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INTRODUCTION

Kebsiella pneumoniae is encountered as a saprophyte in hu-
mans and other mammals, colonizing the gastrointestinal

tract, skin, and nasopharynx; it is also found in various environ- Address correspondence to G. L. Daikos, gdaikos@med.uoa.gr.
mental niches (soil, water, etc.) (11). In the past, it was considered Copyright © 2012, American Society for Microbiology. All Rights Reserved.
an important causative agent of community-acquired (CA) infec- doi:10.1128/CMR.05035-11

tions, including a severe form of pneumonia. Recently, while CA
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Carbapenemases in Enterobacteriaceae

TABLE 1 Types, classification, variants, and species distribution of plasmid-mediated carbapenemases encountered in Enterobacteriaceae

Molecular class Functional
Type (subclass)” group? Variants Species
KPC A 2f KPC-2to -13 K. pneumoniae, E. coli, Klebsiella oxytoca, S.
marcescens, Enterobacter spp., C. freundii,
Salmonella enterica, Raultella spp.
VIM B (B1) 3a VIM-1, -2, -4, -5, -6 K. pneumoniae, E. coli, K. oxytoca, S. marcescens
VIM-11, -12, -13, -19, -23 Serratia liquefaciens, Enterobacter spp., C. freundii
VIM-24, -25, -26, -27, -32 Morganella morganii, Proteus stuartii, P. mirabilis
IMP B (B1) 3a IMP-1, -3, -4, -6, -8 K. pneumoniae, E. coli, K. oxytoca, S. marcescens
IMP-11, -24, -27 Enterobacter spp., Citrobacter spp., P. mirabilis,
Proteus rettgeri, Shigella flexneri, M. morganii
NDM B (Bl) 3a NDM-1, -4, -5, -6 K. pneumoniae, E. coli, Enterobacter spp., K.
oxytoca, C. freundii, M. morganii, Providencia
spp-
OXA D 2df OXA-48, -163, -181 K. pneumoniae, E. coli, C. freundii, P. mirabilis

“ See reference 109.
b See reference 37.

pneumonia due to K. pneumoniae has become rare, novel mani-
festations of CA infections, such as liver abscess complicated by
endophthalmitis and other metastatic infections, have been de-
scribed (140).

In the early 1970s, both the epidemiology and spectrum of
infections caused by K. prneumoniae changed dramatically when
this bacterium was established in the hospital environment and
became a (still) leading cause of nosocomial infections. Not only is
it found in the gastrointestinal tracts of patients, at frequencies as
high as 80%, but high carriage rates have also been recorded for
patient nasopharynges and hands (212). This considerable effi-
ciency of colonization, enhanced by acquired resistance to antibi-
otics, enables K. pneumoniae to persist and spread rapidly in
health care settings (119). Although not inherently resistant to
antibiotics, since it produces only moderate amounts of chromo-
somal penicillinases, K. pneumoniae is a notorious “collector” of
multidrug resistance plasmids. During the 1970s to 1980s, these
were commonly plasmids encoding resistance to aminoglyco-
sides. Later, however, K. pneumoniae became the index species for
plasmids encoding extended-spectrum 3-lactamases (ESBLs)—
mostly TEMs and SHVs active against newer cephalosporins—
along with a variety of genes conferring resistance to drugs other
than B-lactams (212). The successive addition of genetic elements
encoding resistance to aminoglycosides and extended-spectrum
B-lactams, coupled with the rapid accumulation of chromosomal
mutations conferring resistance to fluoroquinolones, left carbap-
enems as the first-choice drugs for the treatment of health care-
associated infections caused by K. prneumoniae.

This was true until approximately 2000, when we began wit-
nessing a global crisis of unprecedented dimensions due to the
rapid dissemination of multidrug-resistant (MDR) K. pneu-
moniae strains producing “carbapenemases” encoded by trans-
missible plasmids. Later, other clinically important enterobacte-
rial species, including Escherichia coli, acquired carbapenemase
genes (202). Thus, it appears probable that as in the ESBL “era,” K.
pneumoniae again functions as a pool of potent 3-lactamases. The
clinically most important carbapenemases in Enterobacteriaceae
are the class A enzymes of the KPC type and the zinc-dependent
class B metallo-B-lactamases (MBLs), represented mainly by the
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VIM, IMP, and NDM types. The plasmid-expressed class D car-
bapenemases of the OXA-48 type complete the picture (Table 1)
(107, 166, 202).

Carbapenemase-producing enterobacteria (CPE) cause seri-
ous infections in debilitated and immunocompromised patients,
in association with prolonged hospital stays and increased mor-
tality rates, ranging from 24% to as high as 70%, depending on the
study population (14, 24, 28, 67, 175, 187, 203, 233, 274). Given
the critical condition of these patients, treatment should be timely,
aggressive, and rapidly efficacious. However, therapeutic options
are obviously limited, and unfortunately, the introduction of new
antimicrobials such as tigecycline or the “reinvention” of colistin
has far from entirely resolved this problem, as discussed in a later
section.

In this review, we attempt to (i) describe the microbiological
and epidemiological characteristics of carbapenemase-producing
Enterobacteriaceae and (ii) present in a critical manner the avail-
able data regarding the antimicrobial treatment and infection
control practices used to combat infections caused by these bac-
teria.

GENETIC CONTEXT, SUBSTRATE SPECTRA, AND (3-LACTAM
RESISTANCE PHENOTYPES

KPC Carbapenemases

KPC B-lactamases (KPC-2 to KPC-13; molecular class A) (www
Jahey.org/studies) exhibit activity against a wide spectrum of
B-lactams, including penicillins, older and newer cephalosporins,
aztreonam, and carbapenems (Table 2) (191). Structural studies
and comparisons with the TEM-1 and SHV-1 penicillinases indi-
cated that positioning of the catalytic residues in KPCs may allow
accommodation of the bulky a-substituents of carbapenems in a
manner facilitating the subsequent acylation and deacylation
steps (123).

blayp genes detected so far in K. pneumoniae are all carried on
plasmids. Sequences adjacent to blayp genes display rather lim-
ited diversity, suggesting a single or at least a limited number of
original sources. Segments of the Tn3-related Tn4401 transposon,
occurring in four isoforms, are invariably present upstream of
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TABLE 2 Hydrolytic efficiencies of representative carbapenemase variants against various 3-lactam substrates

Hydrolytic efficiency (k. /K,,) (s~" pM™")* against:

cat m
-Lactamase Imipenem Meropenem Ceftazidime Cefotaxime Aztreonam Cefoxitin Cephalothin Penicillin G Reference
KPC-2 0.29 0.27 ND 0.10 0.08 0.002 0.84 1.90 271
KPC-3 1.90 1.40 0.03 0.50 ND 0.50 3.50 ND 4
VIM-1 0.13 0.26 0.08 0.68 — 0.20 5.10 0.04 93
VIM-2 3.80 2.50 0.05 5.80 — 1.20 11.8 4.0 74
VIM-4 23.0 0.90 ND ND —_ ND 36.0 3.10 137
VIM-5 0.29 0.05 0.001 0.09 — ND ND 0.26 95
VIM-19 6.0 2.0 0.02 30.0 — 0.50 ND 5.0 227
VIM-27 0.26 ND ND 0.82 —_ 0.03 8.30 ND 198
IMP-1 1.20 0.12 0.18 0.35 — 2.0 2.40 0.62 136
IMP-4 0.35 0.18 0.07 0.14 — ND 0.43 0.08 51
NDM-1 0.21 0.25 0.03 0.58 —_ 0.02 0.40 0.68 273
NDM-4 0.46 0.31 0.06 1.20 — — 0.50 ND 189
OXA-48 0.14 <<0.001 0.001 0.05 — ND 0.15 6.10 217

“ND, not determined; —, no hydrolysis detected.

blaypc (63, 180). Tn4401 is bracketed by 39-bp imperfect inverted
repeats and bounded by different 5-bp target site duplications
(Fig. 1, structure I) (180). These structures indicate the operation
of a replicative transposition mechanism (typical of Tn3-like
transposons) that allows spread of KPC-encoding sequences
among different genetic units and has resulted in the emergence of
distinct KPC-encoding plasmids belonging to various Inc groups,

such as FII (probably derivatives of the characteristic FII virulence
plasmid of K. pneumoniae), L/M, and N (63). The same genetic
structures have been identified in KPC-positive isolates of other
enterobacterial species (Table 1).

In line with their substrate spectra, KPC enzymes confer on
enterobacteria decreased susceptibility or resistance to virtually all
B-lactam antibiotics. Moreover, there have been studies reporting

Tn4401
A
.
IRL IRR
KPC U]
tnpR tnpA ISKpn7 blaypc., ISKpn6
Aorf5,
VIM (11) YONVINY X
V
1526 int1 blayy., aacA7 dfrA1  aadAl  AgacE  sull 1526 ATn1721 ATn2
(1)
ATn1696 blay-1
IMP (V) Y2,
1526 int1 blayeg aacA4  ATniC
NDM 3 :5§‘:'2’_
AN
AlS26 ATn3
(V1)
ISEc33 blayy,  bleyg. ISSen4
Tn1999
- A
oxa-ss (vin >N ) .
type AIS1999  blagxass AIS1999
ATn3
(VIII)
154321 blaoya163 1S4-like

FIG 1 Schematic depiction of representative sequences from enterobacterial plasmids, showing the association of carbapenemase-encoding genes with various
mobile elements. (I) The blayp_,-containing Tn4401 transposon from plasmid pNYC (GenBank accession no. EU176011) (180). (II and III) Representative
VIM-encoding sequences from plasmids pNL194 (GenBank accession no. GU585907) (167) and pCC416 (GenBank accession no. AJ704863) (59), respectively.
(IV) A blayp-carrying sequence from plasmid pFP10-2 (GenBank accession no. HQ651093) (146). (V and VI) Sequences containing blayp,y,.; carried by a
plasmid from K. pneumoniae 05-506 (GenBank accession no. FN396876) (273) and by plasmid p271A (GenBank accession no. HQ162469) (218), respectively.
(VIIand VIII) The OXA-48-encoding transposon Tn1999 from plasmid pA-1 (GenBank accession no. AY236073) (217) and the blagy 5_;43-containing segment

from plasmid p6299 (GenBank accession no. HQ700343) (216), respectively.
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on the emergence of KPC-positive K. prneumoniae exhibiting a
decreased outer membrane permeability that enhances B-lactam
resistance levels (134). Although the MICs of carbapenems vary,
the latest Clinical and Laboratory Standards Institute (CLSI) and
European Committee for Antimicrobial Susceptibility Testing
(EUCAST) breakpoints classify most KPC-producing isolates as
resistant to these drugs (55; www.eucast.org). It should also be
noted that carbapenem and oxyimino-f-lactam MICs are com-
monly higher for species with derepressed production of their
chromosomally encoded AmpCs, such as enterobacters, than for
K. pneumoniae (166, 191).

