

Antibiotic Resistance and Substrate Profiles of the Class A Carbapenemase KPC-6

Toni L. Lamoureaux, Hilary Frase, Nuno T. Antunes, and Sergei B. Vakulenko

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA

The class A carbapenemase KPC-6 produces resistance to a broad range of β -lactam antibiotics. This enzyme hydrolyzes penicillins, the monobactam aztreonam, and carbapenems with similar catalytic efficiencies, ranging from 10⁵ to 10⁶ M⁻¹ s⁻¹. The catalytic efficiencies of KPC-6 against cephems vary to a greater extent, ranging from 10³ M⁻¹ s⁻¹ for the cephamycin cefoxitin and the extended-spectrum cephalosporin ceftazidime to 10⁵ to 10⁶ M⁻¹ s⁻¹ for the narrow-spectrum and some of the extendedspectrum cephalosporins.

arbapenems are considered "last resort" antibiotics due to their broad spectrum of antimicrobial activity and resistance to hydrolysis by extended-spectrum β -lactamases (8). The emergence of carbapenem-hydrolyzing β-lactamases (carbapenemases) challenges the efficacy of carbapenem antibiotics, limits the available therapeutic options, and therefore poses a serious health threat to the community (9). Carbapenemases have been identified in all four (A, B, C, and D) classes of B-lactamases. Presently, at least eight subclasses of class A carbapenemases have been reported, including types KPC, NmcA/IMI, SME, GES, FPH, FTU, BIC, and SFC, with the KPC type being the most clinically relevant (2, 6, 9, 13, 14). In 1996, the first reported clinical isolate producing KPC-2 from Klebsiella pneumoniae was identified in North Carolina (16). Currently, 6 KPC variants have been characterized, with 6 more variants annotated in GenBank, and clinical isolates producing KPC are now disseminated worldwide (9; http://www.lahey.org/Studies/other.asp). Despite their utmost clinical importance, only a few KPC variants (KPC-2, KPC-3, and to some extent KPC-4 and KPC-5) have been studied kinetically (1, 10–12, 15–17). Herein we report the susceptibility profile and first steady-state kinetic characterization of the KPC-6 carbapenemase, a Val240Gly variant of KPC-2, for a panel of B-lactam antibiotics that included penicillins, cephems, carbapenems, and the monobactam aztreonam.

The gene for the mature KPC-6 β -lactamase was custom synthesized (GenScript) and fused to the leader sequence for outer membrane protein A (OmpA). Unique NdeI and HindIII sites were introduced at the 5' and 3' ends of the construct. This gene was then cloned into the NdeI and HindIII sites of the pET24a(+) and pHF016 vectors (5). The susceptibility profiles for the β -lactam antibiotics were determined by the microdilution method as recommended by the Clinical and Laboratory Standards Institute (3). An *Escherichia coli* JM83 strain harboring the pHF016:KPC-6 plasmid was used for the evaluation of the resistance profile of the KPC-6 β -lactamase, while the same strain harboring the pHF016 vector was used as a control. All antibiotics were purchased from Sigma (St. Louis, MO) or US Pharmacopeia (Rockville, MD), with the exception of the carbapenems, which were a generous gift from Robert Bonomo (VA Medical Center, Cleveland, OH).

The KPC-6-producing strain exhibited high-level resistance to all penicillins tested (Table 1), with MICs ranging from 512 to $16,384 \,\mu$ g/ml (64- to 2,048-fold above background levels). Similar to the majority of other class A enzymes, KPC-6 also produced

high levels of resistance to the narrow-spectrum cephalosporins cephalothin and cefuroxime. MICs of the extended-spectrum cephalosporins cefotaxime, ceftriaxone, ceftazidime, and cefepime were also significantly elevated. The MICs of the cephamycins cefoxitin and cefmetazole were enhanced the least (a 4-fold increase in MICs above background levels), while the MIC of the monobactam aztreonam was elevated 8,192-fold above the background level, to 256 μ g/ml. Although the absolute MIC values for the carbapenem antibiotics imipenem, meropenem, doripenem, and ertapenem were within the range of 1 to 4 µg/ml, they represented a significant (32- to 512-fold) increase above the background levels. The MICs for several tested penicillins against E. coli JM83 expressing KPC-6 were unaffected by the presence of the β-lactamase inhibitors clavulanic acid, tazobactam, or sulbactam, an indication that the enzyme is resistant to inhibition, a trait also observed for the related variant KPC-2 (10). We observed that expression of KPC-6 resulted in an 8-fold increase in the MIC for sulbactam, an indication that the enzyme is capable of hydrolyzing this inhibitor. Hydrolysis of β-lactamase inhibitors has previously been reported for the KPC-2 (10) and KPC-3 (1) carbapenemases.

