel HLA-B Alleles. Tissue Antigens. 2008; 71:471–4. [PubMed: 18331525]
- Lazaro AM, Xiao Y, Masaberg C, Lebeck L, Ng J, Hurley CK, Posch PE. Novel alleles at the HLA-DRB1 and –DQB1 loci. Tissue Antigens. 2008; 72:72–4. [PubMed: 18588576]
- 7. Maiers M, Gragert L, Klitz W. High-resolution HLA alleles and haplotypes in the United States population. Hum Imunol. 2007; 68:779–788.
- Kollman C, Maiers M, Gragert L, Muller C, Setterholm M, Oudshoorn M, Hurley CK. Estimation of HLA-A, -B, -DRB1 haplotype frequencies using mixed resolution data from a national registry with selective retyping of volunteers. Human Immunol. 2007; 68:950–958. [PubMed: 18191722]
- 9. Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992; 48:361–72. [PubMed: 1637966]
- Cano P, Klitz W, Mack SJ, Maiers M, Marsh SG, Noreen H, Reed EF, Senitzer D, Setterholm M, Smith A, Fernández-Viña M. Common and well-documented alleles: report of the Ad-Hoc Committee of the American Society of Human Genetics and Immunogenetics. Hum Immunol. 2007; 68:392–417. [PubMed: 17462507]
- 11. Wang S, Ray N, Rojas W, Parra MV, Bedoya G, Gallo C, Poletti G, Mazzotti G, Hill K, Hurtado AM, Camrena B, Nicolini H, Klitz W, Barrantes R, Molina JA, Freimer NB, Bortolini MC, Salzano FM, Petzl-Erler ML, Tsuneto LT, Dipierri JE, Alfaro EL, Bailliet G, Bianchi NO, Llop E, Rothhammer F, Excoffier L, Ruiz-Linares A. Geographic patterns of genome admixture in Latin American Mestizos. PLoS Genet. 2008; 4:e1000037. [PubMed: 18369456]
- 12. Price AL, Patterson N, Yu F, Cox DR, Waliszewska A, McDonald GJ, Tandon A, Schirmer C, Neubauer J, Bedoya G, Duque C, Villegas A, Bortolini MC, Salzano FM, Gallo C, Mazzotti G, Tello-Ruiz M, Riba L, Aguilar-Salinas CA, Canizales-Quinteros S, Menjivar M, Klitz W, Henderson B, Haiman CA, Winkler C, Tusie-Luna T, Ruiz-Linares A, Reich D. A genomewide admixture map for Latino populations. Am J Hum Genet. 2007; 80:1024–1036. [PubMed: 17503322]
- 13. Tian C, Hinds DA, Shigeta R, Adler SG, Lee A, Pahl MV, Silva G, Belmont JW, Hanson RL, Knowler WC, Gregersen PK, Ballinger DG, Seldin MF. A genomewide single-nucleotide-

Page 5

polymorphism panel for Mexican American admixture mapping. Am J Hum Genet. 2007; 80:1014–1023. [PubMed: 17557415]

