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ABSTRACT We propose an analytical substitute to the
geometrical construction that is commonly used in calculating
the protein surface area that is accessible to the solvent. A sta-
tistical approach leads to an expression of accessible surface
areas as a function of distances between pairs of atoms or of
residues in the protein structure, assuming only that these atoms
or residues are randomly distributed in space but not pene-
trating each other. This function gives good estimates of the
accessible surface area and of the area buried in subunit con-
tacts for a number of proteins. Its evaluation is very fast, and
the function can be differentiated, which opens the way to new
applications of accessibility measurements in the study of
proteins. As an example, we show that the presence of domains
is easily detected by an automatic procedure based on surface
areas only.

The concept of accessible surface area, first proposed by Lee
and Richards (1), has found many applications in the study of
proteins (2). The accessible surface area of a protein atom is
defined as the area of the surface over which a water molecule
can be placed while making van der Waals contact with this
atom and not penetrating any other protein atom. A geomet-
rical construction (Fig. 1) leads to algorithms that calculate
accessible surface areas from atomic coordinates derived from
x-ray studies (1, 3, 4). These areas are linearly correlated to the
free energies of transfer from polar to nonpolar solvents, or
hydrophobic free energies, of hydrocarbons (5-8). Measure-
ments of accessible surface areas and of area changes occurring
in various biochemical processes may therefore give insights
into the role of the solvent and of hydrophobicity in these
processes. For instance, the evaluation of the surface area
change when proteins fold (9) or associate (10) shows that hy-
drophobicity is the major driving factor in folding and in
polymerization.

Because of the complexity of protein structures and of the
many atoms present, the geometrical algorithms used in mea-
suring accessible surface areas are costly in computer time.
Moreover, it would be desirable to represent the surface area
as an analytical function of the atomic coordinates because the
function and its derivatives could be used in minimization
procedures. An increase in computing efficiency can be
achieved by simplifying the protein structure and representing
each amino acid residue rather than each atom of the structure
by a sphere (11). We have shown that good estimates of acces-
sible surface areas are obtained in this way, and a systematic
analysis of the trypsin-pancreatic trypsin inhibitor complex was
made possible by the quickness of the calculation (12), even
with the algorithm of Lee and Richards.
We develop here an analytical approximation to the ac-

cessible surface area, expressed as a function of interatomic
distances only. The approximation is based on a statistical ap-
proach assuming that atoms or amino acid residues are ran-

domly distributed. Measurements of accessible surface areas
and of areas buried in protein structures by use of the analytical
approximation are shown to be in close agreement with those
of the geometrical procedure. Because the evaluation of the
analytical function is very much faster, it opens the way to new
applications of the accessibility measurements. We present as
an example an automatic procedure that defines compact do-
mains in proteins on the basis of accessibility criteria.
The surface area function
In defining the accessible surface areas according to Lee and
Richards (1), we draw spheres of radii r + rw around each atom
of the protein structure; r is the van der Waals radius of the
atom and rw is the radius of a sphere simulating a water mole-
cule, typically 1.4 A (Fig. 1). The spheres intersect, and the
accessible surface area of the atom is:

A =S -B, [1]
in which S is the total surface area of the sphere S attached to
that atom,

S = 4ir(r + r,)2, [2]
and B (buried surface area) is the area cut out of the surface of
S by all intersecting spheres. This area can be easily calculated
when two spheres Si and Sq2 only are present (Fig. 1). It is zero
if the interatomic distance d is larger than the sum r, + r2 +
2rw of the radii of the two spheres. Otherwise, the area cut out
of S1 by Se is:

b = -r(r, + r,)(r, + r2 + 2rw-d) (1 + r2rl [3]

This simple function of the distance d represents the surface
area of atom 1 buried by atom 2.
When more than two spheres are present, the surface area

B buried on atom 1 is not simply the sum of the surface areas
b2, b3,. . . bn, buried by all other atoms, for in general the sur-
faces cut out of Si by the spheres Sg., S3,. . . S, overlap. Because
it is extremely difficult to give an exact analytical expression
of B, geometric evaluations such as those of Lee and Richards
(1) are used.
However, taking a statistical approach to the problem, we

may say that the probability for a point on the surface of Si
to be outside an intersecting sphere Si is simply 1- bi/S, where
b, is given by Eq. 3. If we now assume the spheres to be ran-
domly distributed, the probability for a point on the surface of
Si to be outside all intersecting spheres, and therefore to be
accessible, is the product of individual probabilities. Then

n
A'=S 17 (1 -bt/S)

i=2
is an estimate of the accessible surface area of atom 1.

