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The class A carbapenemase KPC-6 produces resistance to a broad range of �-lactam antibiotics. This enzyme hydrolyzes penicil-
lins, the monobactam aztreonam, and carbapenems with similar catalytic efficiencies, ranging from 105 to 106 M�1 s�1. The cata-
lytic efficiencies of KPC-6 against cephems vary to a greater extent, ranging from 103 M�1 s�1 for the cephamycin cefoxitin and
the extended-spectrum cephalosporin ceftazidime to 105 to 106 M�1 s�1 for the narrow-spectrum and some of the extended-
spectrum cephalosporins.

Carbapenems are considered “last resort” antibiotics due to
their broad spectrum of antimicrobial activity and resistance

to hydrolysis by extended-spectrum �-lactamases (8). The emer-
gence of carbapenem-hydrolyzing �-lactamases (carbapen-
emases) challenges the efficacy of carbapenem antibiotics, limits
the available therapeutic options, and therefore poses a serious
health threat to the community (9). Carbapenemases have been
identified in all four (A, B, C, and D) classes of �-lactamases.
Presently, at least eight subclasses of class A carbapenemases have
been reported, including types KPC, NmcA/IMI, SME, GES, FPH,
FTU, BIC, and SFC, with the KPC type being the most clinically
relevant (2, 6, 9, 13, 14). In 1996, the first reported clinical isolate
producing KPC-2 from Klebsiella pneumoniae was identified in
North Carolina (16). Currently, 6 KPC variants have been char-
acterized, with 6 more variants annotated in GenBank, and clini-
cal isolates producing KPC are now disseminated worldwide (9;
http://www.lahey.org/Studies/other.asp). Despite their utmost
clinical importance, only a few KPC variants (KPC-2, KPC-3, and
to some extent KPC-4 and KPC-5) have been studied kinetically
(1, 10–12, 15–17). Herein we report the susceptibility profile and
first steady-state kinetic characterization of the KPC-6 carbapen-
emase, a Val240Gly variant of KPC-2, for a panel of �-lactam
antibiotics that included penicillins, cephems, carbapenems, and
the monobactam aztreonam.

The gene for the mature KPC-6 �-lactamase was custom syn-
thesized (GenScript) and fused to the leader sequence for outer
membrane protein A (OmpA). Unique NdeI and HindIII sites
were introduced at the 5= and 3= ends of the construct. This gene
was then cloned into the NdeI and HindIII sites of the pET24a(�)
and pHF016 vectors (5). The susceptibility profiles for the �-lac-
tam antibiotics were determined by the microdilution method as
recommended by the Clinical and Laboratory Standards Institute
(3). An Escherichia coli JM83 strain harboring the pHF016:KPC-6
plasmid was used for the evaluation of the resistance profile of the
KPC-6 �-lactamase, while the same strain harboring the pHF016
vector was used as a control. All antibiotics were purchased from
Sigma (St. Louis, MO) or US Pharmacopeia (Rockville, MD), with
the exception of the carbapenems, which were a generous gift
from Robert Bonomo (VA Medical Center, Cleveland, OH).

The KPC-6-producing strain exhibited high-level resistance to
all penicillins tested (Table 1), with MICs ranging from 512 to
16,384 �g/ml (64- to 2,048-fold above background levels). Similar
to the majority of other class A enzymes, KPC-6 also produced

high levels of resistance to the narrow-spectrum cephalosporins
cephalothin and cefuroxime. MICs of the extended-spectrum ceph-
alosporins cefotaxime, ceftriaxone, ceftazidime, and cefepime were
also significantly elevated. The MICs of the cephamycins cefoxitin
and cefmetazole were enhanced the least (a 4-fold increase in
MICs above background levels), while the MIC of the monobac-
tam aztreonam was elevated 8,192-fold above the background
level, to 256 �g/ml. Although the absolute MIC values for the
carbapenem antibiotics imipenem, meropenem, doripenem, and
ertapenem were within the range of 1 to 4 �g/ml, they represented
a significant (32- to 512-fold) increase above the background lev-
els. The MICs for several tested penicillins against E. coli JM83
expressing KPC-6 were unaffected by the presence of the �-lacta-
mase inhibitors clavulanic acid, tazobactam, or sulbactam, an in-
dication that the enzyme is resistant to inhibition, a trait also ob-
served for the related variant KPC-2 (10). We observed that
expression of KPC-6 resulted in an 8-fold increase in the MIC for
sulbactam, an indication that the enzyme is capable of hydrolyzing
this inhibitor. Hydrolysis of �-lactamase inhibitors has previously
been reported for the KPC-2 (10) and KPC-3 (1) carbapenemases.