- Kaplan, Y.; Bom, Judesmo. The Western Sephardic Diaspora. In: Biale, D., editor. Cultures of the Jews. Berkeley: University of California Press; 2002. p. 337-367.
- Gorodezky C, Alaez C, Vazquez-Garcia MN, de la RG, Infante E, Balladares S, Toribio R, Perez-Luque E, Munoz L. The genetic structure of Mexican Mestizos of different locations: tracking back their origins through MHC genes, blood group systems, and microsatellites. Hum Immunol. 2001; 62:979–991. [PubMed: 11543900]
- Hollenbach J, Thomson G, Fernandez-Vina M, Cao K, Erlich HA, Bugawan T, Winkler C, Klitz W. HLA diversity, differentiation and haplotype evolution in Mesoamerican natives. Human Immunol. 2001; 62:378–390. [PubMed: 11295471]
- Vargas-Alarcon G, Moscoso J, Martinez-Laso J, Rodriguez-Perez JM, Flores-Dominguez C, Serrano-Vela JI, Moreno A, Granados J, Arnaiz-Villena A. Origin of Mexican Nahuas (Aztecs) according to HLA genes and their relationships with worldwide populations. Mol Immunol. 2007; 44:747–755. [PubMed: 16765444]
- Arnaiz-Villena A, Vargas-Alarcon G, Granados J, Gomez-Casado E, Longas J, Gonzales-Hevilla M, Zuniga J, Salgado N, Hernandez-Pacheco G, Guillen J, Martinez-Laso J. HLA genes in Mexican Mazatecans, the peopling of the Americas and the uniqueness of Amerindians. Tissue Antigens. 2000; 56:405–416. [PubMed: 11144288]
- Vargas-Alarcon G, Hernandez-Pacheco G, Moscoso J, Perez-Hernandez N, Murguia LE, Moreno A, Serrano-Vela JI, Granados J, Arnaiz-Villena A. HLA genes in Mexican Teeneks: HLA genetic relationship with other worldwide populations. Mol Immunol. 2006; 43:790–799. [PubMed: 16111752]
- 20. Infante E, Olivo A, Alaez C, Williams F, Middleton D, de la RG, Pujol MJ, Duran C, Navarro JL, Gorodezky C. Molecular analysis of HLA class I alleles in the Mexican Seri Indians: implications for their origin. Tissue Antigens. 1999; 54:35–42. [PubMed: 10458321]
- 21. Garcia-Ortiz JE, Sandoval-Ramirez L, Rangel-Villalobos H, Maldonado-Torres H, Cox S, Garcia-Sepulveda CA, Figuera LE, Marsh SG, Little AM, Madrigal JA, Moscoso J, Arnaiz-Villena A, Arguello JR. High-resolution molecular characterization of the HLA class I and class II in the Tarahumara Amerindian population. Tissue Antigens. 2006; 68:135–146. [PubMed: 16866883]
- 22. Alaez C, Infante E, Pujol J, Duran C, Navarro JL, Gorodezky C. Molecular analysis of HLA-DRB1, DQA1, DQB1, DQ promoter polymorphism and extended class I/class II haplotypes in the Seri Indians from Northwest Mexico. Tissue Antigens. 2002; 59:388–396. [PubMed: 12144622]
- 23. Cantu, dL; Perez-Montiel, D.; Villavicencio, V.; Garcia, CA.; Mohar, BA.; Acuna-Alonzo, V.; Lopez-Tello, A.; Vargas-Alarcon, G.; Barquera, R.; Yu, N.; Yunis, EJ.; Granados, J. High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study. BMC Cancer. 2009; 9:48. [PubMed: 19196481]

\$watermark-text

Allele frequencies in 1106 Mexican American HLA haplotypes. Those alleles highlighted in red are candidates to have originated in American Natives instead of Europeans or Africans.