MpLs

MPBLs constitute a class of enzymes (molecular class B) that, de-
spite their significant amino acid sequence diversity, share three
distinct functional properties: (i) capability of hydrolyzing car-
bapenems, (ii) resistance to mechanism-based inhibitors, and (iii)
susceptibility to chelating agents such as EDTA. The latter prop-
erty results from their unique mechanism of hydrolysis, in which
divalent cations, most commonly Zn*", are essential for the nu-
cleophilic attack of the B-lactam ring. Phylogenetic analysis sug-
gests the existence of three MBL lineages: B1, B2, and B3 (13). In
addition to chromosomally encoded MBLs, subgroup B1 includes
the acquired enzymes of the VIM, IMP, GIM, SPM, SIM, AIM,
DIM, and NDM types, all of which, surprisingly, are still of un-
known origin (61). Of these, several variants of the VIM, IMP, and
NDM types have been encountered in K. pneumoniae and other
Enterobacteriaceae (Table 1). These 3-lactamases are active against
penicillins, older and newer cephalosporins, and carbapenems,
although significant variations in hydrolytic efficiency exist even
between enzymes of the same type (Table 2). Also, they are inca-
pable of inactivating aztreonam. This is due mainly to the fact that
B1 MBLs bind monobactams with a very low affinity. Moreover,
docking experiments have indicated that positioning of the drug
within the active site does not favor hydrolysis (213).

The blay\, and blay,p variants identified in K. pneumoniae so
far occur as gene cassettes incorporated into the variable regions of
class 1 integrons (Fig. 1, structures I, III, and IV) (254), with the
exception of a class 2 and a class 3 IMP-encoding integron (174,
235). In contrast, blaypy, genes are not associated with integrons
(Fig. 1, structures Vand VI) (114, 218, 273). The wide variety of K.
pneumoniae plasmids encoding MBLs implies the operation of
mobilization mechanisms. Two non-mutually exclusive possibil-
ities are likely to account for this dissemination of MBL genes in
distinct plasmids: (i) reshuffling of MBL cassettes among plasmid-
borne integrons and (ii) en bloc mobilization of MBL gene-con-
taining structures through transposition and/or recombination
events. Indeed, insertion elements (ISs) such as 1S26, ISEc33,
ISSen4, and ISAba125, either alone or as parts of transposons (e.g.,
Tn3 and Tn1696), commonly flank MBL-encoding regions (Fig.
1, structures II to VI) (42, 59, 114, 165, 167, 215, 218, 273). At least
some of the latter elements apparently participate in the spread of
MBL-encoding sequences among different genetic units.

The three MBL types encountered in K. pneumoniae have also
been identified on numerous occasions in other enterobacterial
species, including E. coli (VIM, IMP, and NDM), Enterobacter
cloacae (mainly VIM and IMP), Serratia marcescens (mainly IMP),
and Proteus mirabilis (mainly VIM) (Table 1) (61, 166). In these
species, most genetic platforms of MBL genes are similar to those
found in K. pneumoniae.
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The baseline phenotype expected from MBL-producing entero-
bacteria includes (i) resistance to amino-, carboxy-, and ureido-
penicillins, penicillin-clavulanate combinations, and cefoxitin;
(ii) decreased susceptibility to piperacillin-tazobactam and oxy-
imino cephalosporins; and (iii) elevated MICs of carbapenems
compared to the epidemiological cutoff values. In actual fact,
however, such a minimal resistance phenotype is observed rarely,
if at all, among clinical isolates, since MBL producers most often
possess additional mechanisms that increase carbapenem resis-
tance levels, such as elevated expression of the MBL itself and,
most importantly, impaired outer membrane permeability (40,
152). The latter mechanism apparently plays a significant role in
determining carbapenem resistance levels, as also indicated by the
wide range of carbapenem MICs among MBL producers belong-
ing to the same species and even to the same lineage (40, 152, 166).
Also, ESBLs such as SHVs, often encountered among VIM pro-
ducers (152, 224), expand the resistance phenotype to include
aztreonam resistance.

OXA-48

OXA-type B-lactamases (molecular class D), such as OXA-23,
OXA-24/40, and OXA-58, encountered frequently in acinetobac-
ters, exhibit relatively weak carbapenemase activity (256). In 2001,
OXA-48, a distinct OXA enzyme (<<50% amino acid sequence
identity with the other OXA enzymes) with significant carbapen-
emase activity, was identified in K. pneumoniae (217). Its hydro-
lytic efficiency against imipenem is approximately 10-fold higher
than those of the acinetobacter OXAs (256). Data from the crystal
structure of OXA-48 and molecular dynamics studies suggest that
the process of carbapenem hydrolysis is different from that for the
other OXA carbapenemases. For OXA-48, hydrolysis relies on
the rotation of the carbapenem’s a-hydroxyethyl group within the
active site in a manner that allows movement of the deacylating
water toward the acylated serine residue (73). Consequently,
OXA-48-producing K. pneumoniae isolates exhibit elevated MICs
of carbapenems that are still frequently lower than the respective
breakpoints. OXA-48 also hydrolyzes penicillins and early cepha-
losporins, but its activity against oxyimino cephalosporins is weak
(217). Other carbapenem-hydrolyzing variants of OXA-48 (OXA-
163 and -181) have also emerged in K. pneumoniae (216, 220,
221). blagx a_sg 1s invariably carried by transmissible plasmids re-
sponsible for its spread among K. pneumoniae and other entero-
bacterial species, such as E. coli and Citrobacter freundii (Table 1)
(46, 217). Moreover, the plasmid-borne blagy 4 _45-containing se-
quences are associated with 1S1999, an IS4 family element in-
volved in mobilization and expression of B-lactam resistance
genes (Fig. 1, structures VII and VIII) (8). This association pro-
vides further possibilities for blagy, g to be transferred to other
genetic units.

GLOBAL SPREAD OF CPE

Producers of KPC Types

A rapid and extensive dissemination of KPC-producing K. pneu-
moniae was first noticed in the northeastern parts of the United
States during the first decade of the 21st century. Surveillance
studies suggested that the epicenter of this epidemic was the state
of New York (25, 27, 29). Later, isolates producing KPC-2 (270)
and KPC-3 (a point mutant of KPC-2) (4) became established in
hospitals in neighboring states, apparently due to transfer of col-
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onized patients (83, 84, 126). During the same period, KPC-pro-
ducing K. pneumoniae also emerged in Latin America (171, 201,
252) and Israel (139). Other countries, such as China (257) and
Greece (102), soon followed. The Chinese data originate from a
limited number of hospitals; thus, the actual extent of spread of
KPC producers in China remains unknown. In Greece, KPC-pos-
itive K. pneumoniae became dominant in tertiary care hospitals,
reaching epidemic proportions in a matter of approximately 2
years (99). In Northern and Western European countries, KPC
prevalence remains low. In these countries (e.g., Switzerland, Ire-
land, United Kingdom, France, Sweden, Norway, the Nether-
lands, and Denmark), most reports concern sporadic isolates in-
troduced by patients from high-prevalence areas (181, 230, 266).
Nevertheless, a multihospital outbreak has already occurred in
France (43). Higher prevalences have been reported from Poland
and Italy, where KPC producers appear to be established in vari-
ous regions (12, 103). The rapid global dissemination of KPC-
producing K. pneumoniae implies multiple transmission routes.
According to a widely held scenario, an important event was the
introduction of KPC-positive K. pneumoniae from the United
States to Israel, followed by spread to neighboring countries and
via Greece to other European countries (260). However, index
cases to confirm this scenario were not identified with certainty
(154). KPC enzymes have been detected in a large number of K.
pneumoniae sequence types (STs) (99). Nevertheless, the vast ma-
jority of isolates with these enzymes worldwide belong to ST258.
This ST is strongly associated with KPC production and with iso-
lates exhibiting multidrug resistance, but one could also speculate
on additional—though yet unknown—inherent traits responsible
for its high rate of transmissibility. Whatever these eventually turn
out to be, KPC-producing ST258 K. pneumoniae can undeniably
be regarded as one of the most successful multidrug-resistant nos-
ocomial pathogens known to date.

Not unexpectedly, KPC-producing isolates of various other en-
terobacterial species, including E. coli and E. cloacae, have been
reported in settings where the prevalence of KPC-positive K.
pneumoniae is high. Outbreaks of KPC-producing E. coli have
occurred in health care facilities in various countries, including
the United States, Israel, and Greece (29, 105, 160, 249). Also,
sporadic KPC-positive isolates of a wide variety of other entero-
bacterial species have been described worldwide (Table 1) (166,
191).

Producers of M{3Ls

K. pneumoniae strains producing enzymes belonging to any of the
three MBL families (VIM, IMP, and NDM) have already achieved
international spread, though significant local differences do exist.
VIM-positive K. pneumoniae was first observed around 2001 to
2003 in Southern Europe and was introduced later to Northern
Europe (e.g., Germany, France, and the Scandinavian countries)
and the United States, mostly through colonized patients trans-
ferred from high-prevalence areas (61). Isolation rates of VIM-
positive K. pneumoniae in Northern Europe and the United States
remain low, though some infection clusters limited to single hos-
pitals have been reported (107). In addition, sporadic cases have
been recorded in Tunisia (129), South Korea (272), and Venezuela
(155). Until recently, VIM-producing K. prneumoniae and other
enterobacteria were frequently isolated in Mediterranean coun-
tries, reaching epidemic proportions only in Greece (107, 251).
However, up-to-date surveillance data from this country indicate
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that these organisms have been in decline since 2009 (G. L. Daikos,
unpublished data).

