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Abstract. Crowding is related to an integration of feature signals over an inappropriately large 
area in the visual periphery. The rules of this integration are still not well understood. This 
study attempts to understand how the orientation signals from the target and flankers are 
combined. A target Gabor, together with 2, 4, or 6 flanking Gabors, was briefly presented in 
a peripheral location (48 eccentricity). The observer’s task was to identify the orientation of 
the target (eight-alternative forced-choice). Performance was found to be nonmonotonically 
dependent on the target–flanker orientation difference (a drop at intermediate differences). 
For small target–flanker differences, a strong assimilation bias was observed. An effect of the 
number of flankers was found for heterogeneous flankers only. It appears that different rules 
of integration are used, dependent on some salient aspects (target pop-out, homogeneity–
heterogeneity) of the stimulus pattern. The strategy of combining simple rules may be 
explained by the goal of the visual system to encode potentially important aspects of a 
stimulus with limited processing resources and using statistical regularities of the natural 
visual environment.
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1  Introduction
At present, a majority of researchers seem to agree that crowding is related to the integration of feature 
signals over an inappropriately large area in the visual periphery (e.g., Levi, Hariharan, & Klein, 2002; 
Pelli, Palomares, & Majaj, 2004). However, the rules of this integration are far from being understood.

Most frequently, the integration of crowded features has been studied using orientation as an ex-
ample of feature dimension. Parkes, Lund, Angelucci, Solomon, and Morgan (2001) asked observers 
to discriminate the target orientation (clockwise or anticlockwise from horizontal). The target was 
surrounded by different numbers of horizontal or tilted flankers. They found that a simple rule of av-
eraging could explain their experimental data. Solomon, Felisberti, and Morgan (2004) used a similar 
task and varied systematically the orientations of flankers. They measured both sensitivity (reciprocal 
of orientation discrimination threshold) and bias (systematic error) as dependent on the orientation of 
flankers. They could not explain the results by any averaging model. Instead, they suggested a model 
with lateral inhibition and amplification. Baldassi, Megna, and Burr (2006) modified the clockwise–
anticlockwise task to gain more information about the perceived orientations. Their observers had to 
estimate the perceived target orientation either by choosing one from 12 response probes or by rotating 
a response probe until it matched the target orientation. Gheri and Baldassi (2008) applied this method 
to traditional crowding stimuli. These studies also reject simple averaging and suggest that some com-
bination of averaging and selection of an object, maximally different from the reference orientation, 
can explain their results.

In all these studies, orientation of the target varied around some natural reference value (horizontal 
or vertical), and the main task was to discriminate between the clockwise and anticlockwise tilt, rela-
tive to the reference. It is possible that the task and the set of stimuli play some role in the observed 
rules of integration. For example, a max rule may be optimal only when the target is the maximally 
tilted object among flankers.

Obviously, the averaging model should fail when the orientation differences between objects be-
come large. Actually, there is no meaningful average for two orthogonal orientations (e.g., Mardia & 
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Jupp, 2000). The crowding studies where objects with orthogonal orientations have been used are con-
sistent with the notion of positional uncertainty or random selection of objects, with some preference 
for the target location (Põder, 2008; Põder & Wagemans, 2007). This is well in accordance with many 
studies that have used letters as stimuli (e.g., Huckauf & Heller, 2002; Nandy & Tjan, 2007). However, 
this account may be valid for orthogonal orientations only.

Recently, Greenwood, Bex, and Dakin (2009) attempted to discriminate averaging and substitution/ 
random selection models experimenting with another visual feature—the relative position of line seg-
ments. Their analysis showed that the results were consistent with a weighted averaging of the target 
and flanker positions. 

The purpose of this study was to examine the roles of simple mechanisms, such as averaging and 
random selection, in the integration of orientation signals. In this study, a novel design of experiment 
was used. I combined the target identification task (Baldassi et al., 2006) with the systematic variation 
of target–flanker difference (Solomon et al., 2004). To avoid any effects of a fixed reference orientation, 
the target and flanker orientations were chosen from a set of equally spaced orientations around the 
clock. I used relatively simple sets of flankers that should discriminate the elementary pooling mecha-
nisms. In addition to the target–flanker orientation difference, the number of flankers was also varied.