	A	Count	Frea	C	Count	Frea	B	Count	Frea	DRB1	Count	Frea
-	02010101¢	218	0.197	0401012	168	0.152	350101ø	75	0.068	080201	106	0.096
· ·	1100010	160	0.146	070201010	141	0 177	4002010	74 77	0.067	070101	00	0.000
· · ·	010101010	6	0.082	0701010	100	060.0	5101015	50	0.053	040701	80	0.072
) 4	03010101g	75	0.068	030401g	92	0.083	070201g	55	0.050	150101	75	0.068
5	020601g	74	0.067	06020101g	71	0.064	140201	52	0.047	030101	75	0.068
9	310102g	65	0.059	0802	58	0.052	180101g	51	0.046	0404	69	0.062
٢	110101g	46	0.042	050101g	58	0.052	080101g	45	0.041	110401	45	0.041
8	290201	38	0.034	160101	50	0.045	440301	44	0.040	010201	41	0.037
6	320101g	32	0.029	12030101g	49	0.044	3905	41	0.037	010101	39	0.035
10	680102g	32	0.029	080101	48	0.043	$150101g^{3}$	39	0.035	1406	39	0.035
11	300201g	31	0.028	010201g	46	0.042	44020101g	34	0.031	130201	38	0.034
12	3301	29	0.026	$030301\mathrm{g}^3$	39	0.035	480101g	34	0.031	1402	35	0.032
13	260101g	27	0.024	150201g	31	0.028	390602	33	0.030	130101	34	0.031
14	680301	26	0.024	020202	30	0.027	380101	26	0.024	110101	31	0.028
15	2301g	25	0.023	0306	21	0.019	3512	25	0.023	160201	26	0.024
16	300101g	19	0.017	1701g	17	0.015	270502g	24	0.022	0411	24	0.022
17	68020101g	18	0.016	120201g	15	0.014	570101	22	0.020	040101	22	0.020
18	0205	16	0.014	140201	10	0.009	520101g	21	0.019	$040501g^4$	21	0.019
19	250101	14	0.013	150501g	10	0.009	350201	20	0.018	140101g	19	0.017
20	680101g	6	0.008	070401g	8	0.007	4501g	20	0.018	040301	18	0.016
21	330301	8	0.007	1509	×	0.007	4901	20	0.018	150201	16	0.014
22	0202	5	0.005	0210	٢	0.006	400101g	18	0.016	130301	14	0.013
23	6601	5	0.005	0305	٢	0.006	530101	17	0.015	1503	13	0.012
24	7401g	5	0.005	1602	5	0.005	5001	16	0.014	090102	13	0.012
25	3601	4	0.004	1801g	4	0.004	3517	15	0.014	100101	12	0.011
26	6901	4	0.004	030201g	2	0.002	130201	14	0.013	0402	12	0.011
27	6805	ю	0.003	030402	2	0.002	4101	13	0.012	080101g	10	0.009

	A	Count	Freq	С	Count	Freq	в	Count	Freq	DRB1	Count	Freq
28	022001	2	0.002	0307	2	0.002	1503g	10	0.009	110201	10	0.009
29	2608	2	0.002	0717	2	0.002	3503g	10	0.009	120101g	6	0.008
30	3004	2	0.002	1504	1	0.001	350801	10	0.009	030201	6	0.008
31	3102	2	0.002	0407	1	0.001	39010101g	10	0.009	130501	8	0.007
32	8001	2	0.002	0209	1	0.001	5102	10	0.009	080401	L	0.006
33	020104	-	0.001	0803	1	0.001	5801g	10	0.009	160101	9	0.005
34	0222	-	0.001	0804	1	0.001	1515	×	0.007	0103	S	0.005
35	230302	1	0.001				520102	8	0.007	1103	5	0.005
36	240301g	1	0.001				550101	8	0.007	1304	4	0.004
37	2414	-	0.001				1401	9	0.005	0410	4	0.004
38	2417	-	0.001				15170101	9	0.005	040601g	5	0.002
39	2425	1	0.001				390202	9	0.005	110102	2	0.002
40	0258	-	0.001				1510	5	0.005	140701	2	0.002
41	3010	-	0.001				1530	5	0.005	080404	2	0.002
42	0302	1	0.001				4005	5	0.005	0716	1	0.001
43	3109	-	0.001				4201	5	0.005	120201	1	0.001
44	340101	-	0.001				5802	5	0.005	0408	1	0.001
45	3402	-	0.001				3543g	4	0.004	080302	1	0.001
46	6602	-	0.001				370101	4	0.004	9080	1	0.001
47	680202	-	0.001				3908	4	0.004			
48							4027	4	0.004			
49							4102	4	0.004			
50							5601	4	0.004			
51							570301	4	0.004			
52							070501g	ю	0.003			
53							1509	б	0.003			
54							1516	б	0.003			
55							351401	ю	0.003			
56							1518	7	0.002			
57							1539	2	0.002			
58							352001	7	0.002			

Klitz et al.

