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Basal Ganglia Neurons Dynamically Facilitate Exploration
during Associative Learning
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The basal ganglia (BG) appear to play a prominent role in associative learning, the process of pairing external stimuli with rewarding
responses. Accumulating evidence suggests that the contributions of various BG components may be described within a reinforcement
learning model, in which a broad repertoire of possible responses to environmental stimuli are evaluated before the most profitable one
is chosen. The striatum receives diverse cortical inputs, providing a rich source of contextual information about environmental cues. It
also receives projections from midbrain dopaminergic neurons, whose phasic activity reflects a reward prediction error signal. These
coincident information streams are well suited for evaluating responses and biasing future actions toward the most profitable response.
Still lacking in this model is a mechanistic description of how initial response variability is generated. To investigate this question, we
recorded the activity of single neurons in the globus pallidus internus (GPi), the primary BG output nucleus, in nonhuman primates
(Macaca mulatta) performing a motor associative learning task. A subset (29%) of GPi neurons showed learning-related effects, decreas-
ing firing during the early stages of learning, then returning to higher baseline rates as associations were mastered. On a trial-by-trial
basis, lower firing rates predicted exploratory behavior, whereas higher rates predicted an exploitive response. These results suggest that,
during associative learning, BG output is initially permissive, allowing exploration of a variety of responses. Once a profitable response is
identified, increased GPi activity suppresses alternative responses, sharpening the response profile and encouraging exploitation of the
profitable learned behavior.

Introduction
The basal ganglia (BG) are a central component of multiple par-
allel loops that, in the aggregate, engage virtually all parts of the
cortex (Alexander and Crutcher, 1990; Parent and Hazrati, 1995;
McFarland and Haber, 2000). Information follows known pat-
terns of connections— cortex to striatum to pallidum to thala-
mus and back to cortex— establishing a loop within which the BG
exert their influence. Evidence is mounting that the BG play an
important role in associative motor learning (Graybiel, 2005).
The connectivity described above reflects that of a reinforcement
learning (RL) model, in which the results of a variety of actions
are evaluated in a trial-and-error fashion. Those actions resulting
in a favorable outcome are reinforced. Over time, this process
biases behavior toward profitable actions and suppresses the oc-
currence of undesirable actions. Requirements for an RL model
include mechanisms to generate variability in action, evaluate the
results of those actions, and modify future behavior accordingly
(Sutton and Barto, 1998).

The second of these mechanisms has been the subject of con-
siderable previous work. Schultz and colleagues (2003) have con-

vincingly demonstrated the role of dopaminergic neurons in the
midbrain in encoding the requisite evaluative signal. These neu-
rons fire in proportion to the difference between expected and
actual reward, generating a reward prediction error signal. This
error signal from midbrain dopaminergic neurons, along with
environmental cues from cortex (Flaherty and Graybiel, 1993;
Matsumoto et al., 2001; Haber et al., 2006), is coincident upon
the striatum. A growing body of work demonstrates that striatal
neurons modify their activity based on this convergent informa-
tion (Kawagoe et al., 1998, 2004; Lauwereyns et al., 2002; Same-
jima et al., 2005). Dynamic modulation of striatal activity appears
causally related to the behavioral changes observed in associative
learning, providing evidence for the third mechanism (Brasted
and Wise, 2004; Pasupathy and Miller, 2005; Williams and
Eskandar, 2006).

Whereas a great deal of prior work has concentrated on elu-
cidating the mechanisms of reward sensitivity and attendant
behavioral modification, little is known regarding the first
mechanism requisite for an RL model: generation of variability in
action. The main output structures of the BG are the globus
pallidus internus (GPi) and substantia nigra pars reticulata,
which send GABAergic projections to the motor thalamus and
superior colliculus (DeLong, 1971; Parent and Hazrati, 1995). A
role for the GPi in motor learning has been implicated in a range
of species. In songbirds, for example, the homologous structure is
essential for vocal exploration and learning (Olveczky et al., 2005;
Andalman and Fee, 2009; Gale and Perkel, 2010). In macaques,
GPi neurons show enhancement of premovement modulation
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specific to novel but not familiar visual cues (Inase et al., 2001).
Given these roles in learning and motor control, we hypothesized
that the GPi may be a candidate structure responsible for gener-
ating the response variability characteristic of reinforcement
learning. We therefore recorded the activity of GPi neurons in
two monkeys while they performed a visuomotor associative-
learning task.