[4]
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FIG. 1. Accessible surface areas (Left) and surfaces buried in contacts between atoms (Right) are represented in two dimensions. The region
of the surface of the sphere S1 centered on atom 1 over which may be placed a water moleculeW (taken to be a sphere for convenience) not pen-
etrating atoms 2, 3, etc. is the accessible surface of atom 1 (dashed line). The hatched surface on the right is the region of S1 that is no longer
accessible to the water molecule W due to the presence of atom 2. Its surface area is b = 7r(r1 + rw)(1 - cosO), where cosO may be derived from
(r2 + rw)2 = d2 + (r1 + rw)2 - 2d(r, + rw) cosO, leading to Eq. 2 in the text.

The assumption of a random distribution of spheres is in-
correct unless excluded volumes are taken into account. With
three atoms, Fig. 2 shows that, when the spheres S3 and Sa are
not allowed to penetrate So by more than a certain distance s
(for hard sphere atoms, s is equal to 2rw), some of the surface
cut out of SI by So2 cannot overlap with that cut out by So or any
other sphere. Thus, whereas b in Eq. 3 represents the maximum
buried surface area, the minimum surface area b' buried by
atom 2 on atom 1 is the area cut out of S1 by a sphere of radius
r2 + r, - s, which, according to Eq. 3, should be:

b' = r(ri + rw)(ri+r2+2rw-s-d)(1 + r2 - -)

[5]
(b' = 0 if negative).

Considering all neighboring atoms, we shall take as an ap-
proximation to the accessible surface area of atom 1:

AC=A'-B' (AC=OifA'<B'), [6]

where

and
n

B' = fibs'.
i=2

[8]
The components b1 and b1' of the buried surface area are

calculated for each neighbor i of atom 1 by Eqs. 3 and 5, re-
spectively. They are functions of the distance di between these
two atoms and not of the positions of other atoms. In the absence
of neighbor, the accessible surface area of atom 1 is Ac = S, the
total area of sphereS1. When the number of neighbors increases,
B' increases and A' decreases until eventually Ac becomes zero
or negative. Negative values, which have no physical meaning,
are taken to be zero. The accessible surface areas being additive,
the calculation of Ac may be repeated for all atoms in the
structure; individual atomic values are summed to yield the
total accessible surface area of a molecule.
The partial derivative of A, relative to the distance di of atom

1 to atom i is

where

M cA'_ aB'
adi ads adi

Odf= A (dd k-At/(S-bi + b-')
adt ddi dd1iI

[9]

Chemistry: Wodak and janin

1

_I_

[7] [10]
n bi - biA =S H I-

i=2 s



1738 Chemistry: Wodak and Janin

FIG. 2. Effect of volume exclusion on buried surface areas. The
dashes represent the surface of the sphere Si attached to atom 1 that
is buried in contacts with atom 2. It overlaps strongly with the surfaces
buried by atoms 3 and 4. However, no overlap can occur in the hatched
region if atoms 3 and 4 are forbidden to penetrate atom 2.

and
oB' db,'
ads d [11]

The derivatives of bi and bi' are obtained by differentiation of
Eqs. 3 and 5.
Assessment of the function
We chose to apply our statistical approximation of the surface
area function to a simplified model of protein structures rather
than to all atoms in these structures. In the simplified model
(11), each amino acid residue is reduced to a sphere centered
on its center of mass. Residues may therefore be treated as single
atoms, with appropriate van der Waals radii for the 20 types
of amino acids. Accessible surface areas calculated on simplified
protein models with the geometrical procedures of Lee and
Richards agree well with the values obtained with all atoms
present, but the calculation is much faster (12). The assumption
of a random distribution in space, which is at the basis of our
statistical approach, is probably better for residues than for
individual atoms. Moreover, application of the function to
atoms rather than residues may require a different treatment
for covalently bound atoms, which do interpenetrate, and
noncovalently bound atoms, which do not. These points are
presently under investigation.