2  Methods
The stimuli were presented on a 15-inch cathode ray tube (CRT) monitor with a resolution of 1,024 3 
768 pixels. They were composed of Gabor patches—cosine gratings, windowed by a circular Gaus-
sian. The sigma of the window was equal to half of the wavelength. The spatial frequency was ap-
proximately 6 cpd. The orientation of Gabors was selected from the eight possible orientations (from 
0 to 157.58, with steps of 22.58). The stimuli were presented on a gray background (with a luminance 
of about 50 cd/m2). The contrast of the stimuli was 90%. The luminance function of the monitor was 
measured by a Hagner EC1 photometer and approximated by a power function. The inverse of this 
function was used for the gamma correction.

On each trial, a group of Gabor patches was presented for 60 ms, unpredictably either left or 
right from the fixation point. The Gabor positioned in the center of the group was the target. It was 
surrounded by two, four, or six flankers. The eccentricity of the target was 48. The distance of the 
flankers from the target (measured from center to center) was 0.48 (0.1 E [E –is the eccentricity of the 
target]). The flankers were located in equal steps around the target; the angular position of the first 
flanker was selected randomly. The observer’s task was to identify the orientation of the target and 
ignore the flankers. After exposure of a stimulus, the observer indicated his/her response by clicking a 
patch with closest to the perceived target orientation in the response panel. An example of stimuli and 
the response panel are shown in Figure 1(a) and (b). No feedback about the accuracy was provided. 
The orientation of the target, as well as the flankers, was random. There were two conditions of flank-
ers’ orientations (mixed within the blocks of trials). In the first condition, all flankers had the same 
orientation [varied independently of the target orientation; Figure 1(c)]. In the second condition, there 
were two orientations of flankers, symmetrical relative to the target orientation, and equal numbers 
of flankers with both orientations [e.g., two flankers tilted 458 clockwise and two other flankers 458 
anticlockwise from the target orientation; Figure 1(d)]. The symmetry constraint creates a kind of sta-
tistical dependence between the target and two groups of flankers in this condition. However, it seems 
unlikely that the observers could use this regularity because the trials of different conditions were 
mixed, and naive observers had no idea how the flanker orientations were selected.

Three observers took part in the experiment: the author and two other observers, who were un-
informed about the theoretical background and the methods of stimulus selection. Each observer ran 
1,200 trials. The experiment was run in blocks of 100 trials. The number of flankers was held constant 
within a block.

3  Results
The distributions of responses relative to target orientation (pooled across the absolute orientations) are 
given in Figures 2 and 3. Figure 2 depicts the results for three individual observers and Figure 3—for dif-
ferent numbers of flankers. The differences across observers seem to be modest and quite random. The 
effect of the number of flankers is more interesting. While the curves of different numbers of flankers 
virtually overlap for the homogeneous flankers, there is a clear decrease in correct (target) respons-
es with increasing number of flankers for the condition with two symmetrical flanker orientations  
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(see Figure 3). This effect is most salient for the condition with maximum flanker–flanker difference 
(6458 flankers).

Figures 4 and 5 show some general aspects of the data (pooled across the observers and the 
numbers of flankers). The systematic error (bias) and standard deviation (reciprocal of sensitivity), as 
dependent on target–flanker differences, are given in Figure 4. Bias was calculated as the mean of dif-
ferences between response and target orientations using the equation for the mean of circular variables 
(see Appendix B). Standard deviation is the root mean square of the variation of responses about that 
mean. Figure 5 depicts the data from Figure 2 as a three-dimensional surface plot.

The condition with homogeneous flankers shows a very strong assimilation bias for small (22.58) 
target–flanker differences (as if the orientation of flankers was reported instead of the target). Sensitiv-
ity is best when the target and flankers have the same orientation and slightly worse with orthogonal 
flankers. The lowest sensitivity (highest standard deviation) occurs at intermediate differences, about 
458. With two symmetrical flanker orientations, the standard deviation is much higher, especially for 
the 67.58 target–flanker difference. As one can expect, there were no systematic biases in the sym-
metrical condition.