Acquisition of IMP MBLs by K. pneumoniae was described dur-
ing the 1990s, primarily in Japan, as well as in Taiwan and Singa-
pore (225). IMP-positive K. pneumoniae clinical isolates remain
frequent in Japan (94). IMP-4-producing K. pneumoniae strains
have also caused hospital outbreaks in China (162) and Australia
(206). In addition, IMP-positive clinical enterobacteria, such as S.
marcescens and E. cloacae, have been reported in the same area, i.e.,
Japan, South Korea, and Taiwan (225). Dissemination of IMP-
producing Enterobacteriaceae in the rest of the world appears to be
limited, with single cases identified in Turkey, Lebanon, Brazil,
and the United States (3, 72, 148, 174). As usual, limitations and
differences in surveillance systems in different countries inevita-
bly affect the reliability and comparability of international epide-
miological data on IMP (or indeed VIM)-positive K. pneumoniae.

In stark contrast, the results of the internationally concerted
effort and resources allocated for the elucidation of the transmis-
sion routes and public health impact of enterobacteria, mainly E.
coliand K. pneumoniae strains producing NDM, the most recently
identified MBL type, were spectacular. These efforts produced a
wealth of data regarding the epidemiology of NDM producers.
The epicenter of their epidemic is the Indian subcontinent, where
the high isolation frequency of these microorganisms in health
care facilities, as well as their extensive spread in various environ-
mental niches, has been documented repeatedly (130, 192). Fur-
thermore, the blay,y genes have spread to various enterobacterial
species other than K. pneumoniae and E. coli (Table 1) (255). Also,
a second reservoir of NDM-producing K. pneumoniae strains
seems to exist in the central Balkans, but its link with the Indian
epidemic remains uncertain (108, 150). In contrast, the recent
spread of NDM producers in Western Europe, North America,
Australia, and the Far East has clearly been attributed to patients
who originated mainly from India, Pakistan, and Bangladesh
(192). A characteristic of NDM-producing K. pneumoniae isolates
has so far been their rapid dissemination; indeed, infected or col-
onized humans without obvious connection to the Indian epi-
demic are increasingly being reported in several countries (125,
190, 214).

Producers of OXA-48

OXA-48-producing K. pneumoniae was first detected sporadically
in Turkey, in 2001 (217). Hospital outbreaks in the main cities of
this country soon followed (45). About the same time, OXA-48-
positive K. pneumoniae isolates were also identified in other Mid-
dle Eastern and North African countries (46, 62) as well as in
Western European countries, including the United Kingdom, Bel-
gium, France, Germany, and the Netherlands. Emergence of
OXA-48 producers in the latter countries has been attributed
mainly to colonized patients transferred from North Africa (107).
Recently, an important outbreak due to an OXA-48-producing K.
pneumoniae strain was reported in a Dutch hospital (220). How-
ever, there are no indications of an overall significant spread of
these microorganisms across Europe. Although the Middle East
and North Africa remain the main foci of infection, the recent
isolation of K. pneumoniae isolates producing OXA-48-type en-
zymes in India (47), Senegal (173), and Argentina (216) suggests
an expansion that can safely be considered global. Additionally,
the recent isolation of OXA-48 producers belonging to species
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other than K. pneumoniae underlines the spreading potential of
blagxa_as (Table 1) (46).

DETECTION OF CPE

Counterintuitive as it may sound, carbapenemase production by
enteric bacilli does not necessarily confer significant resistance to
carbapenems. Before the introduction of the new carbapenem
breakpoints by CLSI and EUCAST in 2010 (55; www.eucast.org),
carbapenemase-positive isolates (as determined by phenotypic
tests) with relatively low carbapenem MICs were reported without
interpretation of their susceptibility status. This directly implied
the possibility of therapeutic failure for carbapenem regimens,
passing to clinicians a mixed message of dubious value. Today,
after the introduction of the new, lower breakpoints, the situation
has been simplified: laboratories report the MICs of carbapenems
irrespective of carbapenemase production. On the other hand,
various enterobacterial isolates lacking enzymes with appreciable
carbapenemase activity may exhibit elevated MICs of carbapen-
ems. Consequently, this may exclude from use a viable group of
antibiotics. Application of simple and reliable carbapenemase-de-
tecting tests nevertheless remains useful for monitoring of carbap-
enemase-producing microorganisms in order to inform appro-
priate infection control policies in health care settings.

A large-scale and cost-effective approach for deciding which
isolates are carbapenemase producers based solely on phenotypic
tests should rely on the epidemiological cutoff (ECOFF) values for
nonsusceptibility. These values depend on carbapenem MIC dis-
tributions of carbapenemase producers as opposed to wild-type
strains. Considering the respective distributions for K. pneu-
moniae and E. coli compiled by EUCAST, MICs of =1 pg/ml for
imipenem and =0.5 pg/ml for meropenem and ertapenem have
been proposed (57). According to the CLSI, which has not defined
ECOFFs, selection of isolates for testing can rely on clinical break-
points: isolates that test intermediate or resistant to at least one
carbapenem as well as resistant to a “subclass III cephalosporin”
(cefotaxime, ceftazidime, ceftriaxone, cefoperazone, or cefti-
zoxime) should be tested further. Ertapenem is considered the
most sensitive indicator (29). It should be noted, however, that
use of this drug may cause specificity problems: decreased perme-
ability, combined with either production of CTX-M or overpro-
duction of AmpC B-lactamases, can significantly affect the MIC of
ertapenem and therefore lower the detection specificity (57, 264).

Screening criteria, however, may and should be adapted de-
pending on the epidemiological situation in a given ecological
setting. Application of the CLSI criteria is expected to be adequate
in settings where carbapenemase producers have already been es-
tablished. On the other hand, occasional adoption of less stringent
criteria (i.e., the use of lower cutoffs or reducing the concentra-
tions of the selective agents used for screening) in low-prevalence
settings may facilitate the timely detection of CPE emergence or
early dissemination and therefore allow the swift implementation
of measures preventing their further spread. The potential pre-
vention benefits of such an approach are likely to counterbalance
the burden of increased false-positive results.

There have been numerous studies that deal with technical
issues of carbapenemase detection methods, comparing their per-
formances mainly for K. pneumoniae and E. coli. We therefore
briefly review these methods and their principles.
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MHT

The cloverleaf or modified Hodge test (MHT) is based on the
inactivation of meropenem or ertapenem by whole cells of car-
bapenemase-producing organisms. MHT has been used exten-
sively as a phenotypic method for the detection of carbapenemase
activity (55), and it is the only carbapenemase detection method
recommended by the CLSI for screening purposes. There are,
however, various shortcomings with MHT. The assay cannot dis-
tinguish the type of carbapenemase involved. Most importantly,
false-positive results have been observed with isolates producing
CTX-M-type ESBLs or increased amounts of AmpC 3-lactamases
(cephalosporinases) (166, 200). Moreover, sensitivity problems
(false-negative results) may occur, mainly with MBL-producing
enterobacterial isolates exhibiting weak carbapenemase activity
(166). Also, MHT is probably unreliable in detecting NDM-1-
producing K. pneumoniae, though the relevant observations re-
gard a limited number of isolates (49, 169). Replacement of Mu-
eller-Hinton agar by MacConkey agar has been proposed as a
means to increase the sensitivity of MHT for detection of isolates
producing MBLs or OXA carbapenemases. Improved perfor-
mance was attributed to the enhanced release of periplasmic en-
zymes caused by the bile salts included in MacConkey medium
(141). This modification, however, has not been evaluated sys-
tematically. Overall, MHT, although remaining a convenient as-
say, cannot be used as the sole method for the detection of carbap-
enemase-positive Enterobacteriaceae in the clinical laboratory.

Detection of MBLs Based on Chelating Agents

Phenotypic detection of MBL producers in the clinical laboratory
is based mainly on the specific inhibition of MBLs by EDTA (193).
Additionally, various techniques utilizing other chelating agents,
such as dipicolinic acid and 1,10-phenanthroline, as well as thiol
compounds such as 2-mercaptopropionic and mercaptoacetic
acid, have been developed (166). Use of a combination of chela-
tors, e.g., EDTA plus 2-mercaptopropionic acid, has also been
proposed (124). These compounds, by depriving the MBL of hy-
drolytically essential Zn divalent cations, render it inactive against
B-lactams. The most common MBL detection tests employ a disk
of a hydrolyzable B-lactam (typically a carbapenem, though cef-
tazidime has also been used extensively) placed close to a disk with
a given amount of an MBL inhibitor (most commonly EDTA),
hence the term “double-disk synergy test” (DDST). Formation of
a synergy pattern is indicative of MBL production. A drawback of
this approach is that interpretation is subjective and cannot be
quantified. Alternatively, the 3-lactam disk is potentiated with an
inhibitor, and the diameter of its inhibition zone is then compared
with that of the B-lactam disk alone, hence the term “combined
disk test” (CDT). An increase of the inhibition zone diameter
above a predefined cutoff value denotes MBL activity. Various
gradient diffusion methods (e.g., Etest [bioMérieux, Solna, Swe-
den]), utilizing strips containing imipenem and EDTA, are based
on the same principle. In general, MBL detection methods based
on B-lactam—chelator combinations perform well for K. pneu-
moniae and E. coli, while they have not been tested systematically
for other enterobacterial species. Also, the user should always con-
sider the potentially detrimental effects of chelating agents on bac-
terial growth. Additionally, interpretation difficulties are to be
expected with MBL producers exhibiting low carbapenem MICs.
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Detection of KPCs Based on Boronates

Phenotypic detection of KPC production is based on the suscep-
tibility of KPCs to boronic acid and its derivatives, i.e., phenyl-
boronic and 3-aminophenylboronic acid. Boronate derivatives,
which structurally resemble B-lactams, have long been used in
probing the function of B-lactamases, especially class C enzymes.
In 2008, Pasteran et al. (201) observed that boronates preferen-
tially inhibit KPC-type B-lactamases. This report was soon fol-
lowed by studies proposing detection techniques using boronic
acids combined with a carbapenem, mostly in the CDT format
(75, 104, 248). As with the above-described MBL detection tests,
experience with the boronate-based detection of KPC producers is
limited mainly to K. pneumoniae. Specificity problems may arise
with isolates producing AmpC-type B-lactamases (cephalospori-
nases), since boronic acid derivatives are potent inhibitors of these
enzymes. The problem can be alleviated partly by the simultane-
ous use of cloxacillin, which preferentially inhibits cephalospori-
nases (104). It should also be noted that boronate-based assays are
ineffective in detecting KPC-positive K. pneumoniae in the case of
coproduction of VIM B-lactamase (100).

