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Abstract. Two paintings, O1 and O2, were split into their luminance (grayscale) components L1, 
L2 and their color components C1, C2. The two color components, C1, C2, were transparently 
superimposed. Adding the grayscale of the first painting (5 C1 1 C2 1 L1) looked like the original 
O1, while adding the grayscale of the second painting (5 C1 1 C2 1 L2) looked like the original O2. 
Conclusion: the luminance contours selected or gated the congruent color contours and ignored non-
congruent colors from the other painting.

Keywords: color vision, contour perception, filling-in.

This note describes how colored borders that are barely visible can be made prominent by adding con-
gruent luminance edges. Luminance perception is sharp, but color perception is fuzzier owing to dif-
ferent receptive field sizes for neurons coding for luminance and color, respectively (Wandell, 1995). 
Although usually colored borders coincide with luminance edges, various studies have reported a loss 
of color-form coherence. For example, when images are retinally stabilized, colors can lose their align-
ment with the contours of the shapes (Gerrits, de Haan, & Vendrik, 1966). Color–shape decouplings 
have also been observed in brain damaged patients (e.g., Critchley, 1965). Additionally, colors can 
jump over luminance gaps filling into disconnected regions of the stimulus (Kanai, Wu, Verstraten, & 
Shimojo, 2006). Luminance difference seems crucial for efficient shape perception. A nice interactive 
demonstration of the effect of isoluminance on the cohesion of the colored parts in Matisse’s “Nu Blue II”  
can be found on Michael Bach’s website http://www.michaelbach.de/ot/col_isoluNuBleu/index.html. 
For example, Gregory (1977) showed that Gestalt perception may break down under isoluminance 
and that depth perception is reduced. Illusions like the café wall illusion may even disappear under 
isoluminance (see also Livingstone & Hubel, 1987). However, for other illusions this turns out not to 
be the case (Hamburger, Hansen, & Gegenfurtner, 2007). The Boynton illusion is another clear ex-
ample of the dominant role luminance plays in shape perception. If a luminance border overlaying a 
colored surface does not match the contours of the colored surface, the shape of the luminance border 
can define the shape of the colored surface we perceive (see Stockman & Brainard, 2009). Chromatic 
sensitivity clearly differs from luminance sensitivity, for example, sensitivity for red/green chromatic 
gratings peaks at lower spatial frequency than for luminance gratings (Granger & Heurtley, 1973).

Colored afterimages are fuzzy, even more so than real colors, and they can be constrained by 
sharp luminance contours. Daw (1962) found that colored afterimages were much more visible if 
they had a black contour around them, and Sadowski used this to develop his well-known ‘Spanish 
castle illusion’ on the Web. Van Lier, Vergeer, and Anstis (2009) and Anstis, Vergeer, and van Lier 
(in press) showed that one and the same adapting colored pattern could generate differently colored 
afterimages according to the layout of black test contours. For instance, an adapting plaid was made 
of a blue/yellow vertical grating transparently superimposed on a red/green horizontal grating. After 
adaptation to this pattern, a white test field contained vertical or horizontal black test lines, congruent 
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with either the vertical or horizontal adapting gratings. The vertical and horizontal test patterns yielded 
an afterimage consisting of a yellow/blue and pink/green grating, respectively. These findings suggest 
that afterimage colors are spatially averaged between, but not across, achromatic test contours. In line 
with this suggestion, it has been shown that findings like these can be predicted by a model relying 
on the capture of afterimage filling-in by contours (Kim & Francis, 2011). Anstis, Vergeer, and van 
Lier (in press) and also Feitosa-Santana, D’Antona, and Shevell (2011) examined how contours could 
bound the reach of real colors.

Here is a new demonstration showing how a grayscale picture can gate or select a fuzzy chromatic 
picture in the presence of noise. We chose two well-known paintings: The Blue Boy (1770), by Tho-
mas Gainsborough (1727–1788) Huntington Art Gallery, San Marino, California; La Source (1856), 
by Jean-Auguste-Dominique Ingres (1780–1867) Musee d’Orsay Paris. Each of these paintings is a 
full-length portrait of roughly the same size and shape but of very different colorings. The Blue Boy 
is in cool bluish tones while La Source is infused with warm flesh tones. We split a reproduction of 
each painting into its luminance (grayscale) component and its chrominance (color) component and 
saved each component as a separate file. (John Sadowksi has published a tutorial on how to do this at:  
http://www.johnsadowski.com/color_illusion_tutorial.html).

Of course, simply superimposing the luminance and chrominance components of a single paint-
ing would restore the original. But instead, Figure 1 shows how we superimposed just the color 
components of both paintings. On its own, this looked like a fuzzy mess. But we made two copies of 

Figure 1. The two original paintings, the Blue Boy (O1) and La Source (O2), were split into their luminance 
components (L1, L2) and their color components (C1, C2; second row). These were recombined, and transparently 
superimposed, into two frames (third row). Frame 1 contained both color pictures plus L1, and frame 2 contained 
both color pictures plus L2. Result: The luminance pictures dominated and gated the colors, so Frame 1 looked 
like the Blue Boy, while Frame 2 looked like La Source (see Figure 2).

http://www.johnsadowski.com/color_illusion_tutorial.html
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this double-chromatic mess. On one we transparently superimposed the luminance component of the 
Blue Boy, and on the other, the luminance component of La Source.

These are shown side-by-side in Figure 2. Each picture is a triple-layer sandwich of two chromatic 
pictures (same in both frames) and one luminance picture (different in each). Although each picture 
in Figure 2 is somewhat desaturated by a veil of color, the Blue Boy luminance picture makes the 
whole image look like the original Blue Boy painting, with La Source virtually invisible (Figure 2a). 
Conversely, the original La Source is perceived when the triple layer sandwich contains the La Source 
luminance picture, with the Blue Boy nowhere to be seen (Figure 2b). Supplementary Movie S1 also 
shows the two superimposed color components, with each luminance component in turn sliding over 
them into superimposition.

So, each grayscale picture perceptually amplified the colors that were congruent with it, and de-
emphasized the noncongruent colors. This is like a visual analogue of the auditory cocktail party 
problem. It is as though the luminance contours pick out the colors that coincide with them but ig-
nore noncoincident colors. Color filling-in phenomena like these are thought to occur by means of a 
contour-based filling-in mechanism (Grossberg, 2003). Thus, luminance perception dominates and 
guides color perception.

Figure 2. (a) contains C1 + C2 + L1 and looks like O1 (the Blue Boy). (b) contains C1 + C2 + L2 and looks like 
O2 (La Source). Conventions same as for Figure 1.
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