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Abstract. Eye movements are strongly influenced by the task given to an observer. The immediacy 
of such eye movements, which are difficult to control consciously, offers the potential to explore 
highly variable subjective evaluations, such as aesthetic preference, with reliable objective measures. 
We presented a variety of images in sets of 2, 4, or 8 items for different durations and analyzed 
oculomotor statistics such as cumulative fixation duration, refixations, and the sequence of fixations 
while participants searched for their preferred image, after which participants indicated their preference 
using a button press. The total amount of time spent looking at any image correlates with selection 
preference and does so increasingly well with longer presentation duration. For short presentations, 
the first and last fixations correlate better with image preference. All response measures become 
increasingly variable as the number and complexity of presented images are increased. A weighted 
combination of these measures can significantly improve the correlation with preference, suggesting 
a “signature” which could be used as a reliable indicator for task-free subjective evaluation of stimuli 
in visual psychophysics. Its role as an improved fitness function in visually driven evolutionary 
algorithms is discussed.

Keywords: aesthetics, visual perception, attention, eye movements, eye tracking, top-down, bottom-up.

1  Introduction
The empirical study of the aesthetic experience is not easy. Fechner (1865, as cited in Berlyne, 1971) 
was well aware of this when he first established the field of experimental aesthetics and observed that

“aesthetic phenomena are among the most complex phenomena within the domain of 
psychology, and this is often used as an excuse by psychologists for being able to say so little 
about them”.

This difficulty stems, in part, from a wide range of definitions of what constitutes, or contributes 
to, the aesthetic experience (Arnheim, 1974; Berlyne, 1971; Hassenzahl, 2008) as well as the range 
and complexity of the stimuli, including paintings and sculpture, architecture, musical compositions 
and performances, film and dance, which can be evaluated aesthetically. These challenges frequently 
result in a reductionist approach, which allows more precise questions about the relationship between 
some feature of the stimulus and the consciously articulated preferences to be explored in a highly 
controlled manner. However, as observed by Arnheim (1974), the aesthetic experience is rather fragile 
and typically relates to the gestalt, or whole, rather than the sum of any isolated parts meaning that 
a reductionist approach will never be able to explain the effects of the complex interaction of many 
individual features on the aesthetic evaluation of the stimulus. Previously, we have shown (Holmes & 
Zanker, 2008) that evolutionary algorithms (Bentley, 1999; Goldberg, 1989; Holland, 1975), which 
provide a robust method for searching complex feature spaces for highly fit interactions, can be used to 
answer questions relating to aesthetic preference, using the time spent fixating each image in a simulta-
neously presented array as a measure of fitness. In this paper, we identify a more powerful oculomotor 
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signature which correlates with selections based on visual aesthetic preference using a wide range of 
photographic stimuli, with a view to integrating this signature as a fitness measure in the gaze-driven 
evolutionary algorithm (Holmes & Zanker, 2008) to facilitate the aesthetic evaluation of complex 
visual stimuli without the need for conscious articulation of that preference.

The association between the task being performed and the eye movements made while performing 
the task is well established. In picture viewing (Buswell, 1935; Yarbus, 1967), music and word read-
ing (Land & Furneaux, 1997; Rayner, 1998), visual search (Connor, Egeth, & Yantis, 2004), complex 
real-world scene perception (Henderson, 2004), and motor tasks (Land, 2007), consistent patterns of 
eye movements have been detected across participants which point to the crucial role that the task 
plays in the direction of overt attention. Free viewing tasks, where the participant is not given any task 
to perform but is merely encouraged to explore the visual scene, are typically used to highlight the 
influence of low-level, or bottom-up, influences on eye movements stemming from the visual scene 
itself. However, such effects are not stable over time (Tatler, Baddeley, & Gilchrist, 2005), suggesting 
the presence of some internally motivated, top-down tasks generated by the participant. It has been 
suggested that humans seek to create a stimulating and pleasing visual environment for themselves 
(Berlyne, 1971) and that such behavior might be biologically conditioned as a result of the positive sen-
sations that such stimuli provide (Biederman & Vessel, 2006). If that is indeed the case, then the pattern 
of eye movements made while performing an aesthetic evaluation task might allow preferences to be 
predicted under free viewing conditions, allowing aesthetic preferences to be explored experimentally 
without the many problems associated with conscious reporting of subjective preferences (Nisbett & 
Wilson, 1977).