4	
2	
~	
20	
÷	
(C)	
R	
5	
E I	
<u></u>	
T	
Ċ,	
9	
\mathbf{x}	
+	

	A	Count	Freq	С	Count	Freq	В	Count	Freq	DRB1	Count	Freq
59							390104	2	0.002			
60							40060101g	2	0.002			
61							4011	2	0.002			
62							47010101	2	0.002			
63							5002	2	0.002			
64							5114	2	0.002			
65							7301	7	0.002			
66							8101g	2	0.002			
67							1502	1	0.001			
68							1535	-	0.001			
69							2702	-	0.001			
70							2739	1	0.001			
71							3910	-	0.001			
72							4016	-	0.001			
73							4404	1	0.001			
74							4405	-	0.001			
75							5108	-	0.001			
76							7801	1	0.001			
Notes: 1. 2.	4020101/2	240201021	L, 2. 040101	101/0401	0102/0428, 3	. null exc	luded, 4. 0405	01/04050	ö.			

Table 2

New HLA alleles identified in Mexican Americans.

New Allele	Most Similar Allele	Codon ^a (Amino Acid) of Most Similar Allele Compared to Novel Allele	GenBank Accession Number	Other HLA Alleles Carried by the Cell
A*230302	A*230301	126 TTG (Leu) to CTG (Leu)	EU275160	A*0205, B*070201g, B*4101, Cw*070101g, Cw*07020101g, DRB1*040101, DRB1*130501
B*2739	B*270502	72 CAG (Gln) to CTG (Leu)	EU275159	A*310102g, A*320101g, B*400201g, Cw*020202, Cw*150201g, DRB1*080201, DRB1*150101
DRB1*0716	DRB1*07010101	23 CGG (Arg) to GGG (Gly)	FJ407051	A*290201, A*320101, B*440301, B*530101, Cw*04010101/04010102/0428, Cw*160101, DRB1*080101g

 a Codon 1 encodes first amino acid of mature protein.

Table 3

The top 20 ranked A-C-B-DRB1 haplotypes in Mexican Americans^a.