The graphs in Figure 4 bear some resemblance to those from Solomon et al. (2004). However, the 
assimilation bias, which dominates in the present data, was tiny and restricted to very small target–
flanker differences in the Solomon et al. (2004) data. Instead, repulsion from the flanker orientation 
(classical tilt illusion) was the dominant bias in that study. Standard deviations follow similar curves 
in both studies, but their absolute values are 5–10 times larger in this study. (In addition, there was no 
difference in standard deviation between the homogeneous and symmetrical flanker conditions in 

Figure 1. Examples of stimuli used in this study. An example of stimulus display (a). Response panel (b). Examples 
of stimuli with homogeneous flankers (c), and with flankers, symmetrical relative to the target orientation (d).

http://Figure 3
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Solomon et al., 2004, results). By and large, the differences between the present results and the results 
of Solomon et al. (2004) can be explained by different tasks and different levels of stimulus uncer-
tainty. Some interesting implications of these differences will be discussed later.

There are several interesting details that are lost when using the bias and sensitivity measures only. 
For relatively large target–flanker differences, there is evidence of multimodality of the distributions: 
consistent additional bumps at the orientations of flankers (see Figure 2). In addition to the strong  
assimilation bias at 22.58, there seems to be a repulsion bias that pushes the main group of responses 
away from the flanker orientation at 458 and 67.58 target–flanker differences. Figure 5 shows that the 
data break naturally into two parts, probably reflecting an employment of two different mechanisms.

Figure 2. Distributions of responses relative to target orientation for different orientations of flankers. 
Homogeneous flankers (left), symmetrical flankers (right); orientations of flankers indicated by red diamonds. 
(orange triangles, observer EP; green squares, VA; blue circles, LP).
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The likely candidate models (averaging and substitution/random selection) predict that the re-
sponses should be distributed according to either a single unimodal symmetrical error distribution 
(supposedly normal) or a mixture of several error distributions, corresponding to the target and flanker 
orientations. An attempt to fit the distributions in Figure 2 with a single Gaussian or double exponen-
tial (Laplace) distribution showed that this simplest account can be definitely rejected for the majority 
of conditions. Only the conditions with 08 and 22.58 target–flanker difference could be satisfactorily 
approximated by a single error distribution (although, p , 0.05 for one of three observers). However, 
all these distributions could be reasonably well fit by mixtures of two or three Laplace distributions. 
The fit of Laplace distribution as compared with Gaussian was found better for all three observers. 

Figure 3. Distributions of responses relative to target orientation for different orientations and numbers of 
flankers. Homogeneous flankers (left), symmetrical flankers (right); orientations of flankers indicated by red 
diamonds. Black triangles, two flankers; gray squares, four flankers; white circles, six flankers.
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This is somewhat surprising and may be related with the absolute identification task used in this study. 
Details of the approximation, optimal parameters, and goodness-of-fit are given in Appendix A.

Obviously, the full data set does not conform to the (simple or weighted) averaging model that 
predicts a unimodal distribution centered in some position between the target and flanker orientations. 
Neither are the results consistent with the simple spatial uncertainty (or random selection) model that 
predicts a fixed proportion of flanker-based responses independently of the target–flanker orientation 
difference. It is clear that spatial selectivity of the pooling mechanism depends on orientation differ-
ences between the target and flankers. When the target–flanker difference is small, the response is 
mostly determined by the orientation of flankers (this may be consistent with averaging, too). With 
large target–flanker differences, the responses are based mostly on the target orientation. This general 
effect is consistent with several earlier studies that have shown a decrease in crowding with increasing 
the target–flanker difference (e.g., Felisberti, Solomon, & Morgan, 2005; Kooi, Toet, Tripathy, & Levi, 
1994). These data suggest that it is essentially the probability of flanker (or average)-based responses 
that goes down with increasing target–flanker difference.

4  Modeling
The results for the homogeneous flankers can be accounted for by a relatively simple functional model 
(a mathematical description is given in Appendix B, the main relationships in Figure 6). In essence, it 
is a simplified version of the Bayesian inference with competitive priors (e.g., Stocker & Simoncelli, 
2008; Yuille & Bülthoff, 1996). I assume that visual system can easily detect some salient proper-
ties of stimulus (e.g., target pop-out) and selects a method of further calculations dependent on these 
properties.