Materials and Methods
Preparation and electrophysiology. Two adult male rhesus monkeys
(Macaca mulatta) were studied in accordance with Massachusetts Gen-
eral Hospital and National Institutes of Health guidelines on animal
research. The animals were fitted with a titanium head post, plastic re-
cording chamber, and scleral search coils. The recording chamber was
placed in a vertical orientation over the left hemisphere, centered 1 mm
posterior to the posterior border of the anterior commissure and 9 mm
lateral to midline. These surgical procedures were performed using stan-
dard sterile technique under isoflurane anesthesia, with postoperative ad-
ministration of analgesics and antibiotics. During experiments, animals
were comfortably seated in a primate chair with head fixation. A sipper
tube was positioned at the mouth and fitted with side vents to prevent
water availability with sucking. A joystick was oriented vertically and
situated immediately in front of the animal’s chair. The chair was de-
signed so that the animal was forced to use the right hand (contralateral
to the recording site). Eye position and joystick deflection were sampled
and recorded at 1 kHz.

Acute recordings were performed daily with 0.5–1.0 MOhm tungsten
microelectrodes (FHC). A single electrode per recording session was
loaded in a millimeter-spaced grid, with at least 3 d intervening between
loading the same grid location. Recording sites were confined to the GPi
using confirmation between stereotactic coordinates, postimplant mag-
netic resonance imaging, and physiological signatures of deep nuclei and
white matter boundaries. Animals were not sacrificed for histology fol-

lowing the recordings. Analog signals were
bandpass filtered between 200 Hz and 5 kHz
and sampled at 20 kHz (Spike2; Cambridge
Electronic Design). Spikes were sorted offline
using a principal components analysis-based
template-matching algorithm (Spike2; Cam-
bridge Electronic Design). We ensured that the
waveforms and interspike intervals were con-
sistent with single-unit activity.

Behavioral task. The animals were required
to learn to associate a geometric object with a
joystick movement in one of four possible di-
rections (Fig. 1a). In each block of trials, the
monkeys were presented with four objects, two
of which were highly familiar (the association
between the object and the correct joystick
movement having been well established in pre-
vious training), and two of which were ran-
domly generated novel shapes. The monkeys
had to learn by trial-and-error, with water re-
ward reinforcement, the correct direction asso-
ciated with the novel objects. Within a block,
each object was uniquely mapped to its correct
direction without overlap, so that each direc-
tion was represented. The four objects were
presented in semirandom sequence, such that
all four objects were represented within a con-
secutive group of four trials, thereby ensuring
an even temporal distribution of the objects
over the block. Incorrect trials were repeated
immediately until a correct response was
achieved. Block switches would occur, without
overt indication, after a minimum of 17 correct
responses per object.

Each trial started with a fixation period, in
which the animal had to acquire visual fixation

of a central point around which four peripheral targets were arranged in
the cardinal directions. After 500 ms, the object was presented centrally
for a random interval between 500 and 1000 ms, followed by a go cue
indicated by color change of the fixation point. Joystick movement was
permitted after the go cue, and was required to follow a direct trajectory
within a narrow corridor toward one of the peripheral targets. When the
cursor reached the target and was held for 50 ms, a feedback tone
sounded, indicating either a correct (high pitch) or incorrect (low pitch)
choice. After 500 ms, water was delivered via the sipper tube on correct
trials. Eye position was monitored and required to stay within 1° of the
central fixation point through presentation, go cue, and movement ep-
ochs, until the feedback signal. The trial would abort if eye fixation broke,
joystick movement began before the go cue, joystick trajectory deviated
from a straight corridor to the target, or if the target was not held for a
sufficient duration.

Animals also performed a control task in which the correct direction
for each visual stimulus was indicated by a green (instead of gray) target.
Control trials were similar to the regular task in all other aspects of
appearance and timing. In a control block, all four objects were thus
visually guided. Blocks of the control task were interleaved with regular
task blocks, such that a control block guided the monkey through the
same movements and reward schedule as the preceding regular block,
but with cued targets.

Data analysis. We used a state-space smoothing algorithm for point
processes (Smith et al., 2004) to estimate the learning curve and criterion
learning point as the animals learned the correct associations (Fig. 1b,c).
This algorithm uses a Bernoulli probability model to estimate the ani-
mal’s continuous learning from his binary performance on each trial.
The analysis is conducted from the perspective of an ideal observer, with
complete knowledge of the performance during the block, rather than
that of the subject, who only has information of previously completed
trials. In the first step, the learning state process is estimated from the
entire block’s performance by fitting the binary (correct vs incorrect)

