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Abstract

Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have
an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we
have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to
produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by
pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid b-
oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain
FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in
OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive
organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized
process of egg production in schistosomes.

Citation: Huang SC-C, Freitas TC, Amiel E, Everts B, Pearce EL, et al. (2012) Fatty Acid Oxidation Is Essential for Egg Production by the Parasitic Flatworm
Schistosoma mansoni. PLoS Pathog 8(10): e1002996. doi:10.1371/journal.ppat.1002996

Editor: David L. Williams, Rush University Medical Center, United States of America

Received April 21, 2012; Accepted September 13, 2012; Published October 25, 2012

Copyright: � 2012 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by NIH-NIAID (http://www.niaid.nih.gov)grants AI075266 to EJP and AI082548 to JBL and EJP. Schistosome life stages were
provided by BRI through NIH-NIAID contract No. HHSN272201000005I. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: edwardpearce@path.wustl.edu

Introduction

Infection with helminth parasites of the genus Schistosoma causes

chronic and debilitating disease in over 200 million people

worldwide [1,2]. Adult S. mansoni worms live within the portal

vasculature, producing eggs (200–300/day/female) that are

intended to pass into the intestinal lumen for release into the

environment to allow transmission of the infection [3]. However,

many eggs are carried by the blood flow to the liver, where they

become trapped in sinusoids and elicit strong Th2 cell mediated

immunopathology, which is the cause of disease manifestations

[3]. Since egg production is key for both transmission and

pathogenesis, studying reproductive biology in schistosomes could

lead to new methods for preventing or treating disease [4].

Adult schistosomes exhibit sexual dimorphism, a trait that is

unusual among parasitic trematodes, and display a fascinating

codependency: the female resides in a groove (the gynecophoric

canal) on the ventral side of the male and is dependent on ongoing

physical pairing, but not sperm transfer [5], for proper sexual

development [5–11]. Virgin adult female schistosomes, from

female-only infections, are developmentally stunted compared to

fecund females from mixed-sex infections and are unable to lay

eggs [11,12]. Furthermore, egg-laying females that are physically

separated from their partners and surgically implanted into a host

in the absence of male worms cease egg production and regress

reproductively to an immature state. Interestingly, regression is

reversible because normal reproductive activity is resumed when

separated females are re-paired with males [11,13,14]. Regression

is largely the result of involution of the vitellarium, a proliferative

tissue that occupies the posterior two thirds of the female and

produces cells that surround the ovum and provide proteins for

eggshell formation and nutrients for the developing embryo [12].

There have been numerous suggestions that male parasites

promote female maturation by ‘‘providing’’ nutrients [15]. The

fact that starvation in planaria (free living flatworms) can lead to

reversible tissue involution [16] is consistent with the possibility

that loss of vitelline cells is the end result of nutritional deprivation

in female parasites. Glucose is considered to be the key

macronutrient required by adult schistosomes to meet their

bioenergetics needs [17,18], but there is a lack of clarity in the

literature regarding the relative extent to which Warburg

metabolism (the homolactic fermentation of glucose in the

presence of oxygen) versus mitochondrial oxidative phosphoryla-

tion (OXPHOS) are important in these organisms [17,19,20].

Nevertheless, fecund adult females gradually stop ovipositing in

vitro even when glucose and oxygen are not limiting [21], and

under anaerobic conditions egg production ceases immediately

despite the fact that the worms remain viable for extended periods

[17]. These findings led us to consider the possibility that worms

are able to survive using Warburg metabolism, but require

substrates other than glucose for oxidative metabolic pathways

critical for egg production. Despite the general view that there is
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no appreciable lipid catabolism in helminth parasites [18], the

genes encoding the enzymes of the b-oxidation pathway, through

which fatty acids (FA) are catabolized into the TCA cycle, are

conserved in schistosomes [22]. Moreover, greater than 40% of

the lipid in adult schistosomes is in the form of triacylglyceride

(TG), usually considered an energy store for b-oxidation [23], and

FA are able to promote egg production and egg viability in vitro

[24]. We therefore decided to ask whether adult female

schistosomes use FA oxidation (FAO) for egg production.

Results/Discussion

Fecund female schistosomes use OXPHOS
The b-oxidation pathway allows FA to be used as fuel for the

TCA cycle, which in turn generates substrates for the electron

transport chain to make ATP via OXPHOS. To examine whether

this process occurs in adult female schistosomes, we used

extracellular flux analysis to compare mitochondrial oxygen

consumption rates (OCR, [25]) in individual fecund and virgin

female schistosomes immediately ex vivo (Fig. S1). OCR in female

schistosomes declined in the presence of oligomycin, and

antimycin-A plus rotenone (Fig. 1A), indicating that it is largely

a function of mitochondrial OXPHOS (Fig. S1). Baseline OCR

(Fig. 1A,B), and mitochondrial spare respiratory capacity (SRC,

Fig. 1A,C) [26], were significantly higher in fecund vs. virgin

females (P,0.01). SRC is the difference between OCR at basal

state and after addition of FCCP (Fig. S1), and reflects the extra

mitochondrial capacity available to produce energy under

conditions of increased work or stress and is an important

determinant of long-term cellular survival and function [26,27].