Thus, I suppose that a unique target among flankers is detected (pops out) with a probability 
that increases monotonically with target–flanker difference. [This function estimated from the data is 
given in Figure 6(b).] If the target pops out, its orientation is measured, with some random error, and 

Figure 4. Bias and standard deviation of responses as dependent on orientation of flankers, relative to target, 
averaged across three observers. Blue diamonds, homogeneous flankers; red circles, symmetrical flankers. Error 
bars are standard errors of the mean.
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combined with the information that it differs from the orientation of flankers. This results in repulsion 
from the flankers’ orientation. A rigorous modeling of this effect would need additional assumptions 
and complex calculations. I used a simple assumption that the repulsion effect is proportional to the 
difference between the target and an assumed prior, centered orthogonally to the flankers. Thus, the 
repulsion effect (if present) increases with target–flanker similarity. But the probability of pop-out (and 
hence probability of repulsion) decreases with target–flanker similarity. The final result is a maximum 
repulsion bias at some intermediate target–flanker similarity. In the case of no pop-out, the average 
orientation of the objects, with a random error, is reported. (The same model, with the orientation of 
flankers instead of the average orientation, could account for the main aspects of the data, too, but gave 
a somewhat worse fit.)

The distributions of errors could be well approximated by a double exponential (Laplace) distribu-
tion [Figure 6(a)]. For the best fit, the standard error of the perceived target orientation has to increase 
for poorly detectable targets (for small target–flanker differences). The variability of the average ori-
entation could be fixed.

Figure 5. Response distributions (from Figure 2, pooled across three observers) presented as a three-dimensional 
plot. Homogeneous flankers (top), symmetrical flankers (bottom). Color codes the proportions of responses.
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Figure 6. Main relationships and the fit of the model for the condition with homogeneous flankers. Response 
errors approximated by double exponential distribution (a). Estimated probability of target pop-out as dependent 
on target–flanker difference (red triangles are the results of the difference detection from control experiment; b). 
Function from the same curve used for standard deviation of perceived target orientation (c). Actual vs. predicted 
proportions (data pooled across three observers; d).
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To test the plausibility of the proposed role of target pop-out, a small control experiment was run 
where observer had to detect the presence of differently oriented target object among homogeneous 
flankers. The results are depicted in Figure 6(b) together with the estimated probabilities of pop-out 
from the main experiment. The curves are really quite similar. A somewhat higher detection rate in 
the control experiment can be reasonably explained by a focused attention to the detection task in that 
case.

For the two symmetrical flanker orientations, the probability of the target-based responses also 
increases with target–flanker difference. However, the assumption about global averaging is clearly 
wrong (at least for the target–flanker differences 458 and 67.58). Instead, the orientation of either one 
or another group of flankers (or just an individual random flanker) is reported when the target orienta-
tion is not correctly identified. It looks like the averaging is vetoed by the perceived heterogeneity of 
flankers. Another difference between the conditions with heterogeneous and homogeneous flankers 
was a strong effect of the number of flankers for heterogeneous flankers. This is also consistent with 
the probabilistic selection of individual objects in the case of heterogeneous flankers. With homoge-
neous flankers, however, the target pop-out is the main determinant of performance, and because the 
pop-out is largely independent of (or even improves with increasing) the number of flankers, no effect 
of number of flankers is observed in that case. For the symmetrical flankers, it is still possible that with 
small differences between the two flanker orientations, the average orientation was used in a propor-
tion of trials or the target could be grouped together with either one or another group of flankers and 
the observer could report the average of that group as a response. These data cannot unambiguously 
separate these possibilities.

5  Discussion
This study used a novel experimental design to examine the perception of orientation in conditions of 
visual crowding and revealed several new aspects of the integration of crowded orientation signals. 
It was shown that elementary integration rules (averaging, random selection) by themselves cannot 
explain the data. The selection of the elementary rules seems to be determined by a perceived pop-
out of the target and homogeneity–heterogeneity of the flankers. This idea of probabilistic selection 
of processing routines dependent on salient properties of stimulus accounts well for these data and 
explains several apparently contradictive results from earlier studies.

The results with homogeneous flankers are well explained by a simple idea that detection of  
target–flanker difference (target pop-out) determines whether the target or average orientation is re-
ported by observer. The probability of target pop-out naturally increases with the target–flanker differ-
ence. While the pop-out precludes averaging, there are other forms of interference that impair target 
perception in that case. Percept of the target is biased away from the flanker orientation and is much 
noisier as compared with a no-flankers condition. This model is consistent with findings that target–
flanker dissimilarity can reduce the crowding effect (e.g., Felisberti et al., 2005; Kooi et al., 1994) and 
with studies that have shown a strong negative correlation between the target salience (as measured 
by visual search experiment) and crowding (Gheri, Morgan, & Solomon, 2007; Sayim, Westheimer, 
& Herzog, 2011). Also, Gheri et al. (2007) have concluded that there may be several mechanisms for 
crowding, dependent on target saliency. This study goes a step further suggesting a specific model for 
this dependency.