Figure 1. Behavioral task and performance. a, The sequence of task epochs and their duration in milliseconds is shown for each
representative screen. A fixation spot and the four targets appeared for 500 ms, followed by presentation of an object. After a
variable delay, the go cue was indicated by a color change in the fixation spot, allowing joystick movement. Once the target was
reached and held for 50 ms, a high or low tone indicated correct or incorrect response, respectively, and correct responses were
rewarded with a drop of water. Fixation within a 1° window was required until target acquisition. b, c, Behavior during example
learning blocks. Binary results (black, correct; red, incorrect) are shown along the top. The estimated learning curve is shown in
green, with 99% confidence intervals indicated by the dashed lines. The criterion trial (vertical black dashed line) was defined as
the point at which the lower 99% confidence interval surpassed chance (25%, horizontal blue line). These two learning blocks are
the same as those depicted in Figure 5, a and c. d, Population performance during familiar object (blue) and novel object (red) trials
over learning, averaged across all learning blocks. Novel object trials are aligned to the criterion trial (lower x-axis labels) to allow
for comparison across blocks regardless of learning rate. Familiar object trials are ordinally numbered (upper x-axis labels), as a
criterion learning trial does not apply. Performance indicated mastery of familiar objects, and a gradually improving learning curve
for novel objects. SEs are indicated by shading but are too small to be visible.
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responses to a model in which the unobserv-
able value of the learning state in the current
trial is defined to be a random step from the
previous trial’s value. Each step in this random
walk is assumed to behave as an independent
Gaussian variable, with a variance that deter-
mines how rapidly changes take place in the
subject’s trial-to-trial performance. This
variance is estimated from the behavioral data
using a maximum likelihood algorithm
(Dempster et al., 1977). The fact that the entire
block’s performance (ideal observer’s perspec-
tive) is used to estimate this parameter imparts
a smooth progression to the calculated learn-
ing curve, which would otherwise appear jag-
ged if only the performance up to the current
trial (subject’s perspective) were used.

Once the learning curve is estimated, the
second step is calculation of the criterion learn-
ing point. To do so, 99% confidence intervals
are determined around each point in the learn-
ing curve to account for the fact that the curve
is an uncertain estimation. The criterion point
is defined as the first trial where the lower 99%
confidence bound surpasses chance (25% for
four possible targets). At this point, the ideal
observer would be 99% certain that the actual
probability of a correct response was greater
than chance. The criterion trial therefore rep-
resents the estimated point at which the animal
first learned the correct association.

Only learning blocks reaching criterion were
included in subsequent analyses. Because novel
objects were learned at different rates, behav-
ioral and neuronal data were aligned to the cri-
terion trial across blocks (defined as trial zero)
to evaluate changes in activity during compa-
rable phases of learning (Brasted and Wise,
2004; Williams and Eskandar, 2006). Because
learning did not occur for familiar objects,
alignment to criterion was not applicable.

Firing rates were calculated within a 500 ms
window centered on the task epochs (fixation,
image presentation, go cue, movement, feed-
back sound, and reward). The peri-go cue di-
rectional preference for each cell was calculated
by choosing the movement direction that was
associated with the highest firing rate in the 500
ms window centered on the go cue.

To identify the subset of neurons whose ac-
tivity was related to the task, we calculated the
Pearson correlation coefficient (r) between the
learning curve and firing rates. Only correct
trials were included in this analysis. Population
responses were calculated on normalized data
to account for variation in firing rates across
neurons. Normalization was performed for
each neuron by subtracting the epoch-averaged
minimum firing rate across all trials and divid-
ing by the range, such that normalized rates
ranged from 0 to 1. Changes in firing during
learning were determined by comparing indi-
vidual precriterion points to all postcriterion
points (two-tailed t test) and by requiring at
least two consecutive significant points.

To investigate the relationship between firing rates and the animals’
behavior, we used a receiver operating characteristic (ROC) analysis. We
tested the hypothesis that the firing rate near the go cue predicted the
animal’s choice on the subsequent movement. Two hypotheses were

operationally defined to predict behavior after correct trials. For the
exploration hypothesis, trials were sorted into two groups based on
whether the chosen action in the current trial was the same or different
from the chosen action for the previous trial with the same object. Choos-
ing a different option would be consistent with exploration. For the

Figure 2. Location of GPi recording sites. Recording site location was determined by confirmation between stereotactic coor-
dinates and physiological characteristics of deep nuclei and white matter boundaries. Coronal sections anterior to the interaural
plane (noted in millimeters) from a standard atlas are diagramed with recording site locations. Sites with learning-related neurons
are indicated with a filled circle, and learning-unrelated neurons with an open circle. GPe, globus pallidus externus; OT, optic tract;
LV, lateral ventricle.