Detection by Use of Chromogenic Media

At least two selective agar media allowing different carbapen-
emase-producing microorganisms to be recognized are commer-
cially available: CHROMagar-KPC (CHROMagar; BBL) and Bril-
liance CRE agar (Thermo Fisher Scientific). Species are
distinguished by colony color. The reliability of these media has
not yet been evaluated rigorously. Nevertheless, they have been
used successfully for surveillance cultures on various occasions
(196, 208, 229).

Molecular Detection of Carbapenemase Genes

Many clinical laboratories employ “in-house” PCR-based meth-
ods for the detection of carbapenemase genes to get around the
problems of phenotypic detection methods and to reduce report-
ing times. In addition, PCR-based methods allow detection of
OXA-type carbapenemases for which specific phenotypic tests
have not been developed. Simplex PCR assays targeting a single
carbapenemase type have been used successfully in numerous
studies, although there is no consensus regarding the oligonucle-
otide primers that should be used for each bla gene group. Multi-
plex and real-time PCR methods that allow the identification of
multiple carbapenemase gene types and that further shorten the
detection time, in the case of real-time PCR, have also been uti-
lized (20, 70, 172, 219, 253). Also, real-time PCR assays can be
followed by a melting curve step to allow the accurate identifica-
tion of carbapenemase gene variants (163). PCR- and hybridiza-
tion-based kits for detection of the main carbapenemase gene
types, for example, Hyplex MBL ID and Hyplex CarbOxa ID kits
(BAG Health Care, Lich, Germany), have also been developed by
the industry. Although manufacturers claim that these methods
have the potential to be used directly on clinical samples (9), their
diagnostic usefulness remains to be evaluated systematically in
different settings. Microarray technology was recently added to
the list of molecular methods aiming at the rapid and reliable
identification of multiple resistance determinants. The Check-
KPC ESBL microarray and its expanded version, Check-MDR
CT102 (Check-Points Health BV, Wageningen, Netherlands),
have been used successfully for detection within a single reaction
tube of a wide variety of bla genes, including most clinically rele-
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vant carbapenemase genes (58, 179). Nevertheless, the term “mac-
roarray” may be more suitable given the relatively small number
of genes tested.

An issue with all molecular methods is that the range of resis-
tance genes to be detected is predefined, so these methods may
miss novel gene types.

Detection of Carbapenemase Activity by
Spectrophotometry

Assessment of carbapenemase activity by spectrophotometry is
carried out using crude or partially purified enzyme extracts and a
carbapenem, commonly imipenem. It is considered the reference
method for the verification of carbapenemase activity. This labo-
rious and technically demanding approach, however, is limited to
reference laboratories.

Detection of Carbapenemase Activity by Mass
Spectrometry

Matrix-assisted laser desorption ionization—time of flight mass
spectrometry (MALDI-TOF MS) is the latest advancement in the
recognition of carbapenemase activity. The method is based on
the ionization in high vacuum of the material under examination
and its subsequent acceleration in an electrical field. The sizes of
fragments can be inferred from the time of flight within the elec-
trical field. MALDI-TOF MS has been introduced in the clinical
laboratory mainly as a means for species identification. However,
the method is highly versatile and can be used for the recognition
of various compounds, including antibiotic degradation prod-
ucts. Recently, MALDI-TOF MS was used successfully to identify
carbapenem hydrolysis products, thus confirming carbapenemase
activity in Gram-negative isolates (35, 115). However, experience
with this methodology is still limited.

ANTIMICROBIAL AGENTS AGAINST CPE
In Vitro Activity

Susceptibility of the infecting isolate is one of the key factors in
deciding on a suitable antimicrobial chemotherapy. In vitro sus-
ceptibility data from numerous studies throughout the world in-
dicate that colistin, tigecycline, and fosfomycin are the most effec-
tive antibacterials against clinical enterobacteria producing either
KPCs or MBLs. Drug effectiveness, however, differs depending on
the extent of spread of resistant isolates in each setting. Indeed, a
growing number of studies indicate that the activity of these drugs
is decreasing rapidly (7, 21, 80, 85, 88, 96, 128, 142, 151, 156, 185,
186, 226, 243, 247,275, 277). In addition, rates of susceptibility to
fluorinated quinolones are generally low, reflecting the multi-
drug-resistant nature of CPE. Low susceptibility rates are also
found for other, clinically less important antimicrobials, such as
nitrofurantoin (breakpoints are available only for E. coli) and
chloramphenicol, both of which are drugs that are tested less fre-
quently. Among the currently used aminoglycosides, only genta-
micin has so far retained good activity against producers of KPCs
and acquired MBLs of the VIM type. The majority of NDM pro-
ducers, however, are resistant to all clinically available aminogly-
cosides due to coproduction of 16S rRNA methylases (18). Of the
B-lactams, the most effective compounds seem to be the carbap-
enems, which at first sight appears to be paradoxical. However,
applications of different carbapenem breakpoints by the CLSI and
EUCAST must be taken into account. It has been estimated that in
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Greek hospitals, some 10 to 15% of CPE (a bacterial population
consisting mainly of KPC-2-producing K. pneumoniae strains)
appear resistant by the CLSI interpretive criteria but susceptible
according to EUCAST (Daikos, unpublished data). Aztreonam,
though withstanding hydrolysis by acquired MBLs, exhibits lim-
ited activity against the respective CPE due to the frequent copro-
duction of ESBLs, mainly of the SHV and CTX-M types (60).
Finally, temocillin, a 6-a-methoxy derivative of ticarcillin, seems
to exhibit moderate activity against KPC-producing K. pneu-
moniae and E. coli, but the relevant data are limited (1).

The data summarized above, obtained from a wide variety of
settings, should nevertheless be treated with caution given the
different methodologies used. Additionally, there have been re-
ports that automated systems have “inherent” problems in reli-
ably determining carbapenem MICs for CPE (33, 101, 199, 244,
246). Also, there are difficulties in interpreting carbapenem sus-
ceptibility data for KPC producers due to heterogeneous resis-
tance-like phenomena (191).

In Vitro Synergy

Given the limited therapeutic options for the management of in-
fections caused by carbapenemase-producing K. pneumoniae
strains, several investigators have evaluated combinations of dif-
ferent antimicrobial agents for potential synergistic effects against
these organisms, relying mostly on time-kill methods. It should be
noted, however, that in most synergy studies the most frequent
compounds used were the polymyxins (polymyxin B and poly-
myxin E).

In 2005, Bratu and colleagues found that polymyxin B, at 0.5
times its MIC, exhibited synergistic activity with rifampin against
15 of 16 KPC-positive K. pneumoniae isolates. A synergistic effect
was also seen in 10 of these isolates when polymyxin B was com-
bined with imipenem (30). In a later study, it was found that a
triple-drug combination of polymyxin B with rifampin and dorip-
enem at 1/4 their MICs exhibited high bactericidal activity, de-
fined as a decrease of =3 log CFU/ml in 24 h, for five E. coli and
two K. pneumoniae clinical isolates, all producing KPC-type en-
zymes (250). Similarly, the combination of colistin (polymyxin E)
and tigecycline has been reported as synergistic against KPC-pos-
itive K. pneumoniae isolates in time-kill experiments (222). Inter-
actions of colistin and imipenem were also examined in time-kill
experiments with 42 VIM-producing K. pneumoniae isolates from
a Greek hospital (241). In general, the combination of imipenem
with colistin exhibited improved bactericidal activity against iso-
lates that were susceptible either to both agents or to colistin alone.
More specifically, the combination was synergistic against 50% of
the colistin-susceptible isolates and indifferent against the re-
maining 50%, irrespective of the imipenem MIC. In contrast, for
isolates that were nonsusceptible to colistin, the combination was
antagonistic for 55.6% of the isolates and synergistic for only 11%
of the isolates. These data are partly reminiscent of those reported
by Elemam et al. (79), who examined the interactions of poly-
myxin B with several antimicrobials against 12 KPC-producing K.
pneumoniae isolates that had elevated polymyxin B MIC values,
using a broth microdilution assay in a checkerboard pattern. Syn-
ergy was observed with the combinations of polymyxin B plus
rifampin and polymyxin B plus doxycycline, at achievable serum
drug concentrations for the antimicrobial agents tested. Less pro-
nounced synergy was noted with polymyxin B and tigecycline,
whereas no synergy was evident between polymyxin B and the
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other antimicrobial agents tested, including imipenem and genta-
micin.

Given that fosfomycin retains its activity against the majority of
CPE, it is reasonable to consider administering this compound
against CPE infections, but always in combination with another
antimicrobial agent, as the rate of mutation to fosfomycin resistance
is worringly high (188). Recently, the interactions of fosfomycin with
meropenem, colistin, and gentamicin against KPC-positive K. pneu-
moniae isolates were studied using time-kill experiments (238).
Combinations of fosfomycin with meropenem and colistin were
synergistic in 64.7 and 11.8% of KPC-producing K. pneumoniae
isolates, respectively, whereas the combination with gentamicin
was indifferent. In addition, combinations of fosfomycin with
meropenem, colistin, and gentamicin prevented the development
of resistance to fosfomycin in 69.2, 53.8, and 81.8% of examined
isolates, respectively. Similar results were obtained by another
study that demonstrated synergy of fosfomycin with imipenem,
meropenem, doripenem, colistin, netilmicin, and tigecycline for
74, 70, 74, 36, 42, and 30% of 50 KPC-producing K. pneumoniae
isolates, respectively (228).

Time-kill assays have also been used to comparatively assess the
activities of aztreonam and carbapenems. As mentioned previ-
ously, aztreonam is not hydrolyzed by MBLs and therefore is a
potentially useful agent against MBL producers. A time-kill study
assessed the in vitro activity of aztreonam in comparison to car-
bapenems against VIM-1-producing ESBL-negative K. pneu-
moniae isolates (197). Aztreonam exhibited slow bactericidal ac-
tivity that was sustained for 24 h, whereas carbapenems resulted in
more rapid bacterial killing for the first 6 h but regrowth to the
level of antibiotic-free controls at 24 h.