Artworks have long been used to elicit eye movements for scientific study, whether for the purposes 
of exploring task demand effects (Yarbus, 1967) or for providing an insight into the relationship be-
tween artistic images and the viewer’s aesthetic response to it (Buswell, 1935; Locher, Krupinski, Mello-
Thoms, & Nodine, 2007; Stratton, 1906; Tatler, Wade, & Kaulard, 2007; Wooding, Mugglestone, Purdy, 
& Gale, 2002). Most attempts to relate eye movements to the aesthetic qualities of the stimulus have 
concentrated on the looking behavior of participants while viewing paintings one at a time (Buswell, 
1935; Henderson & Hollingworth, 1998; Rayner & Pollatsek, 1992; Wooding, 2002) and have shown a 
degree of consistency between viewers with respect to the number and duration of fixations in regions 
of the artwork which are highly detailed and thus potentially more informative. Attempts to correlate 
such fixational measures with respect to the outcome of a relative evaluation of several stimuli presented 
simultaneously are less common, perhaps due to the large individual differences in aesthetic preference 
(Arnheim, 1974; Berlyne, 1971), but this does not preclude a potential consistency in the oculomotor be-
havior during the collection of visual information about the stimuli prior to the decision being made, and 
there is evidence to support a tendency for gaze to linger on objects or artistic images we prefer (Pieters 
& Warlop, 1999; Plumhoff & Schirillo, 2009; Santella & DeCarlo, 2004).

Preferential selection based on eye movements is not new and is central to the preferential looking 
paradigm (Dobson, 1983; Teller, 1979) and further supported by the gaze cascade model of preference 
decision making (Glaholt & Reingold, 2009; Shimojo, Simion, Shimojo, & Scheier, 2003). Funda-
mental to both of these is the relationship between accumulated fixation time and task relevance first 
identified by Yarbus (1967). Supporting empirical studies are traditionally performed with just two 
concurrently presented stimuli, with preference being attributed to a stimulus if it attracts the gaze 
above chance, that is, more than 50% of the presentation time. In other words, the preferential look-
ing paradigm utilizes a two-alternative forced-choice (2AFC) method of selection which reduces the 
noise in the decision making by controlling the cognitive load on the participant and the differences 
between the images in the binary choice (Houston-Price & Nakai, 2004). However, this inevitably 
constrains the variability between stimuli to one or two features (i.e., stimulus dimensions) and means 
that an exploration of interactions among multiple stimulus features results in a large number of trials, 
introducing the risk of additional noise arising from participant fatigue.

Most models of overt visual search involving multifeatured stimuli, suggest two phases; the first 
being associated with scanning the visual field for relevant locations and the second being associ-
ated with the more detailed identification, comparison, and evaluation of these image regions (Locher  
et al., 2007; Van der Lans, Pieters, & Wedel, 2008; Velichkovsky, Joos, Helmert, & Pannasch, 2005). 
This first phase has been shown to be highly susceptible to the distribution of low-level image features 
over the visual field (saliency; Itti & Koch, 2000) and is characterized by frequent, short fixations 
(Antes, 1974; Glaholt & Reingold, 2009). The second phase introduces top-down effects, for exam-
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ple, driven by the task being performed, the emotional content of the image, or personal preferences 
(Glaholt & Reingold, 2009; Land, 2007; Locher et al., 2007) and results in fewer but longer fixations 
(Antes, 1974; Glaholt & Reingold, 2009). Over a prolonged viewing period, the two operation modes 
are likely to alternate repeatedly and interact, because participants look for what they like but their 
preferences can also be influenced by what they see (Glaholt & Reingold, 2009; Shimojo et al., 2003). 
This would suggest that the time course of the eye movements, over and above the cumulative fixation 
time used in the preferential looking paradigm, is likely to provide substantial information, which re-
lates to the participant’s decision making. A variety of oculomotor measures, other than fixation time, 
are available from an eye tracker, which have, to varying degrees, been correlated with viewing strate-
gies during visual search, single image viewing, and decision making. These include number, spatial, 
and temporal distribution of fixations (Carbon et al., 2006; Duncan & Humphreys, 1989; Land, 2007; 
Pannasch, Helmert, Roth, Herbold, & Walter, 2008; Shimojo et al., 2008; Wooding, 2002) and saccade 
size (amplitude) which has been show to have an inverse correlation with fixation duration during 
the later (top-down initiated) phase while viewing artworks (Pannasch et al., 2008). This paper will 
focus on the spatiotemporal distribution of gaze positions and their associated durations, which should 
already contain implicit information that also could be derived from analysis of saccade amplitudes.