Figure 3. Population task responsiveness. a, Box plot of population firing rates across the six task epochs: fixation (Fix),
presentation (Pres), go cue (Go), movement (Move), feedback sound (Sound), and reward (Rew). The central line in each box
represents the median, the box edges the 25% and 75% quartiles, and the whiskers 2.7 SDs (representing �99.3% of the data).
b– d, Distribution of changes in firing rate (with respect to fixation) at the presentation, go cue, and movement epochs, respec-
tively. The shaded region represents any change in firing rate relative to fixation, and the colored bars represent statistically
significant increases (red) or decreases (blue).
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exploitation hypothesis, trials were sorted into two groups based on
whether a correct or incorrect action was chosen. In this model, choosing
the same option would be consistent with exploitation.

The behavioral response following incorrect trials cannot be easily
categorized. If the choice following an incorrect response is identical, it
can neither be confidently called exploitive (since it is not optimizing or
exploiting reward attainment) nor exploratory (since it is not exploring
other choice options). If the following choice is different, it may be either
exploitive (since it may be trying to optimize choice) or exploratory
(since it is different from previous). This analysis was therefore restricted
to correct trials. An ROC curve was then constructed, and the area under
the curve used as the discrimination value. Discrimination values were
calculated within a window 400 ms wide, stepped in 100 ms increments,
centered on the go cue. Significance was estimated with a bootstrap anal-
ysis by shuffling the neuronal– behavioral data pairs 1000 times and con-
sidering discrimination values ranking �5% or �95% as significant.

Results
Behavioral data
The animals completed an average of 6.3 � 0.2 (mean � SEM)
learning blocks within each recording session. Behavioral re-
sponses for two separate learning blocks are depicted in Figure 1,
b and c, and the overall population response in Figure 1d. The
monkeys’ behavior indicated mastery of the object– direction
pairing for familiar objects. Performance on novel objects im-
proved over the course of a learning block as the monkeys learned
the correct associations. Because each object was mapped to a
unique direction, presentation of a familiar object before a novel
object at the start of a new block decreased the potential responses

to the novel object. The animals’ behavior
indicated awareness of this feature of the
task, as evidenced by the fact that the pop-
ulation learning curves began slightly
�25% (Fig. 1d).

Between both animals, a total of 460
learning blocks were completed, encom-
passing 920 novel cue-movement associa-
tions. The animals successfully achieved
criterion in 72% of blocks, on trial num-
ber 9.3 � 0.8 (mean � SEM, counting
preceding incorrect and correct trials).
Across all trials, reaction time (time be-
tween go cue and initiation of movement)
was 276 � 2 ms (mean � SEM) for famil-
iar objects and 352 � 2 ms for novel ob-
jects. Movement time (time between
initiation of movement and acquisition of
target) was 111 � 0.01 ms for familiar ob-
jects and 107 � 0.02 ms for novel objects.

Neuronal data
We recorded 73 individual GPi neurons as
the animals performed the associative-
learning task. Recording sites are shown
in Figure 2. We bisected each axis to de-
fine anterior versus posterior, medial
versus lateral, and dorsal versus ventral
subdivisions. Forty-three neurons (59%)
were recorded in the skeletomotor region
of the GPi, as defined by location in the
posterior-lateral-ventral region of the GPi.

To determine task responsiveness of
the neuronal population, we calculated
average firing rates of each neuron within
the six relevant task epochs (Fig. 3a). Fir-

ing rates differed significantly across task epochs ( p � 10�3,
Kruskall–Wallis test). Individual comparisons of the epochs
showed that firing rates first significantly differed from fixation at
the go cue ( p � 0.01, Tukey–Kramer post hoc test). As it is known
that the composition of GPi neurons is heterogeneous, we di-
vided the population based on whether an individual cell tended
to increase or decrease its firing during the trial. The distribution
of cells that significantly changed their firing rate during the pre-
sentation, go cue, and movement are indicated by the colored
bars in Figure 3, b– d. Whereas a few individual cells increased
(N � 5) or decreased (N � 2) firing at the presentation (Fig. 3b),
a much larger number did so (N � 30 and 9, respectively) at the
go cue (Fig. 3c), and persisted into the movement (Fig. 3d).

Because the first significant change in neuronal firing at the
population level occurred at the go cue, we examined firing pat-
terns of individual neurons during this epoch over the course of
learning. For example, Figure 4 depicts peri-go cue rasters of a
neuron’s firing during trials in which one of the novel objects was
being learned (Fig. 4a), and during trials in the same block in
which one of the familiar objects was being presented (Fig. 4b).
This neuron consistently decreased firing at the go cue on every
trial, but this pattern did not modulate with learning over succes-
sive trials as the animal learned the correct association (Fig. 4a,
left panel). Its pattern over the course of the block was relatively
stationary and similar for both novel and familiar objects. Figure
4, c and d, depicts a neuron that increased its firing at the go cue