In Vitro Pharmacodynamic Models

In a chemostat model simulating human pharmacokinetics, it was
shown that optimized doses of meropenem (simulation of 2 g
every 8 h, infused over 3 h, in humans) can achieve bactericidal
activity against KPC-producing K. pneumoniae isolates with low
meropenem MICs, despite the presence of an active carbapen-
emase. In this model, actual meropenem concentrations were sig-
nificantly lower than intended, presumably due to rapid in vitro
hydrolysis of meropenem by the released KPC enzyme. Despite
this situation, meropenem achieved a rapid, =3-log CFU reduc-
tion of all KPC isolates within 6 h, but this effect was maintained
for only two of the three KPC-producing isolates (with mero-
penem MICs of 2 and 8 pg/ml) for which adequate drug exposure
had been attained (32).

The effect of tigecycline alone or in combination with mero-
penem was assessed in an in vitro pharmacodynamic model sim-
ulating human epithelial lining fluid drug concentrations against
five KPC-producing K. pneumoniae isolates displaying mero-
penem MICs between 8 and 64 pg/ml and tigecycline MICs be-
tween 1 and 2 pg/ml. Tigecycline alone did not produce a reduc-
tion in bacterial density in any of the isolates studied, except for
one with a tigecycline MIC of 1 pg/ml, in which an initial reduc-
tion was nevertheless followed by rapid regrowth. Meropenem
alone, on the other hand, produced a rapid bactericidal effect for
isolates with meropenem MICs of 8 and 16 pg/ml, but this effect
was not maintained and was also followed by regrowth. Unlike
monotherapy with tigecycline or meropenem, their combination
caused a significant reduction in CFU/ml at 24 and 48 h for iso-
lates with tigecycline and meropenem MICs of =2 and =16 pg/
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ml, respectively, compared to the case with either agent alone.
None of the studied regimens, however, was able to maintain a
significant bactericidal effect for periods over 48 h (262).

Experimental Infection Models

Several investigators have examined the efficacy of different
agents, alone or in combination, against CPE isolates by using
different experimental infection models. Daikos et al. (66) as-
sessed the activity of two dosing regimens of imipenem (30 and 60
mg/kg of body weight every 2 h [q2h]) against VIM-1-producing
K. pneumoniae isolates in the neutropenic murine thigh infection
model. Animals were infected with three VIM-1-positive isolates
(with imipenem MICs of 2, 4, and 32 pg/ml) and a susceptible
clinical isolate (with an imipenem MIC of 0.125 pg/ml) not pro-
ducing any B-lactamase with broad-spectrum activity. The bacte-
ricidal effect was greatest against the susceptible non-VIM-1-pro-
ducing isolate, intermediate against the “susceptible” VIM-1
producers (imipenem MICs of 2 and 4 pg/ml), and minimal
against the resistant VIM-1 isolate (imipenem MIC of 32 pg/ml).
However, with administration of a higher dose of imipenem (60
mg/kg q2h) and attainment of a drug exposure (cumulative per-
centage of a 24-h period that the drug concentration exceeds the
MIC under steady-state pharmacokinetic conditions [% Ty]) of
approximately 40%, a more pronounced antibacterial effect
against all VIM-1-producing isolates, including the highly resis-
tant one, was achieved.

The use of carbapenems in the treatment of CPE infections was
pursued further by Bulik and Nicolau (34), who evaluated the
efficacy of doripenem against KPC-producing K. pneumoniae iso-
lates with MICs ranging from 4 to 32 pg/ml in both immunocom-
petent and neutropenic mice. In these experiments, the authors
used doripenem doses simulating human pharmacokinetics ob-
served after administration of 1 or 2 g every 8 h as a 4-h infusion.
The 1-g dose simulation was able to produce only a bacteriostatic
response for the isolates with MICs of 4 and 8 g/ml, whereas the
2-g dose simulation achieved a similar effect for isolates with
MICs of up to 16 pg/ml. Relative to neutropenic mice, a reduction
in bacterial density was observed in the immunocompetent ani-
mals, with overall decreases of up to 1 log, with either the 1- or 2-g
doripenem dose simulation. A critical interpretation of the animal
infection model data just summarized suggests that optimized
regimens of carbapenems are able to achieve at least a static effect
in severely compromised hosts and a modest bactericidal effect in
immunocompetent animals infected with KPC-positive isolates
with MICs of up to 8 pug/ml.

The efficacy of carbapenems and aztreonam was also evaluated
in a rabbit model of peritoneal abscess caused by an ESBL-negative
VIM-producing E. coli isolate. MICs of imipenem, meropenem,
ertapenem, and aztreonam were 1, =0.25, 1.5, and =0.25 pg/ml,
respectively. Carbapenems and aztreonam were shown to be ef-
fective in the treatment of this infection with regard to reductions
in bacterial densities and mortality of the animals compared with
those of untreated controls. Aztreonam, however, resulted in a
more favorable outcome overall than that seen with carbapenems
(239).

Comments on Experimental Studies

The number of studies assessing the interaction of antimicrobials
with CPE in the laboratory, whether using time-kill assays or ex-
perimental animal infections, is remarkably small. In addition,
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clinically important CPE, such as those producing NDM-type
MBLs or OXA-48, have not yet been studied in this manner. It is
therefore obvious that additional studies of this kind are required,
given the extent and severity of the problem posed by CPE. The
synergy data from time-kill studies present some discrepancies.
These data should therefore be interpreted with caution, since
slight differences in experimental conditions (e.g., a relatively
small change in the MIC fraction for one or more drugs) could
result in significant changes in the apparent effect of a given com-
bination. Despite these limitations, however, the data from time-
kill studies indicate a variety of antibiotic combinations with po-
tential synergistic effects against CPE.

In pharmacodynamic models and, most importantly, experi-
mental infections in animals, the antibiotics preferably evaluated
so far have been the carbapenems. This might appear unexpected,
since therapy with carbapenems in the majority of human infec-
tions caused by CPE would be considered “inappropriate” based
on MICs. Yet the relevant data, though limited, may be taken as
indicating that approaches such as modification of dosing
schemes warrant further attention.

ANTIMICROBIAL THERAPY

In studies examining the outcomes of CPE infections, older age,
severity of underlying illness, comorbid conditions of the host,
intensive care unit (ICU) stay, resistance to carbapenems, and
administration of inappropriate antimicrobial treatment (partly
due to CPE multidrug resistance compromising empirical ther-
apy) are the most important independent predictors of treatment
failure (14, 67, 175, 205, 233, 274). In the absence of controlled
comparative trials, however, an overall critical appraisal of antibi-
otic treatment schemes inevitably has to be based on a variety of
case reports, case series, retrospective studies, and observational
studies. Moreover, these studies are focused on K. pneumoniae, as
clinical experience with other CPE is quite limited. Therefore, the
assessment we attempt here lacks many of the characteristics of a
rigorous meta-analysis but may provide some guidance on the
treatment of CPE-infected patients.

Review of Clinical Studies

We performed a systematic search of MEDLINE and compiled 34
studies containing the necessary information to estimate the effi-
cacies of different antimicrobials in relation to their MICs for the
infecting organisms (Tables 3 and 4). A total of 301 patients were
identified, including 161 infected with KPC-producing K. pneu-
moniae and 140 infected with MBL-producing K. preurmoniae.
The vast majority of these patients had serious infections: 244 had
bloodstream infections (BSIs), 32 had pneumonia, 8 had urinary
tract infections, 4 had tracheobronchitis, 3 had wound infections,
and 7 had other infections. Three patients reported as having uri-
nary colonization were excluded. Of the remaining 298 patients,
242 (81.1%) received appropriate therapy (with at least one drug
to which the infecting organism was classified as susceptible in
vitro), while 56 (18.9%) received inappropriate therapy (no drug
to which the infecting organism was classified as susceptible in
vitro). To facilitate comparisons, patients were classified into
seven groups according to treatment regimen, as follows: regimen
A, combination therapy with =2 active drugs, one of which was a
carbapenem; regimen B, combination therapy with =2 active
drugs, not including a carbapenem; regimen C, monotherapy with
an aminoglycoside; regimen D, monotherapy with a carbapenem;
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TABLE 3 Clinical studies, antimicrobial therapies, and outcomes for patients infected with MBL-producing K. pneumoniae

Qutcome (no.

Country (yr of No. of patients with Type of MBL (no.of  Treatment of successes/
Reference publication) Study design indicated type of infection  isolates) (no. of patients) no. of failures)
121 Greece (2004)  Case reports 4 (2 BSIs, 1 case of VIM-1 (4) Colistin (1) 1/0
mediastinitis, 1 bone
infection)
86 Greece (2008) Tigecycline (1) 1/0
56 Spain (2008) Tigecycline-colistin (2) 1/1
223 Ireland (2010)
269 Taiwan (2001) Case series 3 BSIs IMP-8 (3) Carbapenem (3) 1/2
143 Taiwan (2004) Case series 3 (2 pneumonias, 1 BSI) IMP-type enzyme (3) Carbapenem (1) 1/0
Carbapenem-aminoglycoside (2)  2/0
240 Greece (2008)  Case series 17 (14 BSIs, 3 pneumonias) VIM-1 (17) Colistin (6) 6/0
Tigecycline (1) 0/1
Colistin-aminoglycoside (2) 2/0
Colistin doxycycline (1) 0/1
Carbapenem-colistin (6) 5/1
Carbapenem-aminoglycoside- 1/0
doxycycline (1)
175 Greece (2010)  Case-control study 18 BSIs VIM-1 (17) Colistin (10) 6/4
VIM-type enzyme (1) Colistin-aminoglycoside (8) 4/4
64 Greece (2007)  Retrospective study 28 BSIs VIM-1 (28) Carbapenem (8) 7/1
Colistin (4) 0/4
Aminoglycoside (3) 2/1
Carbapenem-aminoglycoside (6)  6/0
Carbapenem-colistin (1) 1/0
Aztreonam-aminoglycoside (2) 1/1
No active drug (4) 2/2
67 Greece (2009)  Prospective 67 BSIs VIM-1 (67) Carbapenem (14) 11/3
observational Carbapenem-colistin (8) 8/0
study Carbapenem-aminoglycoside (4)  3/1
Colistin (15) 11/4
Aminoglycoside (8) 5/3
No active drug (18) 13/5

regimen E, monotherapy with tigecycline; regimen F, mono-
therapy with colistin; and regimen G, inappropriate therapy (Fig.
2). It should be noted that the carbapenem susceptibility status
was taken as reported in relevant studies in which the previous
CLSI interpretive criteria were applied (54).