ACBB(B1)AmbFrequencyRankFrequencySource010160701208016030110.018110.0743Europe680307023906040720.0163none0.0000America240263906140630.0152none0.0003Europe24021601440307014403070130702Europe30026501318010702010260.0103150.0043Europe30161402180170102280.0043Europe2830161402180170.0103150.0073Europe30161402180170.00031610280.0073Europe30161002180170.000316100.00031028301610021001100.000316100.000310301635021501100.00331028100031030163501101130.003323110.0033Europe30163501101130.003323110.0033Europe3016350110110100.003323110.0034Europe301635013501101130.003323110.0036Europe30163501	F	our Locus	: Haploty	в	Mexica	n American	Europe	an American	Postulated
0101j0701j0801j030103010.010.0143Europe680307023905040720.0153nome0.0000America2402j3906140630.0153nome0.0000America290216014403070140.013650.0183Europe300216011403070150.0109150.0033Europe301108021402010260.0109150.0033Europe301207021402010260.0109150.0033Europe301007021402010260.0000nome0.0003America2402070214020102100.0000150.0033Europe2402070214020801700.00331000America24020702101120.0030nome0.0003America24020702101130.00331000America24020701120801120.00331000America240204011308021101130.0033100024020401130403130.00332400America24020401130401130.0033310.00314merica24020401130401130403130.0033	V	С	в	DRB1	Rank	Frequency	Rank	Frequency	Source
680307023905040720.0163none0.0000America2402g07013906140630.0152none0.0000America290216014403070140.013650.0103Europe30026501g1801g030150.0109280.0043Europe301108021402010260.0109150.0073Europe301108021402010260.0109280.0073Europe2402g07021402010216070.00007Europe2402g07023502140790.0090none0.0000America2402g07013512080210100.0090none0.0000America2402g07013512080210100.0090none0.0000America2402g07013512080210100.0090none0.0000America2402g07013512080210100.0033Europe0.00002401g070235021104120.003323110.0013Europe2402g0401g120.003323110.001324240.0014Europe2401g0501g101130.005323110.0014242424242401g0501g <t< th=""><th>0101g</th><th>0701g</th><th>0801g</th><th>0301</th><th>1</th><th>0.0181</th><th>1</th><th>0.0743</th><th>Europe</th></t<>	0101g	0701g	0801g	0301	1	0.0181	1	0.0743	Europe
240207023906140630.0152none0.0000America290216014403070140.013650.0183Europe30020501g1801g030150.0109280.0033Europe30108021402010260.0109150.0033Europe301070207021402080280.0090none0.0003America0301g070207020702140170.0109150.0003America0201g07020702140170.0100none0.0003America0201g070207021501110.0090none0.0003America0201g0401g351208021501110.008340.0003America0201g0401g351208021501110.008340.0033Europe0301g0401g3501g0101120.003323110.0013America0301g0401g3501g0401130.0003323110.0013America0301g0401g3501g0401130.0003330.0013America0301g0401g3501g0401130.0003330.0013Europe0301g0401g130401130.0013330.003422 <th>6803</th> <th>0702</th> <th>3905</th> <th>0407</th> <th>2</th> <th>0.0163</th> <th>none</th> <th>0.0000</th> <th>America</th>	6803	0702	3905	0407	2	0.0163	none	0.0000	America
290216014403070140130150.0135550.0183Europe30026501g1801g030150.0109150.0043Europe330108021402010260.0109150.0073Europe3301g07020702g150170.0109150.0073Europe2402g03064002g0802800.0090none0.0000America2402g03013502160170.0090none0.0000America2402g0401g3512080219100.0090none0.0000America2402g0401g351208021501110.0090none0.0000America2402g0401g351208021501110.0081310.0041Europe2402g0401g3501g1104120.0083310.0041Europe2402g0401g3501g0401130.0063310.0041Europe2402g0401g3501g0401130.0063310.0013Europe2402g0401g3501g0401130.0063310.0014Europe2402g0401g130401130.0063310.0016Europe2402g0401g13040114140.0054110.0016Eur	2402g	0702	3906	1406	3	0.0152	none	0.0000	America