Figure 4. Example firing pattern of two learning-unrelated neurons. Rasters and peristimulus time histograms for sequential
trials (bottom to top) aligned to the go cue (t � 0) are shown for two example neurons, over the course of a single learning block.
a, b, This neuron decreased firing near the go cue when presented with both novel (a) and concurrently presented familiar (b)
objects. Mean fixation firing rate during novel object trials was 60 Hz. c, d, This neuron increased firing near the go cue during both
novel (c) and familiar (d) object trials. Mean fixation firing rate during novel object trials was 29 Hz. These changes are evident in
the histograms in the panel above the raster. The histograms in the panels to the left of the rasters show changes in peri-go cue
activity over the course of the learning block, averaged within a 500 ms window centered on the go cue. The green line in the left
panel depicts the learning curve for that block (Prob. correct). Neither neuron demonstrated any learning-related modulation over
the course of the block. Correct trials are indicated by black circles on the right edge of the raster. Reaction times and movement
times in each trial are indicated by blue and red circles, respectively.
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during novel and familiar object trials,
also in a pattern unrelated to learning.

In contrast, Figure 5 depicts two exam-
ple neurons whose firing changed over the
course of learning a novel object. In the
first example (Fig. 5a), the peri-go cue fir-
ing rate was relatively higher at the begin-
ning and end of the learning block, but
was lower in the middle for several trials.
In the second example (Fig. 5c), the de-
crease in firing occurred earlier in the
learning block. Examination of the ani-
mal’s behavioral performance in these
blocks revealed a similar difference. In the
first case, criterion performance was
achieved after 19 trials (counting previous
correct and incorrect trials). In the sec-
ond, criterion was achieved earlier, after
11 trials. Firing in these cells correlated
significantly with behavioral perfor-
mance, as measured by the probability of a
correct response ( p � 0.05, Pearson’s lin-
ear correlation). This modulation in firing
over the course of a learning block did not
take place during concurrent familiar ob-
ject trials (Fig. 5b,d), indicating an effect
specific to novel object learning.

In other neurons whose firing tran-
siently decreased for several trials over the
course of learning, we observed a similar
relationship between the timing of the
change and the rate at which learning cri-
terion was reached. To better study these
dynamic learning-related changes, we
aligned trials to the trial at which criterion
learning performance was attained. Align-
ment to the criterion trial allowed us to
compare activity across similar stages of
learning, compensating for different learning rates across blocks.
Only correct trials were included in this analysis. We sought to
identify the subset of neurons most involved in learning by
choosing those whose activity correlated with the learning curve
(Williams and Eskandar, 2006). Twenty-one of the 73 neurons
(29%) showed a significant positive correlation ( p � 0.05, Pear-
son’s test) with the learning curve, including the described tran-
sient decrease in firing lasting several trials, and were included in
subsequent analyses. The two neurons depicted in Figure 5 are
representative examples of these learning-related neurons.

To determine whether location was a significant factor in
identifying learning-related neurons, we compared the fraction
of learning neurons identified in the posterior versus anterior
region, medial versus lateral region, and dorsal versus ventral
region. None of these comparisons were significant ( p � 0.05,
Fisher’s exact test). Four of the 73 neurons showed a signifi-
cant negative correlation ( p � 0.05, Pearson’s test) with the
learning curve.

The population peri-go cue activity in this subset of learning-
related neurons is shown in Figure 6a. There was no modulation
in firing rates across trials when the animals were presented with
familiar objects. During novel association learning, however, we
observed a consistent transient decrease in peri-go cue firing rate
starting eight trials before criterion was reached. This suppres-
sion was significant compared with postcriterion points ( p �

0.05, two-tailed t test) and lasted for four trials. By the time learn-
ing criterion was reached, activity had returned to the higher
baseline firing rate, and was indistinguishable from the activity
observed in familiar trials. This difference between novel and
familiar object trials suggests that the effect seen during novel
object trials was specifically related to the learning required dur-
ing those trials, and absent during contemporaneous familiar
object trials, in which there was no active learning. This effect was
not present when rates were aligned to the fixation or
presentation.

The rate of learning did not differ between sessions during
which learning-related and learning-unrelated neurons were re-
corded. The number of trials to criterion was 9.2 � 0.3 in the
former and 9.4 � 0.3 in the latter ( p � 0.71, two-tailed t test), and
the shape of the learning curves was also identical (Fig. 6d). The
population activity of all 52 learning-unrelated neurons did not
exhibit a similar decrease in GPi firing in the peri-go cue period
(Fig. 6e).