For enzyme purification, *E. coli* BL21(DE3) harboring the pET24a(+):KPC-6 plasmid was grown at 37°C in LB supplemented with 60 µg/ml kanamycin to an optical density at 600 nm of 1.0. Protein expression was then induced using 0.4 mM isopropyl-β-D-thiogalactopyranoside, and the culture was incubated at 22°C for an additional 18 h. The periplasmic fraction was isolated as previously described (7) and dialyzed against 50 mM Tris (pH 8.0). The protein was purified using a DEAE anion-exchange column equilibrated with 50 mM Tris (pH 8.0). KPC-6 eluted in the flowthrough fraction and was determined to be \geq 95% pure by SDS-PAGE. The enzyme concentration was evaluated spectrophotometrically by using the predicted extinction coefficient for the mature protein ($\Delta \varepsilon_{280}$, 38,690 M⁻¹ cm⁻¹ [http://www.justbio

Received 29 June 2012 Returned for modification 21 July 2012 Accepted 12 August 2012

Published ahead of print 20 August 2012

Address correspondence to Sergei B. Vakulenko, svakulen@nd.edu.

Copyright © 2012, American Society for Microbiology. All Rights Reserved. doi:10.1128/AAC.01338-12

 $k_{\rm cat}/K_m \,({\rm M}^{-1}\,{\rm s}^{-1})$ $(2.2 \pm 0.2) \times 10^{6}$

 $(1.3 \pm 0.1) \times 10^{6}$

 $(2.7 \pm 0.3) \times 10^{5}$

 $(2.4 \pm 0.1) \times 10^{6}$

 $(6.9 \pm 0.1) \times 10^5$

 $(9.1 \pm 0.1) \times 10^3$

 $(3.3 \pm 0.1) \times 10^{5}$

 $(7.5 \pm 0.1) \times 10^{5}$

 $(4.8 \pm 0.1) \times 10^4$

 $(1.9 \pm 0.1) \times 10^3$

 $(3.4 \pm 0.1) \times 10^5$

 $(4.4 \pm 0.4) \times 10^5$

 $(4.5 \pm 0.7) \times 10^5$

 $(2.9 \pm 0.3) \times 10^{5}$

 $(6 \pm 1) \times 10^{5}$

TABLE 1 MIC profile of E. coli JM83 expressing the KPC-6 β-lactamase

 $MIC (u \alpha ml)$

Antimicrobial agent	MIC (µg/III)		
	Control ^a	KPC-6	
Benzylpenicillin	16	2,048	
Ampicillin	2	4,096	
Ampicillin-clavulanic acid ^b	2	2,048	
Ampicillin-tazobactam ^b	2	2,048	
Ampicillin-sulbactam ^b	1	2,048	
Ampicillin-sulbactam ^c	2	256	
Sulbactam	32	256	
Amoxicillin ^d	4	>2,048	
Amoxicillin-clavulanic acid ^c	4	32	
Clavulanic acid	32	32	
Oxacillin	256	16,384	
Ticarcillin	4	8,192	
Ticarcillin-clavulanic acid ^b	4	8,192	
Piperacillin	2	512	
Piperacillin-tazobactam ^b	2	512	
Cephalothin	4	512	
Cefuroxime	4	4,096	
Ceftazidime	0.125	32	
Cefotaxime	0.031	32	
Ceftriaxone	0.031	16	
Cefepime	0.016	8	
Cefoxitin	2	8	
Cefmetazole	1	4	
Moxalactam	0.125	8	
Aztreonam	0.031	256	
Imipenem	0.125	4	
Meropenem	0.031	2	
Ertapenem	0.004	2	
Doripenem	0.031	1	