With strongly heterogeneous flankers, however, neither averaging nor pop-out plays an important 
role. The results are consistent with probabilistic selection of orientations within an integration field, 
assuming a somewhat higher probability for the target orientation.

In total, to explain this data set, three different rules of integration are combined: averaging for 
perceived homogeneity, repulsion bias for pop-out target, and probabilistic selection for heterogene-
ous (irregular) patterns. Obviously, this account is consistent with the previous reports of both averag-
ing when flankers are homogeneous and similar to the target (Parkes et al., 2001) and random selection 
when flankers are strongly heterogeneous (Põder & Wagemans, 2007). Also, the idea of rule switching 
naturally explains the puzzling data from the last experiment of Parkes et al. (2001; the condition with 
flankers tilted in the opposite direction to the target) that could not be approximated by any monotonic 
psychometric function.

The present results seem to contradict the conclusions of Greenwood et al. (2009), based on a 
somewhat similar experiment with another visual feature—relative position of line segments. Their 
results were best fit by a weighted averaging model. It is possible that different visual features are 
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combined according to different rules (note that relative position cannot be considered a typical simple 
feature, such as orientation, spatial frequency, or color). However, the interpretation of their results is 
also complicated by an additional reference repulsion mechanism, which itself is not well understood. 
The design of the present experiment avoids this kind of complication.

Also, note that the signed-max rule used by Gheri and Baldassi (2008) is not applicable to the 
present data. This rule assumes a search for an object, maximally different from a fixed reference ori-
entation. There was no such reference in my experiment.

The present findings are in accordance with a general Bayesian view on vision. Quite similar ideas 
have been used for the explanation of different perceptual biases (e.g., Stocker & Simoncelli, 2008; Yu, 
Dayan, & Cohen, 2009; Zhaoping & Jingling, 2008. The visual system exploits the regularities of the 
natural visual world and tends to see things that are more probable in a given context. If you have no 
or very little information about the orientation of the target, the best guess is the orientation of adjacent 
objects (if you have perceived them), because the orientation at nearby positions is highly correlated in 
natural scenes (e.g., Felsen, Touryan, & Dan, 2005). But if you see that the target object looks different 
from its surroundings, you should select the orientation that is different enough to be consistent with 
this information. Note that the information from surrounding objects is useful only with nearly homo-
geneous or gradually changing orientation patterns. When the orientations of flankers are considerably 
different, their average is less informative (with very different orientations, calculation of the average 
itself becomes indefinite), and a probabilistic selection from the orientations within an integration 
field may be a better option. Because there are much less processing resources in the visual periphery 
(as compared with the fovea), it must rely more on the contextual information. At the same time, the 
limited resources should be devoted to the detection of the potentially most informative visual features 
in the natural visual environment. This study suggests that homogeneity–heterogeneity and singleton 
pop-out may be estimated obligatorily and control the perception of local features.

This kind of functional explanation does not contradict looking for relevant mechanisms at the 
neurobiological level. Actually, there must be some machinery that carries out these purposeful (and 
sometimes misleading) calculations in the form of neural interactions. The regularities observed in this 
study are probably determined at several levels of visual processing. While the calculation of a pop-
out has been usually related with V1 (e.g., Li, 2000), the integration should occur at some higher level 
(possibly V4; e.g., Motter & Simoni, 2007). However, this integration should not be considered as a 
calculation of just one parameter (e.g., average) but as an attempt to select the best interpretation of the 
input pattern from a limited set of highly probable and potentially informative patterns. Interestingly, 
the multiplicative and divisive interactions between local population responses of neurons used in 
the models by Solomon et al. (2004) may actually implement a Bayesian combination of information 
from the target and flankers. According to this study, this should be complemented by a mechanism of 
competing interpretations.