To ensure that this change in neuronal firing was not simply a
reflection of variations in movement parameters over the course
of learning, we plotted reaction times and movement times as a
function of criterion-aligned trial number (Fig. 6b,c). There was
no significant difference between precriterion and postcriterion
reaction times ( p � 0.15, t test), nor between precriterion and
postcriterion movement times ( p � 0.63). We also confirmed

Figure 5. Example firing patterns of two learning-related neurons. Rasters and peristimulus time histograms aligned to the go
cue are shown for two neurons. a, b, Example firing pattern of a learning-related neuron during presentation of a novel object (a)
and a concurrently presented familiar object (b). Correct trials are indicated by a black circle on the right edge of the raster. The trial
at which learning criterion was achieved is indicated with a green circle. This neuron decreased its firing during novel object trials
near the middle of the learning block, but exhibited no such pattern during familiar object trials. Learning criterion occurred at trial
number 19. Mean fixation firing rate during novel object trials was 20 Hz. c, d, Example firing pattern of a second learning-related
neuron during novel (c) and familiar (d) object trials. This neuron decreased firing early in the block during novel object trials.
Learning criterion occurred at trial number 11. Mean fixation firing rate was 34 Hz. Histograms were calculated as in Figure 4.
Behavioral curves for a and c are the same as those depicted with explanation in Figure 1, b and c.
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that the direction of the impending movement did not influence
the exploration-related changes by first calculating peri-go cue
directional preferences for each cell. We then examined the
changes in neuronal firing over learning after separating each
trial based on whether the impending movement was in or
against the cell’s preferred direction. At no point was there a
significant difference between these curves ( p � 0.05), suggest-
ing that the direction of movement did not influence the
exploration-related changes.

To determine whether this decrease in GPi firing was specifi-
cally related to a particular phase of learning, we aligned the trials
to the first presentation of the novel object, rather than to the
criterion trial. If this effect was simply a function of stimulus
novelty, ordinal trial alignment would make it even more prom-
inent. Aligning to the first presentation rather than criterion trial,
however, made the effect disappear (Fig. 7a). The presence of the
decrease in firing depended upon correction for the pace of learn-
ing, suggesting that its timing was related to a particular early
process in learning (occurring five to eight trials before criterion),
rather than other nonspecific aspects of the task occurring soon
after a block change.

Early in the learning block, the fraction of correct trials was
relatively low. It is therefore possible that the observed decrease in
firing rate was simply a reflection of the sparser reward frequency
early in the block. To rule out that possibility, we performed a

control task in 17 of the 73 total neurons, similar in design to the
main learning task, except that responses in each trial were indi-
cated by a change in the color of the target, such that no learning
was required (see Materials and Methods, above). If the effect
were simply a function of the changing amount of reward en-
countered over the course of a block, it would be identical be-
tween the learning and the adjacent control blocks. Removing the
requirement to dynamically learn associations, however, elimi-
nated the transient decrease in firing rate (Fig. 7b). This period of
decreased GPi activity is therefore not simply a general appetitive
effect of reward schedule or reinforcement.

Relationship between neuronal and behavioral data
To understand the functional significance of the observed brief
decrease in GPi activity, we sought to identify an explicit relation-
ship between peri-go cue GPi firing and behavioral choice. We
constructed ROCs to evaluate the statistical relationships be-
tween changes in GPi firing and the animal’s choice of action. The
ROC analysis approximates the likelihood that an ideal observer
would be able to predict the behavioral outcome in an individual
trial from the neuronal activity (Britten et al., 1996). We tested
two alternative hypotheses: (1) the firing rate in an individual
trial predicts a choice different from the previous choice (explo-
ration model), and (2) the firing rate in an individual trial pre-
dicts an impending correct choice (exploitation model). The
exploration model describes a behavioral paradigm in which the
animal is actively exploring the parameter space, intentionally
choosing a response different from the last, despite the fact that
the previous answer may have been correct. The exploitation
model describes a strategy optimized to consistently choose the
response most recently identified as correct, thereby maximizing
the chance of obtaining reward.

Discrimination values (area under the ROC curve) for both
models were calculated in sliding increments relative to the go
cue for the 21 learning-related neurons. Example discrimination
values for two neurons are shown in Figure 8a,b for both explor-
atory (blue) and exploitive (red) hypotheses. Significance was
estimated using a bootstrap analysis (thick lines). Discrimination
values tended to decrease significantly below chance (0.5) during
exploration trials, and increase above chance during exploitation
trials.

Population ROC discrimination values for the learning-
related neurons are shown in Figure 8c. Before the go cue, dis-
crimination values for both models remained near chance and
overlapped in distribution. Nearly contemporaneous with the go
cue (50 ms prior), however, the models began to diverge signifi-
cantly ( p � 0.05, t test) from each other and chance. The lower
values for the exploration model indicate that lower firing rates
predicted exploratory behavior, and the higher values for the
exploitation model indicate that higher firing rates predicted ex-
ploitive behavior.