In Table 1, we compare the results of accessibility measure-
ments made on phage T4 lysozyme with the procedure of Lee
and Richards applied either to all atoms or to the "simplified"
protein and the values obtained by using the analytical function.
The agreement is very good (2-4%) both on the "native"
(crystallographic) structure and on a "denatured" protein with
the polypeptide chain in an extended configuration. The ana-
lytical function contains an adjustable parameter, the distance
s over which spheres representing the surface of residues are
allowed to penetrate; s should be nearly equal to the diameter
of a water molecule, or 2.8 A. Preliminary tests showed that a
value of s = 2.5 A gave the best results; it was used all through
this work.

Table 1. Accessible surface area of phage T4 lysozyme
Surface area,

Lysozyme A2 Ratio R factor

Native structure
All atoms 8,962 (1.0)
Simplified model 8,604 0.96 0.13
Analytical 8,767 0.98 0.19

Denatured
All atoms 23,005 (1.0)
Simplified model 22,927 1.0 0.07
Analytical 23,588 1.02 0.07

The accessible surface area of phage T4 lysozyme was calculated
by using: (i) a computer program of M. Levitt (12), which implements
the procedure of Lee and Richards, with all atoms present; (ii) the
same procedure and the simplified model of the protein structure; and
(iii) with the analytical function and the simplified model. The "na-
tive" structure refers to atomic coordinates of the Cambridge Data
Bank as determined by Remington et al. (13). The "denatured"
protein is obtained by artificially setting all O and i& dihedral angles
to -140° and 1400, respectively. The residue radii in the simplified
model are listed in ref. 12. The water radius r, is 1.4 A, the s param-
eter, 2.5 A. The ratios given are those of the approximate surface areas
(ii and iii) to the exact ones (i). The average deviation R between
values obtained for each of the 164 residues of phage T4 lysozyme is
defined in the text.

The good agreement observed in Table 1 shows that the
analyticalfunction applied to simplified proteins represents
correctly the accessible surface area and the area buried in the
globular structure (the difference between the "denatured" and
"native" values) of phage T4 lysozyme. Similar results are ob-
tained with other proteins (Table 2) and with protein complexes
in which the accessible surface area and the area buried in
subunit contacts are correctly evaluated by the analytical
function. Not surprisingly, the fit between the geometrical
procedure and the analytical function is less good when the
accessibilities of individual amino acid residues are compared
(Fig. 3). Most of the discrepancy results from random errors
introduced by the replacement of residues by single spheres.
Still, the average discrepancy,

[12]_ E MAc-AI
FAi

between accessible surface areas of individual residues calcu-
lated with the geometric procedure and all atoms present (A i)
or with the single sphere representation and the analytical
function (Ac') is only about 20%, a reasonable value for such
a crude model. The correlation between AcI and AI being linear
(Fig. 3), the discrepancy observed with individual residues
averages out on proteins with tens or hundreds of residues.

Defining compact domains in proteins
We propose to define compact domains in protein structures
purely on the basis of surface area criteria. They are groups of
residues having a minimum surface-to-volume ratio, which
implies compactness, and a minimum surface ofcontact with
the remainder of the structure. In usual terms, these criteria
define relatively autonomous regions with most interactions
within the region and least without. Domains including a single
chain segment can easily be recognized by the following pro-
cedure: the chain is assumed to be cut at some point, leading
to two artificial subunits whose accessible surface area is cal-
culated; the sum of the two surface areas minus that of the
whole protein represents the interface area between the two
subunits (10). When the cutting point is moved along the
polypeptide chain, limits of domains will appear as minima of
the interface area. At these points, the artificial subunits have
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Table 2. Accessible and buried surface areas calculated by using the analytical function
Accessible surface areas, A2 Buried surface areas, A2

Protein A Ac Ratio A Ac Ratio

IgG fragment VREI
Monomer 5,528 5,376 0.97
Dimer 9,625 9,400 0.93 1,431 1,352 0.95

Human deoxyhemoglobin
a chain 7,829 7,833 1.0
/3 chain 8,226 8,257 1.0
af3 dimer 14,425 14,660 1.02 1,630 1,430 0.88

Trypsin-BPTI complex
Trypsin 8,902 9,530 1.07
BPTI 3,556 3,635 1.02
Complex 11,075 11,930 1.08 1,383 1,235 0.89

Lobster GPDH
Monomer 15,470 16,120 1.04
Red/blue dimer 28,020 29,290 1.04 2,920 2,950 1.01
Red/green dimer 28,814 30,100 1.04 2,126 2,140 1.0
Tetramer 50,310 53,880 1.07 11,570 10,600 0.92