To test whether the oculomotor measures generalize across aesthetic preference tasks, it is im-
portant that a range of images is evaluated, and four different categories were used in the current 
experiment. Common small objects and buildings are known to have distinct representations in the 
human brain with differing typical locations in the visual field—small objects are typically located 
in the fovea, while buildings are more frequently seen in the peripheral visual field (Aguirre, Zarahn, 
& D’Esposito, 1998; Levy, Hasson, Avidan, Hendler, & Malach, 2001). These two stimulus types 
are used along with familiar packages of commercial products, which represent an everyday exam-
ple of preference-based visual search in visually cluttered environments such as supermarket shelves 
(Van der Lans et al., 2008). We have shown previously that simple images such as monochromatic 
rectangles with varying height to width ratio and colored shapes can be evolved using an evolutionary 
algorithm in which the fitness of each image is based on the cumulative fixation duration (Holmes & 
Zanker, 2008). To link to such work on basic figures, a fourth category of simple colored geometric 
shapes is included in the present study to further validate the generality of the experimental findings. 
Within each main category, images representing four different types of stimuli (subcategories) are used 
to control for any effects unique to a semantically associated type of image or to a particular class of 
features. In addition to manipulating the image type, the display size and presentation duration are var-
ied in our experiments, with the intention of determining an optimal signal to noise ratio for sampling 
aesthetic preference with a view to providing sufficient competition between images without fatiguing 
the participant. This is particularly important if the signature is to be incorporated in an evolutionary 
algorithm where competition for a limited resource, such as the attention of the participant, is vital to 
establish relative preference, or fitness scores, for the images being presented in an iterative process.

2  General Methods

2.1  Participants
Seven participants with normal, or corrected-to-normal, vision were recruited from the Psychology 
department at Royal Holloway, University of London. The project was approved by the institutional 
ethics committee.

2.2  Stimuli
Samples of two, four, and eight images from one of four categories, each comprising four subcate-
gories (see Figure 1), were displayed using a Cambridge Research Systems ViSaGe (Visual Stimulus 
Generator). Luminance was not normalized across the images, as we were interested in identifying  
oculomotor signature that would work despite uncontrolled luminance. Background luminance (white) 
was 86.3 cd/m2. Stimuli were displayed on a 48-cm diameter cathode ray tube (CRT) monitor at a dis-
tance of 57 cm from the participant. The physical size of an image on screen ranged from 20 mm 3 30 
mm to 50 mm 3 40 mm. Random sampling without replacement from a set of eight images for each 
subcategory ensured that no image was displayed more than once in each screen presentation, but the 
same image could be displayed in more than one trial (in case of eight displayed images, the full set 
was presented in each trial). This was intended to introduce contextual effects because the aesthetic 
evaluation of each image is relative to the other individuals presented (Shen, Elahipanah, & Reingold, 
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2007). Individuals were displayed in a radial fashion (see Figure 2) with their center at 8° from a  
central fixation cross-hair presented immediately prior to the stimuli, that is, the stimuli were presented 
peripherally with respect to the fixated location at the start of each screen presentation.

Participants were presented with samples of images and instructed to look for the image they most 
preferred. The following variables were manipulated:

Display size: Two, four, or eight images randomly placed at the cardinal/ordinal locations. 
Examples of the locations of two, four, or eight image presentations are shown in Figure 2.

Presentation duration: The images were displayed for 1,500, 2,500, or 5,000 ms before being 
obliterated by a number indicating the button to be pressed to select the image.