The lowest failure rate (8.3%) was observed for patients who
received combination therapies including a carbapenem (regimen
A). In addition, the therapeutic efficacy of this regimen was supe-
rior to those of regimens B, E, F, and G (for A versus B, the P value
s 0.02, the odds ratio [OR] is 4.4, and the 95% confidence interval
[95% CI] is 1.19 to 16.19; for A versus E, the P value is 0.03, the OR
is 6.11, and the 95% CI is 1.22 to 30.58; for A versus F, the P value
is <0.0001, the OR is 9.84, and the 95% Cl is 2.76 to 35.03; and for
Aversus G, the Pvalueis <0.0001, the ORis 11.81, and the 95% CI
is 3.24 to 43.06). Combination therapy not including a carbap-
enem (regimen B), as well as monotherapy with either an amino-
glycoside (regimen C) or a carbapenem (regimen D), was never-
theless effective compared to inappropriate therapy (for B versus
G, the P value is 0.014, the OR is 2.68, and the 95% CI is 1.26 to
5.73; for C versus G, the Pvalueis 0.04, the OR is 3.44, and the 95%
Clis 1.11 to 10.67; and for D versus G, the P value is 0.03, the OR
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is 2.79, and the 95% Cl is 1.14 to 6.86). On the other hand, treat-
ment with tigecycline and colistin as single active agents resulted
in failure rates comparable to that observed for patients who re-
ceived inappropriate therapy (Fig. 2). These observations raise
concerns about the use of tigecycline or colistin as a single agent in
the treatment of serious carbapenemase-producing K. pneu-
moniae infections and support the notion of administering drug
combinations preferentially including a carbapenem when sus-
ceptibility data allow.

The limited efficacy of tigecycline revealed by the present anal-
ysis is in line with the recent warning issued by the U.S. Food and
Drug Administration (FDA) against the use of this agent for seri-
ous infections (91a). The FDA, in a pooled analysis of 13 clinical
trials, found an increased mortality risk associated with the use of
tigecycline compared to other drugs to treat a variety of serious
infections. A higher mortality rate was seen most clearly for pa-
tients treated for ventilator-associated pneumonia and bacter-
emia (9/18 [50.0%] tigecycline-treated patients versus 1/13
[7.7%] comparator drug-treated patients). The cause of excess
death in these trials most likely was related to progression of the
infection. Similarly, in a recent meta-analysis including 15 ran-
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FIG 2 Outcomes of infections caused by carbapenemase-producing Klebsiella
pneumoniae, according to treatment regimen. Regimen A, combination ther-
apy with =2 active drugs, one of which was a carbapenem; regimen B, combi-
nation therapy with =2 active drugs, not including a carbapenem; regimen C,
monotherapy with an aminoglycoside; regimen D, monotherapy with a car-
bapenem; regimen E, monotherapy with tigecycline; regimen F, monotherapy
with colistin; regimen G, inappropriate therapy. Regimen A was superior to
regimens B, E, F, and G (for A versus B, E, F, and G, the P value was 0.02, 0.03,
<0.0001, and <0.0001, respectively). Regimens B, C, and D were superior to
regimen G (for Bversus G, P = 0.014; for C versus G, P = 0.04; and for D versus
G, P = 0.03).

domized clinical trials, the overall mortality was higher for pa-
tients treated with tigecycline than for those treated with other
antibacterial agents, including levofloxacin, carbapenems, ceftri-
axone, and ampicillin-sulbactam (267).

The decreased clinical effectiveness of tigecycline in severe in-
fections could be attributed partly to the pharmacokinetic/phar-
macodynamic (PK/PD) profile of the drug. Tigecycline demon-
strates mainly bacteriostatic activity against Gram-negative
organisms, and the attainable drug concentrations at several ana-
tomic sites are suboptimal. The peak serum concentrations
achieved with the standard dosing regimen of the drug (50 mg
twice daily) range from 0.6 to 0.9 pg/ml, while those attained in
the urine and in the epithelial lining fluid are severalfold lower (2,
36, 88, 210). The drug concentrations attainable by this standard
dosing regimen, combined with this drug’s MIC profile for cur-
rent CPE isolates, render it unlikely for tigecycline to cure CPE
infections at anatomic sites where drug concentrations are subop-
timal. Therefore, this drug should be used with caution against
CPE, preferentially in combination with another active agent and
after due consideration of the attainable drug concentration at
the anatomic site of infection and of the MIC for the infecting
organism.

Rather disappointing results were also observed with colistin
monotherapy, since 34 of 72 (47.2%) colistin-treated patients had
adverse outcomes. The poor performance of colistin mono-
therapy against CPE infections has also been noticed previously
(112). Nevertheless, when colistin was combined with tigecycline
or an aminoglycoside, the failure rate decreased to 32% (17 of 53
patients failed treatment). More impressively, however, when it
was combined with a carbapenem, the failure rate decreased dra-
matically, to 5% (1 of 17 patients failed treatment). The inferior
clinical efficacy of colistin monotherapy may be associated,
among other factors, with a suboptimal dosing regimen of the
drug. In a retrospective study that evaluated patients with multi-
drug-resistant Gram-negative infections who received several
daily dosages of colistin, multivariate analysis of survival data
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TABLE 5 Results of carbapenem monotherapy in 50 CPE-infected
patients from 15 studies”

MIC of carbapenem No. of No. of No. of

(pg/ml) patients successes failures % Failure

=1 17 12 5 29.4

2 12 9 3 25.0

4 7 5 2 28.6

8 6 4 2 33.3
Subtotal 42 30 12 28.6°

>8 8 2 6 75.0°

Total 50 32 18 36

“ See references 25, 64, 67, 81, 113, 143, 153, 159, 162, 240, 252, 257, 258, 269, and 275.
b P = 0.02, odds ratio = 7.5, and 95% confidence interval = 1.32 to 42.52.

showed that a lower total daily dosage of intravenous colistin was
associated with increased mortality (90). It is therefore critical to
administer an adequate total daily dosage of colistin to critically ill
patients, particularly to those who are on renal replacement ther-
apy, in order to accomplish efficacious levels according to current
recommendations (97). An additional factor that could be detri-
mental to a patient’s outcome is the delay in attaining an effica-
cious drug concentration with the standard treatment regimen of
colistin. This could be overcome by administering a loading dose
of the drug (211).

Although colistin has been used extensively in critically ill pa-
tients infected with multidrug-resistant Gram-negative organ-
isms, its optimum dosing regimen remains to be defined. Animal
infection models have shown that the ratio of the area under the
concentration-time curve for the free, unbound fraction of the
drug (fAUC) to the MIC is the PK/PD index that is linked most
strongly to an antibacterial effect, indicating the importance of
achieving adequate time exposure to colistin across the day by
administering the drug twice or three times a day (77, 78). In
contrast, however, several features of this drug, such as its pro-
longed half-life, its concentration-dependent killing, and a phe-
nomenon known as “adaptive resistance” that has not been appre-
ciated adequately (50, 68, 92, 236), favor a once-daily dosing
regimen, provided that such a scheme is not proven to be more
nephrotoxic. Thus, a better understanding of the complex PK/PD
features of colistin will be essential in devising dosing regimens
with improved efficacy against CPE infections.

Among the publications available in MEDLINE, we were able to
identify 15 studies reporting on 50 patients infected with carbap-
enemase-positive K. pneumoniae, all of whom had received car-
bapenem monotherapy (meropenem or imipenem). Twenty-nine
of the respective isolates exhibited carbapenem MICs of =2 wg/
ml. In seven and six isolates, the MICs were equal to 4 and 8 pg/ml,
respectively. The remaining eight isolates were inhibited in vitro
by carbapenem concentrations of >8 g/ml. Note that, as indi-
cated by the reported outcomes of these patients, the therapeutic
efficacy of carbapenems increased from 25% for a MIC of >8
pg/ml to 66.7% for a MIC of 8 pg/ml, 71.4% for a MIC of 4 pg/ml,
and 72.4% for a MIC of 2 pg/ml or less (Table 5). Clinical expe-
rience with carbapenem monotherapy is indeed limited. Yet we
may consider the above data to indicate that carbapenems could
provide some therapeutic benefit in infections caused by carbap-
enemase-producing K. pneumoniae, even for strains with interme-
diate susceptibility to carbapenems. It should be pointed out here
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that these observations do not contradict the findings of the ex-
perimental infection models discussed herein or those of human
PK/PD studies (34, 118, 131, 145). Carbapenems display time-
dependent bactericidal killing when free drug concentrations re-
main above the MIC for 40 to 50% of the time between dosing
intervals. The probability of attaining a 50% Ty target for an
isolate with a MIC of 4 pg/ml is 69% for the traditional dosing
regimen (e.g., 30-min infusion of 1 g every 8 h for meropenem)
and increases to 100% for the high-dose/prolonged-infusion reg-
imen (e.g., 3-h infusion of 2 g every 8 h for meropenem). For a
MIC of 8 wg/ml, only the high-dose/prolonged-infusion regimen
displays a relatively high probability (85%) of bactericidal target
attainment (131).

Whether we can use carbapenems in the presence of a carbap-
enemase is an issue that remains to be answered (65, 245). How-
ever, faced with the daily challenge of managing critically ill pa-
tients and the dearth of alternative therapeutic options, some of
which have not been investigated satisfactorily and/or whose effi-
cacy in certain situations remains questionable, use of a carbap-
enem against an organism with a MIC of =4 or even =8 pg/ml,
using a high-dose/prolonged-infusion regimen and in combina-
tion with another active agent, preferentially gentamicin or colis-
tin, seems reasonable.