Since the sizes of fecund and virgin adult females differ [21], the

SRC measurement also provides an internally controlled indica-

tion that there are significant qualitative differences in mitochon-

drial respiration between fecund and virgin worms.

OXPHOS is essential for egg production
Previous work showed that female schistosomes require oxygen

to produce eggs [17]. To assess whether these findings reflect a

dependence on OXPHOS, we cultured fecund female worms for

24 h in oligomycin, antimycin A or rotenone, all of which inhibit

mitochondrial OCR (Fig. 1), and measured egg production and

worm viability; these inhibitors had a significant (p,0.01 in each

case) negative effect on egg production (Fig. 2A), but little adverse

effect on worm viability over this time period (Fig. 2B). Moreover,

when the inhibitors were washed out after 24 h, egg production

resumed at normal levels over the ensuing 24 h (Fig. 2C). These

data indicate that female worms can survive independently of

mitochondrial respiration, but absolutely require this process in

order to produce eggs.

Cpt1 activity regulates oxygen consumption and egg
production

Carnitine palmitoyl transferase 1 (Cpt1) catalyzes the initial rate

limiting step in FAO in which FA are transferred from the cytosol

into the mitochondria [28]. To determine whether OXPHOS

depends on FAO we incubated fecund female worms with the

Cpt1 inhibitor etomoxir [29,30] immediately ex vivo and

measured OCR. We found that etomoxir caused a significant

decline in basal OCR (Fig. 3A; S2), without affecting basal

extracellular acidification, an indicator of glycolysis (data not

shown). Since OXPHOS is essential for egg production (Fig. 2), we

reasoned that if FAO is a significant source of substrates for the

TCA cycle and therefore for OXPHOS, then inhibition of FAO

should have a deleterious effect on egg output. To examine this we

recovered fecund female worms from infected mice and measured

the effect of etomoxir on egg production over 24 h in culture.

Under these conditions, etomoxir completely suppressed egg

production (Fig. 3B), although worms remained viable. These data

implicate FAO in egg production by female schistosomes.

Fecund female schistosomes have extensive lipid
reserves

The understanding of how FA are utilized by cells is evolving

rapidly. The current view is that FA are converted into TG and

stored in cytoplasmic lipid droplets, from which they are released

in a regulated fashion by lipolysis [31] to be used as energy

substrates in FAO, or as ligands for nuclear receptors. It has been

reported that schistosomes possess considerable TG stores when

recovered from mice [23], but the function and location of these

stores remains enigmatic [22]. To examine this we stained female

worms immediately ex vivo with Oil-Red-O, which binds to

neutral TG and was recently authenticated as a true lipid stain in

the free-living helminth Caenorhabditis elegans [32]. The results were

striking, revealing that fecund female parasites possess an extensive

lipid droplet network. This network was evident microscopically,

and by measuring extracted dye spectrophotometrically (Fig. 3C).

In contrast, virgin females had significantly lower lipid reserves

(Fig. 3C). Moreover, the intensity of Oil-Red-O staining declined

markedly over time as fecund worms were maintained in tissue

culture for 3 or 13 days (Fig. 3C). Previous reports have

commented on the presence of lipid droplets within mature (Stage

4) vitelline cells [13]. Although we do note have proof that all of

the droplets that we have visualized using Oil-Red-O staining and

confocal microscopy are within the vitellarium, their location is

anatomically consistent with the majority of them being associated

with this organ. The lack of Oil-Red-O staining in virgin worms,

and in fecund females after culture, is consistent with the failure of

the vitellarial lineage to produce Stage 4 cells under these

conditions [10,13].

The decline in lipid reserves in vitro is of interest since it occurs

with a similar kinetic to the decline in egg production by cultured

Author Summary

Schistosomes are parasitic worms that are the cause of the
Neglected Tropical Disease schistosomiasis. Female schis-
tosomes mated with males produce eggs, which either
pass out of the host’s body for transmission of the
infection, or become trapped in host tissues, where they
induce inflammation that contributes to disease symp-
toms. It has been assumed that egg production is a
bioenergetically-demanding process fuelled by glucose
metabolism. However, we have discovered that egg
production is blocked by inhibition of fatty acid oxidation
(FAO), the process through which FA are utilized within
mitochondria to fuel the tricarboxylic acid cycle and
thereby produce substrates for ATP synthesis through
oxidative phosphorylation. Consistent with a role for FAO
in egg production, fecund females have extensive fat
stores, in the form of lipid droplets, whereas virgin adult
females have little or no fat reserves. Moreover, fecund
females placed into tissue culture exhaust their fat reserves
and cease to be able to produce eggs. Since schistosomes
cannot produce their own FA, our data point to the
acquisition of FA from the host as a key process necessary
for egg production. Our findings point to the importance
of regulated lipid stores and FAO for egg production by
schistosomes.
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worms [21]. We reasoned that this could reflect a causal link