Image category: The images in a single screen presentation were taken from a single subcategory 
of the following categories: objects, buildings, commercial products, or shapes.

Image subcategory: Each of the four image categories comprised four semantically related 
subcategories, for example, the shape category featured differently colored circles, squares, 
triangles, and pentagons. The full list of subcategories is given in Figure 1.

Figure 1. Complete image set for Experiments 1 and 2. All eight images for each category and subcategory 
are shown in one of their 8AFC presentations. Reading top-down and left to right: objects (scissors, cameras, 
watches, mobile phones); buildings (houses, churches, schools, shops); product packages (Bio powder, color 
powder, bio tablets, color tablets); shapes (circles, triangles, squares, pentagons). Random samples from the set 
of images formed 2AFC and 4AFC presentations. The spatial position of each image was randomly selected for 
each trial, so, for example, the red square could appear in any of the 2/4/8 locations for presentations from the 
squares subcategory.
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Each subcategory comprised eight distinct images taken from Google Image searches on the cat-
egory names that were converted to a 256-color bitmap and resized for presentation. The full image 
set is shown in the 8AFC configuration in Figure 1.

2.3  Timing
After a central fixation cross-hair was displayed for 1,000 ms, participants were presented with a 
screen of two, four, or eight images for evaluation for 1,500, 2,500, or 5,000 ms. After this period, 
numbers corresponding to buttons on a keypad were displayed at the stimulus locations, obliterating 
a large part of each image; this was to ensure that enough of the image was visible so that participants 
did not need to spend time encoding the spatial location of their preferred image during the image 
presentation stage but were unable to continue evaluating the images after the image presentation time. 
Participants then indicated their preferred image by pressing the number corresponding to the image 
(see Figure 2) on a physical keypad. No time limit was imposed on the manual response, but partici-
pants were encouraged to do this as quickly as possible. On making their selection, a color noise mask 
was presented for 250 ms to eradicate after images, before the next trial began.

2.4  Eye tracking
A Cambridge Research Systems 50-Hz Video Eye-Tracker (CRS VET) was used to sample raw x and 
y coordinates for gaze location every 20 ms. Fixations were defined as distinct periods of 100 ms or 
more with gaze location remaining within a 2.5-mm window on the screen, that is, 0.25° of visual an-
gle at a viewing distance of 57 cm. Areas of interest extending 5 mm beyond the edges of each image 
were used, which corresponds with the 0.5° spatial resolution of the eye tracker. Oculomotor measures 
were calculated as follows:

Duration was calculated by simply summing the duration of all fixations for each image.

The sequence of first fixations was recorded on the basis of the first fixation on an image 
location, for example, in the 4AFC condition, a first fixation sequence of (Images 1, 3, or 4) 
would indicate that Image 1 was fixated first, then Image 3 followed by Image 4, with possible 
off-target fixations and refixations of Image 1 prior to the first fixation of Image 3, possible off-
target fixations and refixations of Images 1 and 3 prior to the first fixation of Image 4 and Image 
2 never being fixated.

Figure 2. Image positions when two, four, or eight images were presented in a single screen presentation. The 
numbers shown in each configuration correspond to the button on the numeric keypad used to identify preference 
for the image at that location.

file:/Users/f-242/Desktop/i0448aap/Links/i0448aap-f1.eps
file:/Users/f-242/Desktop/i0448aap/Links/i0448aap-f2.eps


431� Holmes T, Zanker JM

Last fixation was recorded as simply the last location fixated prior to images being obliterated 
by the manual selection numbers.

Returns were defined as distinct refixations, that is, they were separated by at least one fixation 
of a different image or empty space.

2.5  Experiment 1
Experiment 1 evaluated the effects that array size and presentation length have on the predictive poten-
tial of the oculomotor measures. It comprised two stimulus presentations for each of the four catego-
ries (random selection of subcategory), for presentation durations of 1,500, 2,500, and 5,000 ms and 
display sizes of two, four, and eight, that is, 72 trials, for each of the seven participants. All conditions 
were randomly interleaved, meaning that the participant was unaware of how much time they had to 
locate their preferred image.

