
Learning Shape and Texture Characteristics of CT Tree-in-Bud
Opacities for CAD Systems

Ulaş Bağci1, Jianhua Yao1, Jesus Caban2, Anthony F. Suffredini3, Tara N. Palmore4, and
Daniel J. Mollura1

Ulaş Bağci: ulas.bagci@nih.gov
1Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda,
MD, USA
2National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD, USA
3Critical Care Medicine Department, National Institutes of Health (NIH), Bethesda, MD, USA
4Laboratory of Clinical Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD,
USA

Abstract
Although radiologists can employ CAD systems to characterize malignancies, pulmonary fibrosis
and other chronic diseases; the design of imaging techniques to quantify infectious diseases
continue to lag behind. There exists a need to create more CAD systems capable of detecting and
quantifying characteristic patterns often seen in respiratory tract infections such as influenza,
bacterial pneumonia, or tuborculosis. One of such patterns is Tree-in-bud (TIB) which presents
thickened bronchial structures surrounding by clusters of micro-nodules. Automatic detection of
TIB patterns is a challenging task because of their weak boundary, noisy appearance, and small
lesion size. In this paper, we present two novel methods for automatically detecting TIB patterns:
(1) a fast localization of candidate patterns using information from local scale of the images, and
(2) a Möbius invariant feature extraction method based on learned local shape and texture
properties. A comparative evaluation of the proposed methods is presented with a dataset of 39
laboratory confirmed viral bronchiolitis human parainfluenza (HPIV) CTs and 21 normal lung
CTs. Experimental results demonstrate that the proposed CAD system can achieve high detection
rate with an overall accuracy of 90.96%.
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1 Introduction
As shown by the recent pandemic of novel swine-origin H1N1 influenza, respiratory tract
infections are a leading cause of disability and death. A common image pattern often
associated with respiratory tract infections is TIB opacification, represented by thickened
bronchial structures locally surrounded by clusters of 2–3 millimeter micro-nodules. Such
patterns generally represent disease of the small airways such as infectious-inflammatory
bronchiolitis as well as bronchiolar luminal impaction with mucus, pus, cells or fluid
causing normally invisible peripheral airways to become visible [1]. Fig. 1 shows TIB
patterns in a chest CT.

The precise quantification of the lung volume occupied by TIB patterns is a challenging task
limited by significant inter-observer variance with inconsistent visual scoring methods.
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These limitations raise the possibility that radiologists’ assessment of respiratory tract
infections could be enhanced through the use of computer assisted detection (CAD) systems.
However, there are many technical obstacles to detecting TIB patterns because micro-
nodules and abnormal peripheral airway structures have strong shape and appearance
similarities to TIB patterns and normal anatomic structures in the lungs.

In this work, we propose a new CAD system to evaluate and quantify respiratory tract
infections by automatically detecting TIB patterns. The main contributions of the paper are
two-fold: (1) A candidate selection method that locates possible abnormal patterns in the
images. This process comes from a learning perspective such that the size, shape, and
textural characteristics of TIB patterns are learned a priori. The candidate selection process
removes large homogeneous regions from consideration which results in a fast localization
of candidate TIB patterns. The local regions enclosing candidate TIB patterns are then used
to extract shape and texture features for automatic detection; (2) another novel aspect in this
work is to extract Möbius invariant local shape features. Extracted local shape features are
combined with statistical texture features to classify lung tissues. To the best of our
knowledge, this is the first study that uses automatic detection of TIB patterns for a CAD
system in infectious lung diseases. Since there is no published work on automatic detection
of TIB patterns in the literature, we compare our proposed CAD system on the basis of
different feature sets previously shown to be successful in detecting lung diseases in general.

2 Methodology
The proposed CAD methodology is illustrated in Fig. 2. First, lungs are segmented from CT
volumes. Second, we use locally adaptive scale based filtering method to detect candidate
TIB patterns. Third, segmented lung is divided into local patches in which we extract
invariant shape features and statistical texture features followed by support vector machine
(SVM) classification. We extract features from local patches of the segmented lung only if
there are candidate TIB patterns in the patches. The details of the proposed methods are
presented below.

I. Segmentation
Segmentation is often the first step in CAD systems. There are many clinically accepted
segmentation methods in clinics [2, 3]. In this study, fuzzy connectedness (FC) image
segmentation algorithm is used to achieve successful delineation [2]. In FC framework, left
and right lungs are “recognized” by automatically assigned seeds, which initiate FC
segmentation.

