

Draft Genome Sequences of 21 Salmonella enterica Serovar Enteritidis Strains

Ruth E. Timme,^a Marc W. Allard,^a Yan Luo,^b Errol Strain,^b James Pettengill,^a Charles Wang,^a Cong Li,^a Christine E. Keys,^a Jie Zheng,^a Robert Stones,^c Mark R. Wilson,^d Steven M. Musser,^a and Eric W. Brown^a

Office of Regulatory Science^a and Office of Food Defense, Communications, and Emergency Response,^b Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College Park, Maryland, USA; Food & Environment Research Agency, Sand Hutton, York, United Kingdom^c; and Forensic Science Program, Western Carolina University, Cullowhee, North Carolina, USA^d

Salmonella enterica subsp. enterica serovar Enteritidis is a common food-borne pathogen, often associated with shell eggs and poultry. Here, we report draft genomes of 21 S. Enteritidis strains associated with or related to the U.S.-wide 2010 shell egg recall. Eleven of these genomes were from environmental isolates associated with the egg outbreak, and 10 were reference isolates from previous years, unrelated to the outbreak. The whole-genome sequence data for these 21 human pathogen strains are being released in conjunction with the newly formed 100K Genome Project.

S*almonella enterica* is one of the primary causes of food-borne illness in the United States, leading to more deaths than any other food-related pathogen (4). This bacterial species is extremely diverse, comprising over 2,500 serovars (1), one of which, *Salmonella enterica* subsp. *enterica* serovar Enteritidis, has had an international increase in infection rates over the past 20 years (3). *S*. Enteritidis, most commonly associated with eggs and poultry, caused the largest shell egg recall in U.S. history (2010). Because of its highly clonal nature during outbreaks, traditional pulsed-field gel electrophoresis (PFGE) and phage typing have not been useful subtyping tools for this serovar (5); however, whole-genome sequencing overcomes this barrier by providing the discriminatory power needed for differentiating highly clonal strains (2).

Currently there is only one complete S. Enteritidis genome

available in GenBank (S. Enteritidis strain P125109) and one draft genome (S. Enteritidis strain LA5). We announce the availability of 21 new high-quality draft *Salmonella enterica* subsp. *enterica* serovar Enteritidis genomes, 11 associated with the shell egg outbreak of 2010 and 10 related reference strains. The PFGE patterns determined were JEGX01.0004 for strains 622731-39, 639016-6,

Received 20 July 2012 Accepted 22 August 2012 Address correspondence to Ruth E. Timme, ruth.timme@fda.hhs.gov. Copyright © 2012, American Society for Microbiology. All Rights Reserved. doi:10.1128/JB.01289-12

 TABLE 1 DDBJ/EMBL/GenBank accession numbers, average sequence coverage, and contig numbers for *S. enterica* subsp. *enterica* serovar

 Enteritidis strains^a

S. Enteritidis strain	Accession no(s).				
	BioProject	SRA	WGS	Coverage (fold)	No. of contigs
622731-39	52615	SRR518786	ALEI00000000	22	60
639016-6	52617	SRR518813	ALEJ00000000	23	62
640631	52619	SRR518800	ALEK00000000	20	51
77-0424	53259	SRR518840	ALEL00000000	21	51
607307-6	53263	SRR518859	ALEM0000000	23	61
485549-17	59531	SRR518788	ALEN0000000	20	50
596866-22	59533	SRR518816, SRR518817	ALEO00000000	27	51
596866-70	59535	SRR518755	ALEP00000000	22	47
629164-26	59537	SRR518756	ALEQ00000000	20	41
629164-37	59539	SRR518757	ALER00000000	22	56
639672-46	59541	SRR518770	ALES0000000	22	61
639672-50	59543	SRR518818	ALET00000000	16	50
77-1427	60069	SRR518841	ALEU00000000	18	54
77-2659	60071	SRR518843	ALEV00000000	17	54
78-1757	60073	SRR518811	ALEW00000000	38	49
22510-1	60075	SRR518784	ALEX00000000	19	49
8b-1	60511	SRR518767	ALEY00000000	20	53
648905 5-18	62825	SRR518823	ALEZ00000000	19	61
648901 6-18	62829	SRR518763	ALFA0000000	19	63
50-3079	73685	SRR518824	ALFB00000000	17	51
58-6482	77695	SRR518825	ALFC00000000	18	55

^{*a*} SRA, NCBI short-read archive; WGS, NCBI whole-genome shotgun assembly database.

640631, 607307-6, 485549-17, 596866-22, 596866-70, 629164-37, 639672-46, 639672-50, 648905 5-18, and 648901 6-18 and JEGX01.0034 for strain 629164-26.

DNA was isolated from a pure culture of each strain using a Qiagen DNeasy blood and tissue kit (Qiagen Inc., Valencia, CA). Genome sequencing was performed using 454 Titanium sequencing technology (Roche, Branford, CT), achieving 15 to $20 \times$ average genome coverage. *De novo* assemblies were created for each genome using the 454 Life Sciences Newbler software package, v.2.6 (Roche), and annotated with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html). Contig numbers ranged from 41 to 63 (Table 1). An in-depth, comparative genomic analysis of these data will be provided in a future publication.

This large data release contributes toward the efforts of the 100K Genome Project consortium. The U.S. Food and Drug Administration (FDA), Agilent, and University of California, Davis, along with many other federal and private partners, will sequence 100,000 pathogen genomes over the next 5 years (http://100kgenome.vetmed.ucdavis.edu). The product of this enormous effort will be a public molecular epidemiology reference database useful for designing pathogen detection assays, providing evolutionary context for emerging global outbreaks, and many other applications yet to be realized. The public database will be

housed at the National Center for Biotechnology Information (NCBI) in Bethesda, MD.

Nucleotide sequence accession numbers. The draft genome sequences of the 21 *Salmonella* Enteritidis strains are available in DDBJ/EMBL/GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

We thank the NCBI rapid annotation pipeline team and our FDA partners in the Center for Veterinary Medicine, Division of Field Sciences, and regional field laboratories for providing isolates, namely, Shaohua Zhao, Rebecca Dreisch, Peggy Carter, Norma Duran, and Palmer Orlandi.

This work was supported by the Center for Food Safety and Applied Nutrition at the U.S. Food and Drug Administration.

REFERENCES

- 1. Grimont PAD, Weill F-X. 2007. Antigenic formulae of the Salmonella serovars, 9th ed. WHO Collaborating Centre for Reference and Research on Salmonella, Paris, France.
- 2. Lienau EK, et al. 2011. Identification of a salmonellosis outbreak by means of molecular sequencing. N. Engl. J. Med. 364:981–982.
- Rodrigue DC, Tauxe RV, Rowe B. 1990. International increase in Salmonella enteritidis: a new pandemic? Epidemiol. Infect. 105:21–27.
- Scallan E, et al. 2011. Foodborne illness acquired in the United States major pathogens. Emerg. Infect. Dis. 17:7–15.
- Zheng J, Keys CE, Zhao S, Meng J, Brown EW. 2007. Enhanced subtyping scheme for Salmonella Enteritidis. Emerg. Infect. Dis. 13:1932.