3  Results
Each of the oculomotor measures (duration, first fixation, last fixation, returns) was examined for its 
correlation with the manually chosen image, that is, the number of times the longest fixation, first 
fixation, last fixation, and most frequently returned to location matched the manually chosen preferred 
location was calculated for each participant, for each of the display sizes. If a measure is uncorrelated, 
then the number of matches should be at chance level (i.e., 50% in the 2AFC condition, 25% in the 
4AFC condition, 12.5% in the 8AFC condition), meaning that the ratio of matches to chance (propor-
tion of correct matches/chance level for the presentation size) should be 1, with results higher than 1 
indicating a positive correlation and results less than 1 indicating a negative correlation. The results 
for the ratios of correct matches to chance across the 3 display conditions and 3 presentation durations 
are shown in Figure 3.

The results of two-tailed repeated measures ANOVAs, corrected using Bonferroni, for each of the 
oculomotor measures showed a significant main effect from the number of images presented: fixation 
duration, F(2, 12) = 11.367, p < .005; first fixation, F(2, 12) = 9.270, p < .01; last fixation, F(2, 12) = 
13.095, p < .005; returns, F(2, 12) = 36.619, p < .001. Two-tailed post hoc comparisons between the 
three AFC levels identified significant differences between presentation of two and four images for 
fixation duration (p < .05), presentation of two and eight images for last fixation (p < .05) and returns  
(p < .01), and presentation of four and eight images for last fixation (p < .05) and returns (p < .005). The 
results of two-tailed repeated measures ANOVAs, corrected using Bonferroni, for each of the oculomo-
tor measures showed only a marginal main effect from the presentation duration on fixation duration, 
F(2, 12) = 4.913, p = .056, with no significant effect on any of the other measures (p > .05). Similarly, 
the interaction between number of images and presentation duration was only significant for fixation 
duration, F(4, 24) = 4.284, p < .05. Post hoc analysis of this interaction for fixation duration revealed 
a significant effect from presentation in the 8AFC condition, F(2, 12) = 5.825, p < .05, and from the 
presentation size in the 1,500 ms, F(2, 12) = 5.427, p < .05, and 5,000 ms, F(2, 12) = 19.906, p < .001, 
conditions.

The results for the returns measure show performance below chance in both the 2AFC and 4AFC 
conditions. This is largely because returns were very scarce in those trials, suggesting that participants 
either did not have enough time to complete first fixations on all the stimuli, as would certainly be 
the case in the 1,500-ms presentation for eight images, or were able to maintain representations of up 
to four locations in working memory from initial scanning of the images prior to any prolonged fixa-
tion based on preference. Overall, the results clearly show an increased performance above chance 
on all measures when the participant is presented with more choice, that is, the oculomotor statistics 
are more informative when there are more candidates to be evaluated, with little or no effect from 
extended presentation time, especially for the single fixation measures.

3.1  Experiment 2
The second experiment evaluated the effects that image category and presentation length have on the 
predictive potential of the oculomotor measures. It comprised four stimulus presentations with a fixed 
display size of 8 for each of the 16 subcategories, for presentation durations of 1,500, 2,500, and 5,000 
ms each, that is, 192 trials for each of the three participants, selected from the initial seven. This meant 
that the participants saw images from Experiment 1 supplemented by images they had never seen be-
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fore. Randomization of the location of the images meant that participants were highly unlikely to see 
the same arrangement viewed in the 8AFC condition in the first experiment. As before, all conditions 
were randomly interleaved, meaning that the participant was unaware of how much time they had to 
locate their preferred image.

4  Results
Figure 4 shows little difference in the overall performance of the four oculomotor measures for the 
four categories, with all performing better than chance. The results of two-tailed repeated measures 
ANOVAs, corrected using Bonferroni, for each of the oculomotor measures showed only a significant 
main effect from the category for first fixation (F(3, 6) = 11.271, p < .05). There was a significant 
main effect from the presentation duration for the returns measure (F(2, 4) = 17.777, p < .05), and a 
significant main effect from the interaction of category and duration for first fixation (F(6, 12) = 4.723, 
p < .05). No significant effect was observed between subcategories of image type for any of the four 
major categories.