II. Learning characteristics of TIB patterns
From Fig. 1, we can readily observe that TIB patterns have intensity characteristics with
high variation towards nearby pixels, and such regions do not usually exceed a few
millimetre(mm) in length. In other words, TIB patterns do not constitute sufficiently large
homogeneous regions. Non-smooth changes in local gradient values support this
observation. As guided by these observations, we conclude that (a) TIB patterns are
localized only in the vicinity of small homogeneous regions, and (b) their boundaries have
high curvatures due to the nature of its complex shape.

III. Candidate Pattern Selection
Our candidate detection method comes from a learning perspective such that we assign
every internal voxel of the lung a membership value reflecting the size (i.e., scale) of the
homogeneous region that the voxel belongs to. To do this, we use a locally adaptive scale
based filtering method called ball-scale (or b-scale for short) [2]. b-scale is the simplest form
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of a locally adaptive scale where the scene is partitioned into several scale levels within
which every voxel is assigned the size of the local structure it belongs. For instance, voxels
within the large homogeneous objects have highest scale values, and the voxels nearby the
boundary of objects have small scale values. Because of this fact and the fact in II.(a), we
draw the conclusion that TIB patterns constitute only small b-scale values, hence, it is highly
reasonable to consider voxels with small b-scale values as candidate TIB patterns.
Moreover, it is indeed highly practical to discard voxels with high b-scale values from
candidate selection procedure. Fig. 2 (candidate selection) and Fig. 3(b) show selected b-
scale regions as candidate TIB patterns. A detailed description of the b-scale algorithm is
presented in [2].

3 Feature Extraction
For a successful CAD system for infectious lung diseases, there is a need to have
representative features characterizing shape and texture of TIB patterns efficiently. Since
TIB is a complex shape pattern consisting of curvilinear structures with nodular structures
nearby (i.e., a budding tree), we propose to use local shape features (derived from geometry
of the local structures) combined with grey-level statistics (derived from a given local
patch).

It has been long known that curvatures play an important role in the representation and
recognition of intrinsic shapes. However, similarity of curvature values may not necessarily
be equivalent to intrinsic shape similarities, which causes a degradation in recognition and
matching performance. To overcome this difficulty, we propose to use Willmore energy
functional [4] and several different affine invariant shape features parametrically related to
the Willmore energy functional.

Willmore Energy
The Willmore energy of surfaces plays an important role in digital geometry, elastic
membranes, and image processing. It is closely related to Canham-Helfrich model, where
surface energy is defined as

(1)

This model is curvature driven, invariant under the the group of Möbius transformations (in
particular under rigid motions and scaling of the surface) and shown to be very useful in
energy minimization problems. Invariance of the energy under rigid motions leads to
conservation of linear and angular momenta, and invariance under scaling plays a role in
setting the size of complex parts of the intrinsic shapes (i.e., corners, wrinkles, folds). In
other words, the position, grey-level characteristics, size and orientation of the pattern of
interest have minimal effect on the extracted features as long as the suitable patch is
reserved for the analysis. In order to have simpler and more intuitive representation of the
given model, we simply set α = 0 and β = γ = 1, and the equation turns into the Willmore
energy functional,

(2)

where H is the mean curvature vector on Σ, K the Gaussian curvature on ∂Σ, and dA, ds the
induced area and length metrics on Σ, ∂Σ (representing area and boundary, respectively).
Since homogeneity region that a typical TIB pattern appears is small in size, total curvature
(or energy) of that region is high and can be used as a discriminative feature.

Bağci et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2012 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



In addition to Willmore energy features, we have included seven different local shape
features in the proposed CAD system. Let κ1 and κ2 indicate eigenvalues of the local
Hessian matrix for any given local patch, the following shape features are extracted: 1) mean
curvature (H), 2) Gaussian curvature (K), 3) shape index (SI), 4) elongation (κ1/κ2), 5) shear
((κ1 − κ2)2/4), 6) compactness (1/(κ1κ2)), and 7) distortion (κ1 − κ2). Briefly, the SI is a
statistical measure used to define local shape of the localized structure within the image [5].

Elongation indicates the flatness of the shape. Compactness feature measures the similarity
between shape of interest and a perfect ellipse. Fig. 3(c) and (d) show mean and Gaussian
curvature maps from which all the other local shape features are extracted. Fig. 3(e) and (f)
show Willmore energy map extracted from Fig. 3(a).