The results of this study may shed some new light on the well-known tilt illusion (e.g., Gibson, 
1937; Schwartz, Sejnowski, & Dayan, 2009; Solomon et al., 2004). When a similar stimulus (the tar-
get and homogeneous flankers) is presented in more favorable conditions (e.g., at the fixation point, 
with long exposure, without orientation and position uncertainty), a repulsion bias, the tilt illusion, 
is observed at the same orientation differences where the strong assimilation bias was found in this 
study. I suggest that the character of illusion may be determined by the perceived homogeneity of 
the pattern vs. pop-out of the target (perceived homogeneity implies assimilation and target pop-out 
implies repulsion). Note that the pop-out detection thresholds (88–168) from the work of Felisberti 
et al. (2005) predict very well the target–flanker differences where assimilation turns into repulsion 
in the experiments done by Solomon et al., 2004 (about 108), with identical stimuli and presentation 
conditions. This hypothesis is also consistent with an increase of assimilation bias in the conditions 
with visual noise reported by Mareschal, Morgan, and Solomon (2010, because noise should impair 
the target pop-out. Earlier, I indicated that the standard deviations of responses in this study were 
about 5–10 times larger than in the results from the work of Solomon et al. (2004). Interestingly, the 
target–flanker orientation differences where assimilation turns into repulsion differ by a comparable 
factor (from approximately 108 in the work of Solomon et al., 2004, to 45° in this study). This makes 
sense if we assume that the accuracy of target perception and target pop-out are limited by the same 
internal orientation noise.

An obvious limitation of this study is an assumption that the effects of flankers are independent 
of their actual positions around the target. Several studies have shown that this is not true in general. 
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Livne and Sagi (2007) demonstrated that crowding can be reduced considerably when the flankers are 
organized in a smooth circular configuration. May and Hess (2007 have argued that colinear Gabor 
patches (snakes) are less affected by crowding than parallel ones (ladders). It is improbable that the 
configuration effects played an important role in the findings of this study. Random selection of flank-
ers’ positions rarely produces exact “good” configurations, and their effects are cancelled by equally 
probable “bad” configurations. However, a theoretical account should not ignore the configuration 
effects. Interestingly, these effects fit well into the general idea of a description of peripheral image 
patches in terms of a few ecologically important properties. We just have to complement the already 
suggested homogeneity–heterogeneity and singleton pop-out with circularity and co-linearity. The 
neurobiological plausibility of this idea is supported by findings that neurons in cortical visual areas 
beyond V1 are often selective to similar kind of patterns (e.g., Hegde & Van Essen, 2003.

6  Conclusion
Simple models, such as averaging and random selection, on their own cannot account for the effects 
of flankers on the perception of target orientation. However, they may be used as building blocks of a 
more general model. The visual system combines information according to different rules dependent 
on salient properties of a stimulus, such as target pop-out and the perceived homogeneity–heteroge-
neity of flankers. The observed regularities of perception can be explained by an attempt to encode 
potentially important aspects of a stimulus using limited neural resources in the visual periphery and 
using contextual information to reconstruct unreliable or lost features.
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Appendix A. Approximation of response distributions with mixtures of Laplace 
distributions
Distribution of responses for each target–flanker difference was approximated by a mixture of either 
two or three Laplace distributions,

where pi is proportion of component distribution i, L(, mi, bi ) is Laplace distribution with mean mi and  
scale parameter bi, and n is the number of distributions (two or three). Ordinary Laplace distribution is

Because orientation is a circular variable with a period of 180°, the wrapped distributions  

 must be used instead of L(, m, b). I used the simplified approxima-
tions, wrapped over three periods (k = −1 to 1). Orientations θ and mi are measured relative to target 
orientation. Maximum likelihood fits were found using the Excel Solver add-in. Means (mi), scale 
parameters (bi), and proportions (pi) were adjusted to reproduce experimental data. For homogeneous 
flankers, the mixtures composed of two component distributions were used, and separate fits with 
equal and different scale parameters were found. For symmetric flankers, three component distribu-
tions were used, and the mixtures were constrained to be symmetrical about the target orientation. 
Because of less degrees of freedom, only the fit with equal scale parameters could be used for this 
condition. The optimal values of parameters and badness-of-fit are given in Table A1.