These results are similar to those for the 8AFC condition in the Experiment 1 and suggest that the 
image type had little effect on the measures. The strong performance of the first fixation measure in 
the 1,500-ms shape is probably a result of the simplicity of the eight images being used in each of the 
trials allowing an almost reflexive saccade to be made to the preferred color in later trials. The consist-
ent improvement in the performance of the returns measure for longer presentation times across all 
image types confirms the importance of this behavior when making comparative preference choices 
and suggests that in the absence of prior knowledge of the image characteristics, this might be the best 
single indicator of preference.

Figure 3. Ratio of number of times the four oculomotor measure corresponds with the subsequent manual AFC 
selection, relative to chance levels: (a) fixation duration; (b) first fixation; (c) last fixation; (d) returns. Consistent 
improvements are visible across measures with increased number of images, with no consistent effect from 
presentation duration. Results are averaged over 24 trials for each condition, N 5 7. Bars show standard error.
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4.1  Oculomotor signature
The results from Experiments 1 and 2 suggest that predictive potential of each of the oculomotor meas-
ures depends on the size of the stimulus sample and duration of presentation while only being mildly 
affected by the image category and, in this case, associated image complexity. Figure 5 shows an 
example of the cumulative fixation plot for a single participant (P4) in a single trial (5,000 ms, 8AFC, 
buildings category). From this plot, it can be seen that neither the first image fixated nor the image be-
ing fixated at the end of the trial was identified as the preferred image by the viewer, highlighting the 
problem with single fixation measures, as the first fixation is made without information about the other 
choices available, and the final fixation might be made after a decision has been made.

The number of times first fixation matches the selected preference, expressed as a percentage of 
all trials in which at least one image was accurately fixated (396 of the 6 3 72 = 432 trials reported in 
Experiment 1), is shown in Figure 6 for all items presented. Here, it can clearly be seen that the first 
item fixated is less likely to reflect the final selection as both presentation duration and presentation 
size increases and although always above chance for the display size, as choice and presentation time 
increase, late fixated items are increasingly likely to correlate with the manual preference selection. 
However, this presents a problem for a cumulative duration-based fitness evaluation, as the later an 
item is first fixated, the less chance it has to accumulate a long fixation duration. This suggests the need 
to weight the fixation duration according to the lateness of the first fixation for each item.

On the basis of these observations and the group results for Experiments 1 and 2, a new oculomo-
tor measure, or “signature,” was calculated using a multiplicative weighting which effectively scales 
the cumulative fixation duration, according to the likelihood that this image will be the preferred 
image, using the sequence of first fixations and the number of returns (distinct refixations after first 
fixation) to the image, as follows:

Figure 4. Ratio of number of times the four oculomotor measure corresponds with the subsequent manual AFC 
selection, relative to chance levels: (a) fixation duration; (b) first fixation; (c) last fixation; (d) returns. Results 
are averaged by image category (object, building, package, or shape) over 16 trials for each category and each 
presentation duration (192 trials in total), N 5 3. Bars show standard error.
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Let fi be the amount of time spent fixating on item i, where i = 1 to i = display size. In Experiments 
1 and 2, display size was 2, 4, or 8.

Let F be the total amount of time spent fixating on images for i = 1 to display size, that is,  
fi summed for all i.

Then,

					     i
i
fC
F

=  					          (1)

is the relative cumulative fixation duration for each image. Note that Ci is always in the range of 0 to 1.
Now, let si be the order of the first fixation of image i, divided by the display size. For exam-

ple, if image i was the first image to be fixated in the 8AFC condition, si = 1/8; if image i was the 
second image to be fixated in the 2AFC condition, si = 2/2 (=1). Thus, si is always in the range of 
0 to 1.

Let ri be the number of returns (see earlier definition) of items i, that is, the total number of dis-
tinct fixations excluding the initial fixation. For example, if image i is fixated for three distinct periods 
during a tracking session, ri = 2, if it is only fixated once, then ri = 0. Note that ri is effectively in the 

Figure 5. Example of a cumulative fixation plot from a single trial for participant P4 in Experiment 1 (Buildings 
category). Fixations on the preferred image are shown, as well as those on each of the other images which 
attracted at least one fixation, and for fixations outside of the image areas of interest (“nonimages”). N = 1 
observer and presentation.