TABLE 2 Kinetic parameters for hydrolysis of β-lactam substrates by KPC-6

 $k_{\rm cat} \, ({\rm s}^{-1})^a$

 280 ± 10

 44 ± 1

 13 ± 1

 34 ± 2

>100

>50

>0.6

>39

>54

>4.2

>0.2

>150

 $18\,\pm\,1$

 3.3 ± 0.1

 2.8 ± 0.1

 K_m or K_i

 130 ± 10

 $(\mu M)^a$

 33 ± 3

 49 ± 5

 50 ± 10

>100

> 75

> 80

>150

>100

>100

>100

>500

 42 ± 4

 7 ± 1

 10 ± 1

β-Lactam

Ampicillin

Oxacillin

Ticarcillin

Piperacillin

Cephalothin^b

Cefuroxime^b

Ceftazidime^b

Cefotaxime^b

Ceftriaxone^b

Cefepime^b

Cefoxitin^b

Aztreonam^b

Imipenem

Meropenem

Ertapenem

^a The control strain was E. coli JM83 with the pHF016 vector.

^b Clavulanic acid was used at a constant concentration of 2 µg/ml. Sulbactam and

tazobactam were used at a constant concentration of 4 µg/ml.

^c A 2:1 ratio was maintained for the β-lactam and β-lactamase inhibitor (clavulanic acid or sulbactam).

 d In Mueller-Hinton II broth, the maximum solubility of a moxicillin is 2,048 $\mu g/ml.$

.com/index.php?page=protcalc]). The enzyme was stored at 4°C in 50 mM Tris, pH 8.0.

The hydrolysis of β-lactam substrates was evaluated spectrophotometrically at room temperature (5). The final reaction buffer contained 50 mM NaP; (pH 7.5), 50 mM NaCl, and 0.5 mg/ml bovine serum albumin (for protein stabilization). The parameters k_{cat} and K_m were evaluated by nonlinear fitting of the initial velocities, at various concentrations of the substrates, with the Michaelis-Menten equation. In situations in which saturation could not be reached, the value for k_{cat}/K_m was determined as previously described (13). The extinction coefficients and wavelengths for substrates used in this study have been previously reported (2, 13).

The steady-state kinetic parameters for KPC-6 are presented in Table 2. For 8 of the 17 substrates used in the kinetic studies, saturation could not be reached. As a result, the values for the catalytic efficiency (k_{cat}/K_m) of the enzyme against these substrates were evaluated, while only the lower limits for the k_{cat} and K_m values could be determined.

The KPC-6 β-lactamase hydrolyzed penicillins, narrow-spectrum cephalosporins (cephalothin and cefuroxime), and the monobactam aztreonam with catalytic efficiencies of 10⁵ to 10⁶ $M^{-1} s^{-1}$. The enzyme also exhibited similar catalytic efficiencies

Doripenem	0.38 ± 0.01	2.9 ± 0.2	$(1.3 \pm 0.1) \times 10^5$
Nitrocefin	210 ± 10	37 ± 1	$(5.6 \pm 0.2) \times 10^{6}$
Clavulanic acid		75 ± 8	
Sulbactam		600 ± 100	
Tazobactam		290 ± 30	
^a Values are means ±	standard deviations.		
^b Saturation could no	ot be reached.		
against two ext	anded spectrum	caphalospori	ns (cefotavime and
coffrierono) wh	pile the catelytic	officion cu ogo	inst a third coffazi
time 26		efficiency agai	Cofe it's centazi-
dime, was 56- a		er, respectively	. Celoxiun was the
poorest substra	te tested; the cat	alytic efficienc	y of KPC-6 against
this cephamycii	i antibiotic was	$2.3 \times 10^{5} \mathrm{M}$'s ¹ . While KPC-6
had a very simi	lar catalytic effic	ciency (k_{cat}/K_m)	values from 1.3 \times
10^{5} to 4.5×1	$0^{5} \text{ M}^{-1} \text{ s}^{-1}$) ag	ainst all four	tested carbapenem
antibiotics, the	$k_{\rm cat}$ and K_m value	ues for these s	ubstrates showed a
broader range o	of distribution. T	The <i>k</i> _{cat} value v	vas highest for imi-
penem (18 ±	1 s^{-1} [mean \pm	standard dev	iation]), while this
number was a	pproximately 6-	fold lower fo	r meropenem and
ertapenem and	47-fold lower fo	or doripenem.	Conversely, dorip-
enem had a 3-	to 4-fold-higher	apparent affir	nity for the enzyme
than meropene	m and ertapene	em and 14-fol	d higher than imi-
penem. Kinetic	parameters have	ve been report	ted for KPC-2 and
KPC-3 with two	carbapenems, i	mipenem and	meropenem (1, 11,
16). For both ar	tibiotics, the k	and K value	s for KPC-6 were in
close agreement	t (within 2-fold)	to those for K	PC-2 and KPC-3
erest ugreenten	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$1 \odot 2$ und ref $0 3$.