To relate the ROC analysis results back to the learning process,
ROC discrimination values were calculated as a function of trial
number. This analysis was performed in a time window starting
at the point at which the two ROC curves diverged significantly
(50 ms before go cue) and ending at the mean reaction time for
novel objects (350 ms after go cue), thereby including only
peri-go cue firing. The average firing rate within this window was
paired with the animal’s choice on that trial and submitted to the
same two-hypothesis population ROC to generate discrimina-
tion values as a function of learning. Significance of the ROC
discrimination values was again determined by a bootstrap anal-
ysis. Thus, at every point in learning, we arrived at a discrimina-

Figure 6. GPi firing encodes a facilitation window. a, Normalized firing rate for novel (red)
object trials as a function of criterion-aligned trial number for the subset of learning-related
neurons. Familiar object trials (blue) are shown as a function of ordinal trial number (top x-axis),
as alignment to criterion was not applicable. The learning curve (right y-axis) is shown in green.
There was a significant ( p � 0.05, circles) decrease in firing rate during novel object trials early
in learning. Because pallidothalamic projections are inhibitory, this decrease encodes a facilita-
tion window that can promote particular downstream motor programs. Reaction times (RT; b)
and movement times (MT; c) for novel and familiar object trials showed no difference between
precriterion and postcriterion values. x-Axis values for b and c are identical to a. d, Learning
curves were identical between sessions during which learning-related neurons (red) and
learning-unrelated neurons (blue) were recorded. e, Population activity of the 52 learning-
unrelated neurons did not exhibit a similar decrease in GPi firing. As in a, novel object trials are
depicted in red, and familiar object trials in blue. Shading indicates SEM.
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tion value for both exploration and
exploitation hypotheses. By comparing
the average firing rates for the learning-
related neurons (Fig. 6a) to the discrimi-
nation values, we could thereby
determine which of the two behavioral
strategies is favored at various stages of
learning. Because both the normalized fir-
ing rates and ROC values were con-
strained between 0 and 1, a low firing rate
(as occurred five to eight trials before cri-
terion) would predict an exploratory be-
havior on that trial if the peri-go cue
discrimination value for exploration was
significantly low, whereas that for exploi-
tation was significantly high. This rela-
tionship was quantified by taking the
absolute magnitude of the difference be-
tween significant discrimination values
and normalized firing rates at each trial,
and assigning that trial’s behavioral pref-
erence to the behavior with the smaller
difference.

These results are displayed in Figure
8d. Ten trials before criterion, neither
ROC discrimination value was signifi-
cantly different from chance (white cir-
cle). On the next trial, the firing rate
predicted exploitive choices (red circle),
possibly due to carry-over effects from the
previous learning block. For the next
seven trials, during the prominent de-
crease in GPi firing, the firing rate pre-
dicted exploratory choices (blue circles).
In the vicinity of the criterion trial, the
predictions alternated briefly, before set-
tling on predictions of exploitive behavior
for all but one of the postcriterion trials.

Discussion
In this study, we investigated the role of
the GPi in associative motor learning in
two nonhuman primates trained to pair a
novel visual cue with a particular joystick
movement. Specifically, we tested the hy-
pothesis that the GPi is involved in gener-
ating the variability in action required in a
reinforcement learning model. Our results demonstrate that GPi
firing decreases transiently early in the learning process, before be-
havior indicates mastery of the association; on a trial-by-trial basis,
lower peri-go cue firing predicts exploratory behavior, whereas
higher firing predicts exploitive behavior; and GPi firing predicts the
transition from an exploratory to exploitive behavior.

The GPi exerts its influence on motor control via its intercon-
nections with the pedunculopontine complex and thalamus. It
sends GABAergic inhibitory projections to the ventral anterior
and ventral lateral nuclei of the thalamus, which in turn project to
primary and supplementary motor cortex (Inase and Tanji,
1995). Thus, a decrease in GPi activity would release downstream
thalamocortical circuits from inhibitory tone. In this context, the
transient decrease in peri-go cue GPi firing that we observed
would serve to facilitate various different motor programs. The
timing of the firing decrease with regard to the learning process,

together with the results of the ROC analysis, suggest that GPi
firing encodes a window of facilitation that encourages explor-
atory behavior early in the learning process, before the maximally
profitable response is identified. By the time the stimulus-
response pairing is learned and behavior accordingly optimized,
GPi firing increases, closing the facilitation window for explora-
tion, and encouraging exploitation of the identified profitable
behavior. These shifts between exploratory and exploitive behav-
ioral phenotypes (Fig. 8d, shaded regions) therefore correlate
with changes in GPi firing.