Figure 6. Proportion of any particular item in the stimulus set matching selected preference, with gray level 
indicating the sequence of fixation. Sequence of fixations is simply the order in which images are fixated for 
the first time. Bars show the proportion of items matching preference by sequence number totaled over all trials 
from Experiment 1a in which at least one image was successfully fixated (396 trials in total/all image categories). 
Horizontal lines show the chance levels for the 2AFC (50%, dotted line), 4AFC (25%, dashed line), and 8AFC 
(12.5%, solid line). The increased likelihood that an image other than the first fixated image will match the 
selected preference as display duration and display size increase is clearly visible.
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range of 0 to , but its maximum value for any single tracking session is the total number of distinct 
fixations minus 1. For this reason, ri is normalized to be in the range 0 to 1 by dividing by the total 
number of refixations for all items i = 1 to display size.

Then,

					     2
i i

i
s rw +=  				                (2)

is a weighting which represents the sustained interest in the image following its initial fixation. Note 
that wi is in the range of 0 to 1 for all images.
Finally,

					     i i ia wC=  					                (3)

is the weighted relative cumulative fixation duration scaled according to sustained interest and forms 
the proposed oculomotor signature of aesthetic preference.

Figure 7 shows the results for the new signature applied to each image type using the gaze data 
from Experiment 2. Overall, the new ratio is now positively correlated for all presentation times and all 
image types, matching manual preference selection significantly better than chance at all presentation 
times: 1,500 ms, mean ratio = 3.378, t(2) = 5.529, p < .05; one-tailed; 2,500 ms, mean ratio = 4.000, 
t(2) = 5.322, p < 0.05; one-tailed; 5,000 ms, mean ratio = 4.7917, t(2) = 4.149, p < 0.05; one-tailed. 
Results of one-tailed t-test comparisons between the new signature and the individual oculomotor 
measures showed significant improvements at 1,500 ms for fixation duration, t(2) = 4.200, p < .05, and 
returns, t(2) = 3.560, p < .05; at 2,500 ms for fixation duration, t(2) = 3.308, p < .05, first fixation, t(2) 
= 4.015, p < 0.05, and returns, t(2) = 16.000, p < .005; and at 5,000 ms for first fixation, t(2) = 3.004, 
p < .05, and last fixation, t(2) = 6.513, p < .05. These results are consistent with a signature that now 
accounts for some of the time-dependent deficiencies of some of the individual measures.

5  Discussion
The results from Experiments 1 and 2 confirm that accumulated fixation duration correlates with 
preference better than chance, and combining it with measures such as the order of first fixation and 
the number of returns to an image, which relate to sustained interest in the image, results in an ocu-
lomotor signature which correlates significantly better with the conscious preference decision (see 
Figure 7).

These results confirm a strong relationship between the subjective decisions we consciously make 
and the eye movements which precede expression of those conscious decisions using convention-
al methods such as button presses and questionnaire responses. More fundamentally, they demon-

Figure 7. Effect of using weighted combinations of oculomotor measures with the new subjective fitness function 
described in Equation 3. The new measure performs consistently across all four image types and performance 
improves monotonically with presentation time. All presentations were in the 8AFC configuration, 5,000 ms. 
Error bars show standard error over all trials, N = 3.
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strate the usability of preferential looking paradigms with normal, healthy adult participants and not 
just with observers who would have difficulty understanding a task or communicating a response  
(Dobson, 1983; Teller, 1979). In addition, this work provides further support for the gaze cascade model  
(Glaholt & Reingold, 2009; Shimojo et al., 2003) which suggests an increase in sustained interest that 
is visible from fixations late in the presentation period. This correlation between accumulated fixation 
duration and consciously expressed preference also lies at the heart of the gaze-driven evolutionary 
algorithm (Holmes & Zanker, 2008) and the results from Experiments 1 and 2 further support the use 
of eye movements as a fitness measure for aesthetic preference. This is because the fixation duration 
represents a “better than chance” indication of preference and so can be used to provide the selection 
pressure needed to drive an evolutionary optimization process. Early versions of the algorithm relied 
on the specification of a task, such as “look for your preferred shape,” to motivate the participant’s eye 
movements. While the active selection of a pleasing and stimulating visual environment has been sug-
gested to be a background task for humans (Berlyne, 1971; Biederman & Vessel, 2006), an oculomotor 
signature, such as that developed here, which correlates with such a task could now be incorporated 
in a free viewing version of the paradigm, which simply requires the participant to look at the images 
evolving on screen without any explicit task specification. The removal of task specification, as well as 
consciously articulated response, would provide a language-independent means for exploring complex 
preferences relating to aesthetics. Early results using stimuli inspired by Op Artist Bridget Riley sug-
gest that the signature in Equation 3 can be used to generate aesthetically pleasing complex patterns in 
the absence of a specific task (Holmes, 2010; Zanker, Voigt, & Holmes, 2010).