For enzyme purification, E. coli BL21(DE3) harboring the
pET24a(�):KPC-6 plasmid was grown at 37°C in LB supple-
mented with 60 �g/ml kanamycin to an optical density at 600 nm
of 1.0. Protein expression was then induced using 0.4 mM isopro-
pyl-�-D-thiogalactopyranoside, and the culture was incubated at
22°C for an additional 18 h. The periplasmic fraction was isolated
as previously described (7) and dialyzed against 50 mM Tris (pH
8.0). The protein was purified using a DEAE anion-exchange col-
umn equilibrated with 50 mM Tris (pH 8.0). KPC-6 eluted in the
flowthrough fraction and was determined to be �95% pure by
SDS-PAGE. The enzyme concentration was evaluated spectro-
photometrically by using the predicted extinction coefficient for
the mature protein (�ε280, 38,690 M�1 cm�1 [http://www.justbio
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.com/index.php?page�protcalc]). The enzyme was stored at 4°C
in 50 mM Tris, pH 8.0.

The hydrolysis of �-lactam substrates was evaluated spectro-
photometrically at room temperature (5). The final reaction buf-
fer contained 50 mM NaPi (pH 7.5), 50 mM NaCl, and 0.5 mg/ml
bovine serum albumin (for protein stabilization). The parameters
kcat and Km were evaluated by nonlinear fitting of the initial veloc-
ities, at various concentrations of the substrates, with the Michae-
lis-Menten equation. In situations in which saturation could not
be reached, the value for kcat/Km was determined as previously
described (13). The extinction coefficients and wavelengths for
substrates used in this study have been previously reported (2, 13).

The steady-state kinetic parameters for KPC-6 are presented in
Table 2. For 8 of the 17 substrates used in the kinetic studies,
saturation could not be reached. As a result, the values for the
catalytic efficiency (kcat/Km) of the enzyme against these substrates
were evaluated, while only the lower limits for the kcat and Km

values could be determined.
The KPC-6 �-lactamase hydrolyzed penicillins, narrow-spec-

trum cephalosporins (cephalothin and cefuroxime), and the
monobactam aztreonam with catalytic efficiencies of 105 to 106

M�1 s�1. The enzyme also exhibited similar catalytic efficiencies

against two extended-spectrum cephalosporins (cefotaxime and
ceftriaxone), while the catalytic efficiency against a third, ceftazi-
dime, was 36- and 82-fold lower, respectively. Cefoxitin was the
poorest substrate tested; the catalytic efficiency of KPC-6 against
this cephamycin antibiotic was 2.3 � 103 M�1 s�1. While KPC-6
had a very similar catalytic efficiency (kcat/Km values from 1.3 �
105 to 4.5 � 105 M�1 s�1) against all four tested carbapenem
antibiotics, the kcat and Km values for these substrates showed a
broader range of distribution. The kcat value was highest for imi-
penem (18 � 1 s�1 [mean � standard deviation]), while this
number was approximately 6-fold lower for meropenem and
ertapenem and 47-fold lower for doripenem. Conversely, dorip-
enem had a 3- to 4-fold-higher apparent affinity for the enzyme
than meropenem and ertapenem and 14-fold higher than imi-
penem. Kinetic parameters have been reported for KPC-2 and
KPC-3 with two carbapenems, imipenem and meropenem (1, 11,
16). For both antibiotics, the kcat and Km values for KPC-6 were in
close agreement (within 2-fold) to those for KPC-2 and KPC-3.