Dogfish apo-LDH
Monomer 17,120 17,867 1.04
Red/blue dimer 31,640 33,120 1.05 2,600 2,614 1.0
Red/yellow dimer 28,700 30,520 1.06 5,540 5,214 0.94
Red/green dimer 30,015 31,860 1.06 4,225 3,874 0.92
Tetramer 45,170 49,330 1.09 23,310 22,140 0.95

Concanavalin A
Monomer 10,600 11,350 1.07
Dimer I-II 18,620 20,248 1.08 2,580 2,452 0.95
Dimer I-III 18,745 20,124 1.07 2,455 2,576 1.04
Tetramer 32,060 35,293 1.10 10,340 10,107 0.98

Accessible surface areas were calculated by the procedure of Lee and Richards and a computer program of M. Levitt (A) or by the analytical
function on simplified protein models (Ac). The surface areas buried in subunit interfaces are defined as the sum of the subunit accessible surface
areas minus that of the complex (10). The ratios given are A/A. All atomic coordinates are from the Cambridge Data Bank. When two subunits
were independently determined (VREI fragment and GPDH), the values quoted are averages. For the larger multimeric proteins, LDH, GPDH,
and concanavalin A, the simplified model was used in calculating A. The LDH and GPDH dimers are defined in ref 14; the concanavalin dimers
in ref 15. GPDH, glucose-6-phosphate dehydrogenase; LDH, lactate dehydrogenase; BPTI, pancreatic trypsin inhibitor.

a minimum of interactions and most closely resemble actual
protein subunits. Fig. 4 illustrates the efficiency of this proce-
dure applied to an immunoglobulin light chain, where the di-
vision into two domains is obvious owing to their very small
interface.
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Conclusion
The importance of the solvent in processes involving proteins
and other biological molecules has long been recognized. Be-
cause of the complexity of the physics in the liquid state, and
especially of liquid water, it has proved very difficult to esti-
mate quantitatively the interactions of water with proteins.
Though actual interactions of water molecules with chemical
groups (for instance, hydrogen bonds) can be demonstrated,
the effect of organic solutes on bulk water, generally but im-
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FIG. 3. Accessibility of amino acid residues in phage T4 lysozyme.
The values Aciof the accessible surface areas of the residues calcu-
lated with the analytical function and the simplified model are plotted
against the corresponding values Aimeasured by the procedure of
Lee and Richards with all atoms present.
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FIG. 4. Compact domains in immunoglobulin light chains. The
light chain moiety of an immunoglobulin Fab fragment (16) was cut
successively at each residue i. The accessible surface areas Aland A2
of the two fragments (1 to i) and (i+1 to 208) were calculated. The sum
A1 + A2 is larger than the accessible surface area AOof the light chain
itself (AO= 12,218 A2); the difference B = A 1 + A2 - AOis plotted here
against i. B is minimum at residue 103, defining two domains (1 to
103) and (104 to 208). Their accessible surface areas are A1 = 5952 A2
and A2 = 6566 A2; B = 300 A2 is the area of their interface.
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properly known as the hydrophobic effect (17), may not be
counted simply as a sum of interatomic interactions. A number
of different approaches have been proposed, including pow-
erful molecular dynamics (18, 19) or Monte Carlo simulations
(20) of water surrounding protein molecules. However, these
calculations are very complex even with the smallest pro-
teins.
The use of the accessible surface areas provides a bypass to

the problem. Rather than trying to represent the details of the
interactions occurring between the many protein atoms and the
fluctuating solvent surrounding, it is reasonable to assume that
their free energy (which includes a strong entropic component)
is proportional to the surface of contact between the protein
molecule and water. The assumption has been checked ex-
perimentally with small organic molecules, including amino
acids. If it is valid for macromolecules, it becomes easy to
evaluate the solvent contribution to the stability of proteins or
protein complexes when their three-dimensional structures are
known. The procedure developed in this paper removes the
major difficulties linked to the geometric construction used
previously in accessibility measurements. Accessible surface
areas are calculated simply and efficiently as a combination (but
not a sum) of pairwise interactions between residues, these in-
teractions being now represented by the b and b' components
of the buried surface areas for each pair of residues. As a con-
sequence, accessible surface areas can be used in energy min-
imization or other procedures that operate on analytical func-
tions of the atomic positions.
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