The number of CPE isolates exhibiting resistance to almost all
available agents is worryingly high in various settings (85). Given
that fosfomycin displays good in vitro activity against most CPE,
this agent could be selected as salvage therapy in situations where
therapeutic options are very limited (89). Although the main in-
dication of fosfomycin remains the treatment of lower urinary
tract infection, some investigators have included this drug in var-
ious combination schemes to treat systemic infections caused by
CPE (87, 164). Available data, however, are too limited to allow a
sound hypothesis as to its efficacy. Also, the potential of fosfomy-
cin to rapidly select resistant mutants during therapy is a matter of
consideration (188).

The clinical data reviewed here allow for some reasonable no-
tions but not for solid conclusions, since it was not possible to
measure and adjust for certain important variables (e.g., host-
related factors, severity of infections, and dosing and timing of
initiation of treatment). Thus, we cannot exclude the possibility
that our analysis, in some cases, might have resulted in biased
associations between antimicrobial treatment and outcome. Nev-
ertheless, given that the majority of patients infected with CPE are
debilitated, with various underlying diseases, and that more than
90% of them have severe infections (BSIs or pneumonias), it is
unlikely that residual confounding could account to an apprecia-
ble extent for the significantly different failure rates between treat-
ment groups.

CPE IN HEALTH CARE SETTINGS
Epidemiology
The prevalence of CPE, primarily K. pneumoniae, in several insti-
tutions in areas of endemicity may vary between 20 and 40% (28,
99, 133, 233). Initially, CPE appeared to cause hospital-acquired
infections, mainly in ICU patients (28, 29, 67, 233, 265). More
recently, however, they have spread in different health care set-
tings, including long-term care facilities (LTCF) (16, 53, 83, 161,
249).

Several investigators have evaluated the factors associated with
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increased risk for acquisition of CPE in the hospital setting (69, 91,
98, 106, 117, 132, 205, 233, 261). Investigators from Israel have
shown that poor functional status of the host, prior antibiotic
therapy, and stay in the ICU are independent risk factors for col-
onization or infection with carbapenem-resistant K. pneumoniae
(233). Other factors that have been associated with CPE include
solid organ or stem cell transplantation (122, 204), presence of a
biliary catheter (120), multiple invasive devices (157), prior sur-
gery, and the presence of wounds (106). Antibiotic selection pres-
sure may be an additional factor that influences colonization with
these organisms. Case-control studies have shown that almost ev-
ery class of antibiotics can select for CPE (69,91, 98,117,120, 132,
203, 261). What appears to be more important, however, is the
cumulative number of prior antibiotic exposures rather than the
use of a specific class of antibiotics (69, 205).

Since members of the Enterobacteriaceae constitute part of the
human enteric flora, once CPE colonize the intestinal tract, car-
riage may persist for a long time (232). Based on limited experi-
ence (90, 116, 207), it appears that colonization with CPE is pro-
longed and lasts at least several months. A prolonged duration of
colonization means a larger reservoir of colonized patients, exert-
ing more colonization pressure, which in turn will result in higher
rates of patient-to-patient transmission. CPE cross-transmission
occurs more efficiently in health care settings where infection con-
trol practices are poor. Indeed, in a surgical unit where hand hy-
giene compliance was 21%, the probability of a patient becoming
colonized with CPE was 7.1% per week of hospitalization, and the
incidence of new acquisitions was 9.1/1,000 patient-days (39). It
can be supported that once the first case of CPE infection is rec-
ognized in a health care facility, these organisms may have already
spread widely and colonized a substantial number of patients.
Colonization may be extensive and pass largely unnoticed in in-
stitutions located in regions of endemicity, as evident in several
studies. Calfee et al. (41) reported that 37% of patients with car-
bapenem-resistant K. pneumoniae colonization were first identi-
fied by surveillance cultures. During an outbreak of carbapen-
emase-producing K. pneumoniae in Israel, a point prevalence
survey demonstrated that 16 (5.4%) of 298 patients screened were
colonized with carbapenemase producers, and notably, 11 (69%)
of these carriers would have remained undetected without the
performance of active surveillance cultures (261).

More importantly, CPE colonization may evolve to infection,
with detrimental effects for the host (23, 41, 261). Although data
regarding the infection/colonization ratio are very limited, it is
estimated that a proportion of colonized patients (10 to 30%) will
develop CPE infection. This proportion is probably related to the
severity of the underlying disease of the host and appears to be
higher for severely immunocompromised patients (e.g., patients
in induction chemotherapy for acute myelogenous leukemia or
post-allogeneic stem cell transplantation).

Infection Control Strategies

The rapid and worldwide dissemination of a variety of CPE re-
flects, to various extents, increased antibiotic selection pressure,
carriage of the acquired carbapenemase genes by mobile genetic
units, and probably the enhanced spreading potential of specific
clones, such as K. pneumoniae ST258. Notwithstanding these fac-
tors, the fact that CPE outbreaks occur principally in settings
where infection control practices are inadequate shows that there
remains plenty of room for curbing CPE spread.
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CPE seem to have a high potential for spread not only from
patient to patient within a health care facility but also through
“cycling” of patients between institutions in the same region (263)
and/or across borders from high- to low-prevalence countries,
which, for instance, has happened repeatedly in Europe (107),
threatening every health care system. To address this public health
threat, it is imperative to formulate a preparedness plan before
CPE have the opportunity to become endemic. In areas where this
has already happened, on the other hand, control measures must
include a multifaceted approach coordinated by the national
health authorities, as indicated in a recent study from Israel (234).

In response to this need, both the Centers for Disease Control
and Prevention (CDC) and a group of experts from the European
Society of Clinical Microbiology and Infectious Diseases (ESC-
MID) have published guidelines for interventions to control CPE
transmission in acute health care facilities (44, 48). These recom-
mendations are based primarily on experience with other MDR
organisms (www.cdc.gov/hicpac/mdro/mdro_0.html) and typi-
cally include detection, isolation or cohorting, and other en-
hanced infection control measures. It is expected that the increas-
ing number of studies dealing with CPE epidemiology will soon
lead to guidelines specifically targeting CPE.

Tracing of Carriers

Critical to the success of interrupting cross-transmission of CPE
in a health care facility is the timely identification of colonized
and/or infected patients. Thus, every clinical microbiology labo-
ratory should establish a reliable detection methodology. Addi-
tionally, resources and trained personnel should be readily avail-
able to carry out point prevalence surveys as well as active
surveillance cultures, a demanding yet highly effective approach
for detecting carriers (15, 53, 177). The most suitable anatomic
sites for surveillance cultures appear to be the perianal area and the
rectum (31, 261). In patients with surgical wounds, decubitus ul-
cers, a urinary catheter, or bronchial secretions, the respective sites
could also be screened. Several versions of culture-based tech-
niques have been described. In some of them, differences are lim-
ited to the concentration of carbapenem used for the initial
screening, with the lowest being that proposed by EUCAST (0.25
pg/ml of meropenem), based on an epidemiologic cutoff. Addi-
tionally, several PCR-based techniques for active surveillance have
been described (111, 135, 231). PCR assays are rapid and usually
more sensitive than culture-based methods. However, their main
disadvantages are that they do not provide information on the
carbapenemase-producing species and can assess the presence of
only already known resistance genes.

In settings with low CPE prevalence, laboratories should mon-
itor clinical culture results to determine whether CPE have been
isolated in the facility (48). Ifa CPE is identified by clinical culture,
a point prevalence survey should be performed in selected wards
(e.g., ICUs and units where CPE have been identified). Detection
of additional CPE carriers should then be followed by active sur-
veillance covering a wider range of patients with potential epide-
miological links to persons from whom CPE have been isolated
[e.g., patients from the same unit and patients cared for by the
same health care worker(s)]. Active surveillance should be contin-
ued until no new CPE cases are identified.

In areas where CPE are endemic, an increased likelihood exists
for importation of CPE into a previously CPE-free health care
facility. Upon admission of patients at increased risk of CPE car-
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TABLE 7 Experimental antimicrobial agents active against carbapenemase-producing Enterobacteriaceae

Drug Compound type Relevant target Reference

BAL30072 Siderophore-containing sulfactam Enterobacteriaceae, including MBL producers 194

Plazomicin (ACHN-490) Sisomicin derivative Gram-negative organisms, including carbapenemase 149
producers

GSK2251052 Leucyl-tRNA synthetase inhibitor Gram-negative organisms, including carbapenemase 5
producers

riage (such as residency in an LTCF, previous stay in an ICU,
prolonged hospitalization in the previous 6 months, or presence
of indwelling devices), preemptive isolation while awaiting sur-
veillance culture results can prevent early transmission events (19,
43, 53, 122). Performing a surveillance culture before the dis-
charge of a patient into the community or an LTCF may also be
useful to avoid transfer of CPE to additional niches (83, 122). It is
also important to communicate the results of screening and to
provide alerts for previously identified CPE carriers for every re-
admitted patient. The surveillance strategy should be defined
clearly for each setting and evaluated periodically according to the
current situation and available resources (19, 48).

Intervention

When a CPE carrier is identified, the infection control personnel
should be notified immediately. Isolation or cohorting of CPE
carriers seems to be the main prevention measure (43, 83, 106,
110, 122,127,176, 177, 234). Assignment of dedicated health care
workers and use of separate equipment for carriers are additional
interventions that have been employed successfully in several out-
breaks (19, 43, 122, 176, 177, 234). In the Israeli experience, phys-
ical separation of carriers from noncarriers and assignment of
dedicated nursing staff to care for carriers on all shifts were the
most important components of the intervention measures in halt-
ing transmission (234).

In addition to isolation, personnel in acute health care facilities
should use contact precautions (wearing a gown and gloves) when
caring for patients colonized or infected with CPE in order to
minimize indirect transmission of the organism (44, 48; www.cdc
.gov/hicpac/mdro/mdro_0.html). In LTCEFs, it is only practical to
apply contact precautions for those patients who are severely ill
and have conditions that may facilitate transmission (e.g., diar-
rhea or decubitus ulcers) (83). The success of the intervention
should be monitored constantly, and when failure is observed, a
root cause analysis should be performed (19).