The dissociation constants for the �-lactamase inhibitors
clavulanic acid, sulbactam, and tazobactam (Table 2) were de-
termined using the Dixon method (4). Nitrocefin, as a reporter
substrate, was used at concentrations of 50 and 100 �M. Con-
sistent with the MIC data, the �-lactamase inhibitors had low
affinity for KPC-6, with dissociation constants for clavulanic
acid, sulbactam, and tazobactam of 75 � 8 �M, 600 � 100 �M,
and 290 � 30 �M, respectively. In comparison, higher affinities
for the �-lactamase inhibitors have been observed for KPC-2,
with dissociation constants for clavulanic acid, sulbactam, and
tazobactam of 11 � 1 �M, 167 � 16 �M, and 74 � 7 �M,
respectively (11). The KPC-6 �-lactamase has a Val240Gly sub-
stitution in comparison to the KPC-2 enzyme. At least 3 of the
KPC variants (KPC-4, -6, and -8) have this substitution, while
KPC-9 has a conservative alanine substitution. Compared to

TABLE 1 MIC profile of E. coli JM83 expressing the KPC-6 �-lactamase

Antimicrobial agent

MIC (�g/ml)

Controla KPC-6

Benzylpenicillin 16 2,048
Ampicillin 2 4,096
Ampicillin-clavulanic acidb 2 2,048
Ampicillin-tazobactamb 2 2,048
Ampicillin-sulbactamb 1 2,048
Ampicillin-sulbactamc 2 256
Sulbactam 32 256
Amoxicillind 4 	2,048
Amoxicillin-clavulanic acidc 4 32
Clavulanic acid 32 32
Oxacillin 256 16,384
Ticarcillin 4 8,192
Ticarcillin-clavulanic acidb 4 8,192
Piperacillin 2 512
Piperacillin-tazobactamb 2 512
Cephalothin 4 512
Cefuroxime 4 4,096
Ceftazidime 0.125 32
Cefotaxime 0.031 32
Ceftriaxone 0.031 16
Cefepime 0.016 8
Cefoxitin 2 8
Cefmetazole 1 4
Moxalactam 0.125 8
Aztreonam 0.031 256
Imipenem 0.125 4
Meropenem 0.031 2
Ertapenem 0.004 2
Doripenem 0.031 1
a The control strain was E. coli JM83 with the pHF016 vector.
b Clavulanic acid was used at a constant concentration of 2 �g/ml. Sulbactam and
tazobactam were used at a constant concentration of 4 �g/ml.
c A 2:1 ratio was maintained for the �-lactam and �-lactamase inhibitor (clavulanic acid
or sulbactam).
d In Mueller-Hinton II broth, the maximum solubility of amoxicillin is 2,048 �g/ml.

TABLE 2 Kinetic parameters for hydrolysis of �-lactam substrates by
KPC-6

�-Lactam kcat (s�1)a

Km or Ki

(�M)a kcat/Km (M�1 s�1)

Ampicillin 280 � 10 130 � 10 (2.2 � 0.2) � 106

Oxacillin 44 � 1 33 � 3 (1.3 � 0.1) � 106

Ticarcillin 13 � 1 49 � 5 (2.7 � 0.3) � 105

Piperacillin 34 � 2 50 � 10 (6 � 1) � 105

Cephalothinb 	100 	100 (2.4 � 0.1) � 106

Cefuroximeb 	50 	75 (6.9 � 0.1) � 105

Ceftazidimeb 	0.6 	80 (9.1 � 0.1) � 103

Cefotaximeb 	39 	150 (3.3 � 0.1) � 105

Ceftriaxoneb 	54 	100 (7.5 � 0.1) � 105

Cefepimeb 	4.2 	100 (4.8 � 0.1) � 104

Cefoxitinb 	0.2 	100 (1.9 � 0.1) � 103

Aztreonamb 	150 	500 (3.4 � 0.1) � 105

Imipenem 18 � 1 42 � 4 (4.4 � 0.4) � 105

Meropenem 3.3 � 0.1 7 � 1 (4.5 � 0.7) � 105

Ertapenem 2.8 � 0.1 10 � 1 (2.9 � 0.3) � 105

Doripenem 0.38 � 0.01 2.9 � 0.2 (1.3 � 0.1) � 105

Nitrocefin 210 � 10 37 � 1 (5.6 � 0.2) � 106

Clavulanic acid 75 � 8
Sulbactam 600 � 100
Tazobactam 290 � 30
a Values are means � standard deviations.
b Saturation could not be reached.

KPC-6 �-Lactamase
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KPC-2, our kinetic studies of the KPC-6 carbapenemase indi-
cate that the conservative Val240Gly substitution does not re-
sult in an appreciable change in the antibiotic substrate profile
or hydrolytic activity of the enzyme.
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