30026501g1801g030150.0109280.0043Europe330108021402010260.0109150.0073Europe3301g07020702150170.010920.0356Europe2402g07029802150170.0090none0.0000America2402g07023905040790.0090none0.0000America2402g07023905040790.0090none0.0000America0201g070235021104110.0090none0.0000America0201g070235011011120.0031310.0012Europe2402g0401g35011011130.0053310.0013Europe2401g3501g0401g130.0053310.0013Europe0201g0401g130.001270.0126Europe0201g08014801g0401130.0053310.00250201g0801g1402g0401130.005330.02560201g0801g1902160.0054110.0016Europe0301g0801g1902101150.0054110.0056Europe0301g0801g1902101150.0054110.0056Europe0301g0701g1901	2902	1601	4403	0701	4	0.0136	5	0.0183	Europe
330188021402610260103150.0073Europe $0301g$ 07020702g150170.010020.0356Europe $2402g$ 08028802880280.0090none0.0000America $2402g$ 07023905040790.0090none0.0000America $2402g$ 070235120802100.0090none0.0000America $2001g$ 0702351208021501110.0081310.0001America $2402g$ 07021501110120.0083310.0003America $2402g$ 07021501110.0081310.0014Europe $2402g$ 0401130401130.00732100America $2402g$ 040135010401130.005323110.001America $2402g$ 0401130401130.005323110.001America $2401g$ 3501g0401150.005323110.001America $2011g$ 0501g14020401150.005323110.0016Europe $2011g$ 0501g14020401150.0054110.0016Europe $2011g$ 0501g14020401150.0054110.0016Europe $2501g$ 12011901901901900.0	3002	0501g	1801g	0301	5	0.0109	28	0.0043	Europe
0.3010.7021.50170.010020.0356Europe2402g03064002g080280.0090none0.0000America2006070239050401390.0090none0.0000America0201g070235120802100.0090none0.0000America0201g070207021501110.0081740.0000America0201g070207021501110.0081310.0041Europe2402g040135011104120.0063310.0014Europe0301g040135010401130.007270.0126Europe0301g04014801g0401150.006330.0258Europe0301g0501g44020401150.0054110.0016America0401g57010401150.005330.0258Europe0401g0701160.0054110.0054110.0056Europe0401g57010102170.0054110.005410Europe0401g57010102180.0054110.005410Europe0401g5701190180.0054110.005410Europe0401g5701190190190190190190Europe	3301	0802	1402	0102	9	0.0109	15	0.0073	Europe
2402603064002080280.0000none0.0000America020607023905040790.0000none0.0000America0201g070235120802100.0000none0.0000America0201g070235120802100.008840.0023Europe0201g07021104120.0081310.0012Europe0301g0401g3501g0101130.007270.0126Europe0301g08014801g0404140.0063330.0258Europe0301g08014801g0401150.006330.0258Europe0301g080113020401150.0054110.0016Europe0301g080113020401150.0054110.0056Europe0301g080113020401160.0054110.0066Europe0301g080113020101180.0054110.0066Europe0301g0701180701180.0054210.0004Europe0301g0701g1900701180.0054210.0006Europe0301g0701g1901901901900.00041900.0004Europe0301g0701g1901901901901900.	0301g	0702	0702g	1501	7	0.0100	2	0.0356	Europe
020607023905040790.0000Intertica0201g0401g35120802100.0000Intertica0201g0401g351208021501110.0080intertica0201g070207021501110.0081310.0001America2402g0401g35021104120.0081310.0041Europe2402g0401g3501g0101130.007270.0126Europe6801g0801g4801g0404140.006323110.0011America0201g0801g4801g0401150.0063330.0258Europe0201g080213020701160.0054110.0018Europe0201g080213020701180.0054700.0018Europe0201g0701g180180190180.0054210.0018Europe250112031801g1501180.0054210.00062000Europe25010401g3501g140210100.0054100.0006Europe25010401g140210190.0054210.000621000.00062501g0401g1801g140210190.0054100.0006Europe	2402g	0306	4002g	0802	8	0600.0	none	0.0000	America
0201g040135120802 100.0000America 0201g070207021501 110.008840.0033Europe 2402g0701g3501g1104 120.0081310.0041Europe 2402g0401g3501g0101 130.007270.0126Europe 6801g08014801g0404 140.006323110.0016America 0201g08014802g0401 150.0063330.0258Europe 3001060213020701 160.0054110.0096Europe 3001060213020701 160.0054700.0016Europe 3001060213020101 180.0054700.0016Europe 3001070118 0.0054700.00042010Europe 300130011901 190100542010.0004Europe 30013001300130013001 1402200.0054200.0006Europe 3001300130013001300530054 1010.000542000Europe	0206	0702	3905	0407	6	0600.0	none	0.0000	America