Environmental cleaning and decolonization of patients.
Cleaning of the inanimate environment and equipment in prox-
imity to a CPE carrier, along with daily antiseptic (chlorhexidine)
baths to cleanse patients’ skin, were included in the bundles of
intervention measures that successfully controlled two recent out-
breaks in the United States (176, 177). Available data do not allow
for an assessment of the usefulness of the systematic application of
these practices. Indeed, persisting environmental contamination
with Enterobacteriaceae is limited compared to that of other or-
ganisms (144). In addition, culturing of surfaces and equipment
to investigate their role in the transmission chain is not usually
required, unless the inanimate environment or shared equipment
is potentially linked to an outbreak (43). Such an event, however,
does not seem to occur frequently with CPE. On the other hand,
daily antiseptic baths have been proven efficacious in preventing
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central vascular catheter-associated bloodstream infections (178).
This practice therefore appears to warrant further evaluation with
respect to CPE-positive settings.

Selective decolonization of the gut by use of oral gentamicin in
patients undergoing chemotherapy and allogeneic stem cell trans-
plantation has achieved a 66% eradication rate of the CPE carrier state
(278). This approach should be adopted cautiously, however, as gen-
tamicin is commonly used for the treatment of CPE infections, and its
excessive use may select CPE that are resistant to this drug as well.

Judicious antimicrobial use. The role of restriction of antibiotics
in controlling CPE needs further evaluation. As mentioned previ-
ously, almost every antimicrobial class can select for CPE. In this
regard, cumulative exposure to antibiotics is likely to be more impor-
tant than selection exerted by a specific agent. Therefore, formulary
interventions should focus on reduction of overall antibiotic usage
(19).

Success Stories

There have been various successful attempts to control CPE out-
breaks in both endemic and nonendemic settings. The relevant
studies (summarized in Table 6) concern single-center outbreaks,
except for one describing a countrywide epidemic in Israel (234).
Although some differences in approach did exist, the interven-
tions implemented were largely based on the rationale of infection
control strategies mentioned previously, with their main compo-
nents being surveillance cultures, isolation and cohorting, contact
precautions, and assignment of dedicated staff.

The design of these studies does not allow us to accurately classify
measures according to their effectiveness. Critical interpretation of
the published data, however, suggests that application of a bundle of
infection control measures may be required for maximum contain-
ment of CPE. Controlled studies and mathematical modeling of CPE
transmission and prevention are needed to specify the most appro-
priate procedures for containment or even eradication of CPE.

NOVEL AGENTS AGAINST CPE

Antibiotics

Not unexpectedly, many new antibiotics under development tar-
get multidrug-resistant bacteria. The relatively small number of
new antibacterials active against MDRs does not necessarily mean
alack of industry interest but rather reflects the countless difficul-
ties posed from the early stages of designing to the introduction
into clinical practice. Although not specifically focused on CPE,
some of these experimental antibacterials, belonging to diverse
antimicrobial classes, exhibit high activity against these microor-
ganisms. We present below a few indicative compounds, prefer-
entially those that are under advanced clinical testing (Table 7).
Sulfactams. The sulfactams comprise a distinct series of mono-
cyclic B-lactams (with tigemonam being the first member) exhib-
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Carbapenemases in Enterobacteriaceae

TABLE 8 Experimental 3-lactamase inhibitors active against carbapenemases from Enterobacteriaceae

Inhibition spectrum Susceptible

Inhibitor Compound type (B-lactamase classes) carbapenemases” Reference(s)
BLI-489 Penem A, C, D KPC type 209
J-110,411 and J-111,225 1-B-Methyl carbapenem AC,B IMP type 183, 184
Mercaptomethyl sulfones C-6-substituted penicillin sulfone B VIM and IMP types 38
2,3-(S,S)-Disubstituted succinic Succinic acid B IMP type 170

acids
Thiomandelic acids Thiol B VIM and IMP types 147, 268
Avibactam (NLX104) Diazabicyclo-octanone A C D KPC type 22

“ Only carbapenemase types with documented susceptibility to the respective inhibitor are included.

iting potent activity against the Enterobacteriaceae. Additionally,
other structurally related monocyclic compounds, such as aztreo-
nam, are virtually unaffected by the hydrolytic activity of MBLs.
Of special interest is a novel group of siderophore-coupled sulfac-
tams, represented by BAL30072 (194); the coupled siderophores
enhance activity against MBL producers by facilitating the en-
trance rate through the outer membrane, even in strains with
defective permeability (195). Animal experiments have further
supported the therapeutic potential of BAL30072 against MBL-
positive enterobacteria (168).

Plazomicin. Formerly known as ACHN-490, plazomicin is a
sisomicin derivative with substitutions at positions 1 and 6 (a
hydroxyaminobutyric and a hydroxyethyl group, respectively).
This antibiotic resists most aminoglycoside-modifying enzymes
(but not 16S rRNA methylases) and exhibits potent bactericidal
activity against many MDRs, including CPE (149). It is currently
undergoing a phase 2 study for use against complicated urinary
tract infections (276).

Aminoacyl-tRNA synthetase inhibitors. Until recently, the
aminoacyl-tRNA synthetase inhibitors included only mupirocin,
an isoleucyl-tRNA synthetase inhibitor of limited clinical use. De-
velopment of novel boron-containing aminoacyl-tRNA synthe-
tase inhibitors added compounds with kinetics suitable for sys-
tematic use that are also active against Gram-negative organisms.
A promising compound, GSK2251052, which inhibits the leucyl-
tRNA synthetase and is effective against CPE and other MDRes, is
currently under clinical evaluation (5).

Carbapenemase Inhibitors

Despite almost 3 decades of efforts to develop B-lactamase inhib-
itors, only three, clavulanic acid, tazobactam, and sulbactam, have
been made available as therapeutics. Fortunately, a number of
potential B-lactamase inhibitors are under evaluation (for a com-
prehensive review, see reference 76). The majority of currently
tested compounds are 3-lactam derivatives, though a number of
diverse non-B-lactam substances also exhibit significant inhibi-
tory activity. Only compounds that also happen to inhibit ac-
quired carbapenemases (mainly KPCs and MBLs) at clinically rel-
evant concentrations are mentioned briefly here (Table 8).
Penem derivatives. The penem derivatives include the proto-
type, BRL 42715, and a series of heterocyclic methylidene penems
with significant inhibitory activity against serine (-lactamases
(molecular classes A, C, and D). BLI-489, a bicyclic derivative, has
been shown to be capable of reducing the MICs of piperacillin
against enterobacteria producing KPC enzymes (209).
1-B-Methylcarbapenems. 1-B-Methylcarbapenems have been
synthesized by various substitutions in the carbapenem nucleus,
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which contains a methyl group at position C-1 (the same nucleus
as that in doripenem). Interesting members of the group are com-
pounds J-110,411 and J-111,225, which inhibit class A and C
B-lactamases, as well as IMP-type MLs, at low concentrations
(183, 184).

Sulfones. C-6-substituted penicillin sulfones are primarily in-
hibitors of class A B-lactamases. However, compounds with a
mercaptomethyl substituent at C-6 exhibit strong inhibitory ac-
tivity against MBLs (38).

Succinic acids (non--lactams). Various succinic acid deriva-
tives [2,3-(S,S)-disubstituted succinic acids] exhibit potent inhib-
itory activity against the IMP-type MBLs, restoring carbapenem
susceptibility in members of the Enterobacteriaceae producing
these enzymes (170).

Thiols (non-B-lactams). Thiol compounds, such as thioman-
delic acids, are considered effective inhibitors of MBLs, especially
those of the VIM and IMP types. They act by bridging the zinc ions
of the active site, thus displacing the catalytic water molecule (147,
268).

Avibactam. Formerly known as NXL104, avibactam, a non-f3-
lactam compound, is likely to be the most promising experimental
inhibitor and is expected to be introduced soon into antimicrobial
chemotherapy. It is a bridged diazabicyclo (EC 3.2.1) octanone
with excellent activity against virtually all serine B-lactamases but
no activity against molecular class B enzymes (22). In the current
era of carbapenemases, the ability of avibactam to inhibit KPC
B-lactamases at very low concentrations (50% inhibitory concen-
tration [ICs,] of 38 nM) is important (22, 242). MICs of various
newer [-lactams tested against KPC producers in the presence of
avibactam have clearly shown the in vitro efficacy of these combi-
nations (82). Most importantly, the therapeutic efficacy of the
ceftazidime-avibactam combination has been documented for
murine infection models (259).

CONCLUDING REMARKS AND PERSPECTIVES

The current public health crisis due to the international spread of
carbapenemase-producing multidrug-resistant enterobacteria
has caught us unprepared, despite clear signs of this problem aris-
ing years ago. Most of the recent papers describing yet another
emergence of a CPE or a CPE outbreak conclude, almost invari-
ably, with the urgent need for measures to contain these microor-
ganisms. This, however, begs the question: precisely what mea-
sures are to be taken? First of all, a clearer and more accurate
picture of the situation at the global level, based on data that are
valid for comparisons, is necessary. For instance, in developed
countries, it appears that many studies have been conducted in
single institutions or a small number of tertiary care hospitals and
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cover limited times. Therefore, biased sampling is probable, at
least in some cases. Moreover, systematic reports from many Af-
rican countries, the Balkans, the Middle East, and vast areas in
Asia are scarce, if they exist at all. The collection of epidemiolog-
ical data that are as complete as possible is imperative for the
implementation of effective yet affordable and sustainable mea-
sures against CPE, especially in the most affected countries. In this
respect, if the expressed international concern is indeed genuine,
resources from international public health organizations should
be mobilized and allocated appropriately.

Some new drugs active against CPE are indeed in an advanced
stage of development, but very few of them are expected to be
clinically available soon. Thus, in the foreseeable future, we shall
continue to rely on the available antibiotics. Nevertheless, the
studies summarized above show that there is yet room to improve
our therapeutic approaches. Colistin and tigecycline are among
the most frequently used agents in the treatment of CPE infec-
tions. However, as discussed here, laboratory and clinical data
supporting this practice are insufficient. Although it has to be
admitted that alternative options have not yet been documented
solidly, well-designed clinical trials aiming to (i) determine the
optimum dosing regimen of colistin, (ii) define CPE infections
that could be controlled effectively by tigecycline, (iii) exploit the
PK/PD features of carbapenems, and (iv) unravel the most effec-
tive drug combinations may prove valuable.
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