Clearly, the oculomotor signature developed here does not represent a comprehensively optimized 
model for preferential looking, which would need to incorporate parameters for the presentation dura-
tion, the image complexity, and the complexity of the decision-making task, perhaps using pupilom-
etry with respect to the amount and variety of the choice (Holmes, 2010). However, the improved cor-
relation between looking and preference could facilitate better fitness estimation than fixation duration 
alone in gaze-based computer interactions where aesthetic preference is used to drive an optimization 
algorithm (Holmes & Zanker, 2008). The improved correlation between the new oculomotor signa-
ture and aesthetic preference would increase the selection pressure in that evolutionary algorithm and 
accelerate the location of highly fit solutions (Goldberg, 1989) allowing more complex image spaces 
to be searched without increasing the demands on the participant (Takagi, 1998, 2001, 2009). This 
has important consequences for the nonreductionist investigation of visual aesthetic preference, since 
such an approach is dependent on the availability of techniques which can manipulate and search 
complex images.

The present experiments highlight the importance of the presentation time for the preferential 
looking paradigm with normally functioning adults, especially with a measure such as the returns 
measure used here. If presentations are too short for the number and complexity of images being 
compared, then there is insufficient time to complete the bottom-up–driven location phase of visual 
search before initiating the top-down–driven identification phase (Locher et al., 2007; Van der Lans 
et al., 2008), which is important for a meaningful response to an aesthetic preference task (Glaholt & 
Reingold, 2009). With short presentation times, it is possible that gaze-based measures such as the one 
proposed here might better reflect image saliency than image preference (Itti & Koch, 2000), although 
more recent evidence suggests that the looking behavior changes less during the course of viewing 
than previously thought (Tatler, Hayhoe, Land, & Ballard, 2007), meaning that the benefit from pro-
longed exposure might simply be the result of longer fixations later in the time course (Glaholt & Rein-
gold, 2009). However, this interaction between a feed-forward and a feedback loop raises a question of 
causality: Does fixation precede preference or preference precede fixation? Clearly, correlation results 
such as those presented here cannot resolve this, and further investigation of this is needed. However, 
the inclusion of this signature in a task-independent gaze-driven evolutionary algorithm does present 
an opportunity for learning general trends in a participant’s preference, through the frequencies of 
specific image features in final population, and these can then be used to generate previously unseen 
stimuli for a forced-choice task where the presentation duration is manipulated to verify the effects of 
timing on actual preference (Zanker et al., 2010).

The oculomotor signature developed here is a quantitative behavioral measure which can be 
used to evaluate aesthetic preference with highly complex visual stimuli without any prior knowl-
edge as to the contribution to that preference from individual features. As such, it already addresses 
several concerns with experimental research into aesthetics including the ambiguity of qualitative 
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results (Arnheim, 1974; Berlyne, 1971; Hassenzahl, 2008), the limitations imposed by the reductionist 
methodologies (Arnheim, 1974) and the unreliability of conscious reflection on subjective decisions 
(Nisbett & Wilson, 1977). Advances in technology are resulting in eye trackers that are more accurate, 
easier to use, and more affordable. Moreover, off-the-shelf portable eye trackers now present the possi-
bility to study such signature oculomotor behaviors away from the laboratory facilitating quantitative 
evaluation of artworks in their original forms as they were meant to be seen. It seems that in addition 
to beauty itself and understanding of beauty might lie in the eyes of the beholder.
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