Based on the observation in training, TIB patterns most likely occur in the regions inside the
lung with certain ranges (i.e, blue and yellow regions). This observation facilitates one
practically useful fact in the algorithm that, in the feature extraction process, we only extract
features if and only if at least “one” b-scale pattern exists in the local region as well as
Willmore energy values of pixels lie in the interval observed from training. Moreover,
considering the Will-more energy has a role as hard control on feature selection and
computation, it is natural to investigate their ability to segment images. We present a
segmentation framework in which every voxel is described by the proposed shape features.
A multi-phase level set [6] is then applied to the resulting vectorial image and the results are
shown in Fig. 3(g). First and second columns of the Fig. 3(g) show segmented structures and
the output homogeneity maps showing segmented regions in different grey-level,
respectively. Although segmentation of small airway structures and pathological patterns is
not the particular aim of this study, the proposed shape features show promising results due
to their discriminative power.

Texture features
Spatial statistics based on Grey-Level Co-occurrence Matrix (GLCM) [7] are shown to be
useful in discriminating patterns pertaining to lung diseases. As texture can give a lot of
insights into the classification and characterization problem of poorly defined lesions,
regions, and objects, we combine our proposed shape based invariants with GLCM based
features. We extract 18 GLCM features from each local patch including autocorrelation,
entropy, variance, homogeneity, and extended features of those. Apart from the proposed
method, we also compare our proposed method with well known texture features: steerable
wavelets (computed over 1 scale and 6 orientations with derivative of Gaussian kernel),
GLCM, combination of shape and steerable wavelets, and considering different local patch
size.

4 Experimental Results
39 laboratory confirmed CTs of HPIV infection and 21 normal lung CTs were collected for
the experiments. The in-plane resolution is affected from patients’ size and varying from
0.62mm to 0.82mm with slice thickness of 5mm. An expert radiologist carefully examined
the complete scan and labeled the regions as normal and abnormal (with TIB patterns). As
many regions as possible showing abnormal lung tissue were labeled (see Table 1 for details
of the number of regions used in the experiments). After the proposed CAD system is tested
via two-fold cross validations with labeled dataset, we present receiver operator
characteristic (ROC) curves of the system performances.

Table 1 summarizes the performance of the proposed CAD system as compared to different
feature sets. The performances are reported as the areas under the ROC curves (Az). Note
that shape features alone are superior to other methods even though the dimension of the
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shape feature is only 8. The best performance is obtained when we combined shape and
GLCM features. This is expected because spatial statistics are incorporated into the shape
features such that texture and shape features are often complementary to each other. In what
follows, we select the best window size for each feature set and plot their ROC curves all in
Fig. 4. To have a valid comparison, we repeat candidate selection step for all the methods,
hence, the CAD performances of compared feature sets might perhaps have lower accuracies
if the candidate selection part is not applied. Superiority of the proposed features is clear in
all cases. To show whether the proposed method is significantly different than the other
methods, we compared the performances through paired t-tests, and the p-values of the tests
are summarized in Table 2. Note that statistically significant changes are emphasized by p
< .01 and p < .05.

5 Conclusion
In this paper, we have proposed a novel CAD system for automatic TIB pattern detection
from lung CTs. The proposed system integrates 1) fast localization of candidate TIB patterns
through b-scale filtering and scale selection, and 2) combined shape and textural features to
identify TIB patterns. Our proposed shape features illustrate the usefulness of the invariant
features, Willmore energy features in particular, to analyze TIB patterns in Chest CT. In this
paper, we have not addressed the issue of quantitative evaluation of severity of diseases by
expert observers. This is a challenging task for complex shape patterns such as TIB
opacities, and subject to further investigation.
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Fig. 1.
(Left) CT image with a significant amount TIB patterns. (Right) Labelled TIB patterns
(blue) in zoomed window on the right lung.
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Fig. 2.
The flowchart of the proposed CAD system for automatic TIB detection.
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Fig. 3.
a. CT lung, b. selected b-scale patterns, c. mean Curvature map (H), d. Gaussian Curvature
(K), e. Willmore energy map, f. zoomed (e). g. Multi-phase level set segmentation based on
the proposed shape features is shown in three different slices from the same patient’s chest
CT scan.
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Fig. 4.
Comparison of CAD performances via ROC curves of different feature sets.
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Table 2

p-values are shown in confusion matrix.

p-Confusion Matrix Shape Steer. & Shape Steer. GLCM

Shape& GLCM 0.0171 0.0053 0.0056 0.0191

Shape – 0.0086 0.0094 0.0185

Steer.& Shape – – 0.0096 0.0175

Steer. – – – 0.0195
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