Table A1. Distributions of responses fit by the mixtures of Laplace distributions 

 
Target–flanker 
difference (deg)

  Means (deg)   Scale parameters (deg)  
Proportion  
p1

 
 
G-statistic  m1    m2

b1 b2 b

0 0 90 – – 10.8 0.99 5.3 ns

22.5 28.4 21.8 – – 12.6 0.27 15.6**

45 28.9 38.9 – – 12.5 0.79 2.4 ns

67.5 24.0 67.5 – – 12.5 0.94 3.1 ns

90 0 90 – – 10.5 0.94 7.3*

0 0 90 10.8 12.2 – 0.99 5.2*

22.5 222.5 16.2 22.8 10.6 – 0.14 4.8 ns

45 29.1 38.6 11.9 13.9 – 0.78 1.9 ns

67.5 23.8 70.1 12.9 8.2 – 0.95 2.8 ns

90 0 90 10.6 10.1 – 0.94 7.2**

±22.5 0 619.9 – – 15.2 0.32 9.1**

±45 0 641.0 – – 15.7 0.50 1.8 ns

±67.5 0 673.4 – – 14.7 0.80 1.3 ns

Note. The fit parameters (means, scale parameters, proportion of the first component distribution in 
the mixture) and badness-of-fit (G-statistic) are reported. Data were pooled across the observers and 
numbers of flankers. Statistical significance of differences between approximation and the data: ** p , 0.01, 
* p , 0.05, ns p . 0.05.

Appendix B. A model for the homogeneous flankers’ condition
Distribution of responses is a mixture of two components—the distributions of responses to the target 
(fT(u)) and to the average orientation (fA(u)), in proportions determined by the probability of target 
pop-out (pP) 
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Probability of the target pop-out increases monotonically with target–flanker differences 

Both components are double exponential (Laplace) distributions

where bT and bA are scale parameters (standard deviation  is context effect that pushes 
the perceived target away from the flankers’ orientation.

uc 5 kc 3 sgn (uF 2 uT) 3 (908 2 |uF 2 uT|), except for |uF 2 uT| 5 0, when a “hallucinated” pop-
out target was assumed to be orthogonal to the flankers.
Average orientation was calculated using a method for averaging directional variables with doubling 
the angles (e.g., Mardia & Jupp, 2000):

uOi is the orientation of object i and nO is the number of objects (target plus flankers) in a display.
In the all calculations, the simple approximation of wrapped distribution

I noticed that, for the best fit, the scale parameter bT should increase for small target–flanker differ-
ences. I assumed that it has two independent parts: a constant and one induced by similar flankers. For 
simplicity, I related the last term to the pop-out probability because of a qualitatively similar behavior,

To reduce the number of empty cells, I pooled the data across the observers and across the positive 
and negative (clockwise and anticlockwise) target–flanker differences. The final data set consists of 34 
cells and has 29 degrees of freedom.

In the model reported here, nine free parameters were used: five pop-out probabilities pP, scale 
parameters bT0, bT1, and bA, and repulsion factor kC. MS Excel Solver was used to find the parameters 
that minimized the log-likelihood ratio statistic G 5 

 

2  Oij ln(Oij /Eij), where Oij is the observed and 
Eij is the expected frequency in cell i, j.

The model fit the average data quite well (G 5 35.3, df 5 20, p 5 0.02, R2 5 0.998). It accounted 
perfectly for the individual data from two observers and somewhat worse for those from the third ob-
server (G 5 26.1, p . 0.05, G 5 23.9, p . 0.05, G 5 46.2, p , 0.01 for EP, VA, and LP, respectively). 
(However, the individual tests may be not reliable because of empty cells in the data.)

The main relationships of the optimal model and actual vs. predicted proportions for the averaged 
data are given in Figure 6(d). The optimal scale parameters bT0 5 11.18 and bA 5 10.98 correspond to 
a standard deviation of about 168. The additional (masking) noise term bT1 5 20.48, and the repulsion 
factor kC 5 0.21 (meaning that an estimated repulsion effect was about 98 for the 458 target–flanker 
difference).
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When using the orientation of flankers instead of the average orientation in the case of no target pop-
out, the fit was significantly worse for the average data (G 5 55.0, df 5 20, p , .001) and for two 
individual observers.

Applying the model separately for the conditions with different numbers of flankers revealed 
that the fit improved with increasing number of flankers (G 5 37.9, p , 0.01; G 5 32.6, p , 0.05; 
G 5 21.5, p . 0.05 for two, four, and six flankers, respectively). Also, the additional noise parameter 
bT1 dropped to zero for the two-flanker condition. These results suggest that some mechanisms may 
work differently with such a small number of flankers.
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