The dissociation constants for the β -lactamase inhibitors clavulanic acid, sulbactam, and tazobactam (Table 2) were determined using the Dixon method (4). Nitrocefin, as a reporter substrate, was used at concentrations of 50 and 100 µM. Consistent with the MIC data, the β -lactamase inhibitors had low affinity for KPC-6, with dissociation constants for clavulanic acid, sulbactam, and tazobactam of $75 \pm 8 \,\mu\text{M}$, $600 \pm 100 \,\mu\text{M}$, and 290 \pm 30 μ M, respectively. In comparison, higher affinities for the β -lactamase inhibitors have been observed for KPC-2, with dissociation constants for clavulanic acid, sulbactam, and tazobactam of 11 \pm 1 μ M, 167 \pm 16 μ M, and 74 \pm 7 μ M, respectively (11). The KPC-6 β-lactamase has a Val240Gly substitution in comparison to the KPC-2 enzyme. At least 3 of the KPC variants (KPC-4, -6, and -8) have this substitution, while KPC-9 has a conservative alanine substitution. Compared to

KPC-2, our kinetic studies of the KPC-6 carbapenemase indicate that the conservative Val240Gly substitution does not result in an appreciable change in the antibiotic substrate profile or hydrolytic activity of the enzyme.

REFERENCES

- 1. Alba J, Ishii Y, Thomson K, Moland ES, Yamaguchi K. 2005. Kinetics study of KPC-3, a plasmid-encoded class A carbapenem-hydrolyzing beta-lactamase. Antimicrob. Agents Chemother. **49**:4760–4762.
- 2. Antunes NT, Frase H, Toth M, Vakulenko SB. 2012. The class A betalactamase FTU-1 is native to Francisella tularensis. Antimicrob. Agents Chemother. 56:666–671.
- 3. Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 8th ed. Clinical and Laboratory Standards Institute, Wayne, PA.
- 4. Dixon M. 1953. The determination of enzyme inhibitor constants. Biochem. J. 55:170–171.
- Frase H, Shi Q, Testero SA, Mobashery S, Vakulenko SB. 2009. Mechanistic basis for the emergence of catalytic competence against carbapenem antibiotics by the GES family of beta-lactamases. J. Biol. Chem. 284:29509–29513.
- Girlich D, Poirel L, Nordmann P. 2010. Novel ambler class A carbapenem-hydrolyzing beta-lactamase from a Pseudomonas fluorescens isolate from the Seine River, Paris, France. Antimicrob. Agents Chemother. 54:328–332.
- 7. Neu HC, Heppel LA. 1965. The release of enzymes from Escherichia coli

by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240:3685–3692.

- Nordmann P, Cuzon G, Naas T. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 9:228-236.
- 9. Nordmann P, Dortet L, Poirel L. 2012. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18:263–272.
- Papp-Wallace KM, et al. 2010. Inhibitor resistance in the KPC-2 betalactamase, a preeminent property of this class A beta-lactamase. Antimicrob. Agents Chemother. 54:890–897.
- 11. Papp-Wallace KM, et al. 2010. Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase. Antimicrob. Agents Chemother. 54:2867–2877.
- 12. Papp-Wallace KM, et al. 2010. Elucidating the role of Trp105 in the KPC-2 beta-lactamase. Protein Sci. 19:1714–1727.
- 13. Toth M, Vakulenko V, Antunes NT, Frase H, Vakulenko SB. 2012. Class A carbapenemase FPH-1 from Francisella philomiragia. Antimicrob. Agents Chemother. 56:2852–2857.
- Walther-Rasmussen J, Hoiby N. 2007. Class A carbapenemases. J. Antimicrob. Chemother. 60:470–482.
- Wolter DJ, et al. 2009. Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob. Agents Chemother. 53:557–562.
- Yigit H, et al. 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45:1151–1161.
- 17. Yigit H, et al. 2003. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob. Agents Chemother. 47:3881–3889.