02010702150111 0.008840.0233Europe 2402040135021104 120.0081310.0041Europe 03010040135021104 120.007270.0126Europe 6801g35010101 130.006323110.0012America 0301080148020401 150.006323110.0012America 0201 g 080148020401 150.006330.0258Europe 0301060213020701 160.0054110.0096Europe 0201080214020102 170.0054700.0018Europe 020108011601 180.0054210.0004Europe 25011203180161402 190.0054210.0004Europe 250101035011402140 190.0054210.0004Europe 250101035011402140 0.0054100.0004Europe	0201g	0401g	3512	0802	10	0600.0	none	0.0000	America
24026040135021104120.0081310.0041Europe0301g0401g3501g0101130.007270.0126Europe6801g08014801g0404140.006323110.0001America0201g0501g4402g0401150.0063330.0258Europe3001060213020701160.0054110.0016Europe3001060213020701160.0054700.0018Europe3001060213020701180.0054700.0018Europe30010701180.0054210.0004210.0004Europe250112031801g1402100100.0054210.0006Europe	0201g	0702	0702g	1501	11	0.0088	4	0.0233	Europe
0301g 0401g 3501g 0101 13 0.0072 7 0.0126 Europe 6801g 0801 4801g 0404 14 0.0063 2311 0.001 America 0201g 0501g 4801g 0401 15 0.0063 3 0.0258 Europe 3001 0602 1302 0701 16 0.0054 11 0.0056 Europe 3001 0602 1302 0701 16 0.0054 70 0.0018 Europe 0101g 0701 16 0.0054 70 0.0018 Europe 2501 1203 1801g 190 190 0.0054 21 0.0004 Europe 2501 1203 1801g 1402 0.0054 0.0006 America	2402g	0401g	3502	1104	12	0.0081	31	0.0041	Europe
6801g 0801 4801g 0404 14 0.0063 2311 0.0001 America 0201g 6501g 4402g 0401 15 0.0063 3 0.0258 Europe 3001 0602 1302 0701 16 0.0054 11 0.0096 Europe 001g 0802 1402 0102 17 0.0054 70 0.018 Europe 0101g 0802 1402 0102 17 0.0054 70 0.0018 Europe 0101g 0701g 5701 0701 18 0.0054 20 0.0004 Europe 2501 1203 1801g 1601 19 0.0054 21 0.0058 Europe 2501g 0401g 3501g 1402 20 0.0054 1000 America	0301g	0401g	3501g	0101	13	0.0072	7	0.0126	Europe
0201g 0501g 4402g 0401 15 0.0063 3 0.0258 Europe 3001 0602 1302 0701 16 0.0054 11 0.0096 Europe 0201g 0802 1402 0102 17 0.0054 70 0.0018 Europe 0101g 0701 18 0.0054 420 0.0004 Europe 2501 1203 1801g 190 0.0054 21 0.0058 Europe 2501 1203 1801g 1402 20 0.0054 21 0.0058 Europe 2501g 1203 1801g 1402 20 0.0054 10 0.0006 Europe	6801g	0801	4801g	0404	14	0.0063	2311	0.0001	America
3001 0602 1302 0701 16 0.0054 11 0.0096 Europe 0201g 0802 1402 0102 17 0.0054 70 0.0018 Europe 0101g 0701g 5701 0701 18 0.0054 70 0.0004 Europe 2501 1203 1801g 1501 19 0.0054 21 0.0058 Europe 2501 1203 1801g 140 10 0.0054 21 0.0058 Europe 201g 1203 1801g 1402 20 0.0054 10 0.0000 America	0201g	0501g	4402g	0401	15	0.0063	3	0.0258	Europe
0201g 0802 1402 0102 17 0.0054 70 0.0018 Europe 0101g 0701g 5701 0701 18 0.0054 420 0.0004 Europe 2501 1203 1801g 1501 19 0.0054 21 0.0058 Europe 2201g 0401g 3501g 1402 20 0.0054 more 0.0006 America	3001	0602	1302	0701	16	0.0054	11	0.0096	Europe
0101g 0701g 5701 0701 18 0.0054 420 0.0004 Europe 2501 1203 1801g 1501 19 0.0054 21 0.0058 Europe 2501 0201g 0401g 3501g 1402 20 0.0054 none 0.0000 America	0201g	0802	1402	0102	17	0.0054	70	0.0018	Europe
2501 1203 1801g 1501 19 0.0054 21 0.0058 Europe 0201g 0401g 3501g 1402 20 0.0054 none 0.0000 America	0101g	0701g	5701	0701	18	0.0054	420	0.0004	Europe
0201g 0401g 3501g 1402 20 0.0054 none 0.0000 America	2501	1203	1801g	1501	19	0.0054	21	0.0058	Europe
	0201g	0401g	3501g	1402	20	0.0054	none	0.0000	America

Tissue Antigens. Author manuscript; available in PMC 2012 November 01.

^aFull allelic resolution is given in Table 1.