Exploring the possible parameter space of responses to a novel
situation presents each response to evaluation, allowing profit-
able responses to be promoted and undesirable responses to be
suppressed. Our data support the hypothesis that the early facil-
itation window in GPi firing is the mechanism by which this
variability in action requisite for reinforcement learning is gen-

Figure 7. The facilitation window is not an effect of stimulus novelty or reward schedule. a, The same firing rates of learning-
related neurons for novel (red) and familiar (blue) object trials as depicted in Figure 6a, aligned to ordinal trial number, starting at
the first correct response, rather than to criterion. The learning curve is shown in green. Alignment to ordinal trial number removed
the decrease in GPi firing, suggesting that this effect was specific to learning, rather than simply to stimulus novelty. b, Alignment
to first correct response of the learning-unrelated neurons (depicted in Fig. 6e), again demonstrating no facilitation window. c, GPi
firing during a control task in which responses were guided by a color change in the target, such that the movements and reward
schedules matched those of interleaved blocks of the normal learning task (see Materials and Methods). The dashed green line
indicates the learning curve from the neighboring block of the regular task, as the control block itself had guided cues precluding
learning. Removal of the necessity to actively learn the associations again eliminated the decrease in firing. Shaded regions indicate
SEM. All axes share the same labels and ranges.

Figure 8. GPi firing predicts a behavioral shift from exploration to exploitation. ROC discrimination values were calculated for
exploration (blue) and exploitation (red) hypotheses in a sliding window 400 ms wide stepped in 100 ms increments, centered on
the go cue. Discrimination values for two example neurons are shown in a and b. Thick lines represent significant differences from
chance (0.5). Exploration tended to be associated with lower firing rates and exploitation with higher firing rates. c, Population ROC
discrimination values for the subpopulation of learning-related neurons. The values for the exploration (blue) and exploitation
(red) hypotheses diverged near the time of the go cue. Significant differences between the two are denoted by a thick line. Shaded
regions indicate SEM. Lower values for the exploration model indicate that lower firing rates predicted exploratory behavior,
whereas higher values for the exploitation model indicate that higher firing rates predicted exploitive behavior. d, To relate these
ROC findings to the learning process, discrimination values were calculated as a function of trial number and compared with the
actual average firing rate (Fig. 6a). For each trial, blue circles indicate that the firing rate predicted exploratory behavior and red
circles indicate that the firing rate predicted exploitive behavior. White circles indicate trials in which the ROCs were not signifi-
cantly different from chance. Starting eight trials before criterion, precriterion trials were characterized by exploratory behavior
(blue shaded region). This pattern shifted around the time of criterion, such that the majority of postcriterion trials demonstrated
exploitive behavior (red shaded region).
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erated. Appropriately, however, this variability is present only
until the association is learned, lest maladaptive persistence of
this exploratory mechanism prevent the eventually necessary
narrowing of the behavioral repertoire to the optimal choice.
Theoretical models of BG function in the context of reinforce-
ment learning have discussed the necessity of this variability in
action, but lack an experimentally demonstrated neuronal sub-
strate (Sridharan et al., 2006; Ponzi, 2008). In contrast, the other
requirements of the model, such as a source for reward prediction
error and a reward-contingent mechanism to modify future be-
havior, are consistently attributed to midbrain dopaminergic
neurons and medium spiny striatal neurons, respectively.

Evidence across a range of species is accumulating for the role
of the BG in facilitating early exploratory behavior. Rats learning
to navigate a maze for food reward initially explore their environ-
ment, but then settle into a habitual response, which reemerges
rapidly after the habit has been actively extinguished. The firing
pattern of striatal projection neurons correlates with these back-
and-forth shifts between exploratory and exploitive behavior
(Barnes et al., 2005). As another example, the song of the young
zebra finch is initially highly variable, but conforms over time to
a stereotyped pattern via feedback from a tutor’s song. The lateral
magnocellular nucleus of the anterior nidopallium, the output
nucleus of the songbird basal ganglia analog (Luo et al., 2001), is
required for the vocal exploration characteristic of juvenile bird
song, but not for production of stereotyped adult song (Kao et al.,
2005; Olveczky et al., 2005; Kao and Brainard, 2006; Andalman
and Fee, 2009). Our results further clarify the mechanism by
which the primate basal ganglia promote early exploration in
associative learning. GPi firing dynamically shifts between a fa-
cilitatory and inhibitory state, and this shift provides a physiolog-
ical basis to explain the behavioral transition from exploration of
a broad repertoire of responses to exploitation of the eventually
identified maximally profitable response.
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