between lipid droplet exhaustion and the cessation of FAO under

these conditions. To explore this, we used real time flux analysis to

measure FAO activity and mitochondrial OCR in fecund females

immediately ex vivo and in vitro. We found that cumulative levels

of palmitate oxidation and basal OCR declined significantly in

vitro (Fig. 3D and 3E), and that as anticipated this was paralleled,

between days 3 and 13, by a significant decline in egg production

(Fig. 3F). To formally examine whether there is a link between

FAO and lipid droplet depletion in vitro, we recovered fecund

females from infected hosts and cultured them with etomoxir for

24 h and used Oil-Red-O staining to quantify lipid droplets. We

found that etomoxir significantly inhibited depletion of lipid

reserves in these worms (Fig. 3G).

FA catabolism is essential for egg production
FA liberated from lipid droplets by lipolysis are activated and

shuttled into mitochondria for FAO by acyl-CoA synthetase (ACSL)

[33,34]. We reasoned that if FA are essential for OXPHOS and egg

production, then loss of function of ACSL should affect both of these

parameters by preventing the use of FA resulting from lipolysis. We

examined this using chemical inhibitors and RNAi. First, we tested

the effect of the fungal metabolite Triacsin C, which is a potent

inhibitor of most mammalian ACSLs [35,36]. We recovered fecund

female parasites from their hosts and immediately assessed the effect

of Triacsin C on basal OCR and egg production. We found that

Triacsin C inhibited OCR (Fig. 4A) and blocked egg production

entirely (Fig. 4B). We used RNAi to substantiate the importance of

ACSL in OXPHOS and egg production. Immediately after

explantation, and prior to assessing OCR and egg production,

fecund females were electroporated with siRNAs against SmACSL,

or control siRNAs, [37]. Using this approach, SmACSL expression

was significantly attenuated within 72 h (Fig. S2A). Concomitant

with reduced expression of SmACSL there were significant declines

in OCR (Fig. 4C) and egg production (Fig. 4D). Moreover,

SmACSL-siRNA resulted in greater retention of lipid reserves over

3 days in culture (Fig. 4E), which was also apparent to some extent

in Triascin-C treated worms (Fig. S2B).

Figure 1. Fecund female schistosomes have high mitochondrial OCR. A. OCR of Fecund female parasites recovered from mixed sex
infections, and Virgin adult females recovered from single sex infections were measured in real time by extracellular flux analysis, at basal
(immediately ex-vivo) and following the addition of oligimycin, FCCP and rotenone (Rot) and antimycin A (Ant) at the times indicated. B. Average
basal OCR readings of Fecund and Virgin females over the first 30 minutes ex-vivo. C. Spare respiratory capacity of Fecund and Virgin females,
calculated as shown in Fig. S1. Data are means plus SEM of readings from 4–5 individual female worms per experiment. Data are representative of at
least 3 individual experiments. See also Fig. S1.
doi:10.1371/journal.ppat.1002996.g001

Figure 2. OXPHOS is necessary for egg production. A. Eggs produced per fecund female during the first 24 h ex vivo, in the absence (Ctrl) or
presence of oligomycin (Olig), antimycin A (Ant) or rotenone (Rot). B. Survival of females, compared to untreated cultured worms, during the same
period and conditionS as described in A. C. Egg production between 24 h and 48 h in vitro following the washing out of inhibitors that were present
during the first 24 h ex vivo. Data are means plus SEM of readings from 10 individual female worms per experiment. Data are representative of at
least 3 individual experiments.
doi:10.1371/journal.ppat.1002996.g002
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The initial step in mitochondrial b-oxidation is catalyzed by

acyl-CoA dehydrogenase (ACAD). We targeted schistosome

ACAD using siRNAs; this approach resulted in reduced ACAD

mRNA, (Fig. S3C), decreased mitochondrial OCR (Fig. 4F), and

decreased egg production (Fig. 4G). Furthermore, the stimulation

of FAO by added palmitate was significantly impaired by this

siRNA treatment (Fig. 4H).

Taken together, these data support a role for the mobilization of

lipid droplet reserves for FAO in female schistosomes, and the use

of this pathway to support egg production.

Schistosomes cannot synthesize their own FA [22], but they can

take up lipids and convert them into TG [23,38]. Therefore we

propose that in vivo, TG in lipid droplets are continuously

catabolized for FAO and replenished through the uptake of FA

from the environment. We hypothesize that FAO is essential for

the differentiation and/or survival of Stage 4 vitelline cells. In this

model, the reduced OCR and SRC of virgin vs. fecund females

are due to the absence of mature vitellocytes that normally are

committed to FAO and OXPHOS. Our data indicate that, in

vitro, lipid stores are used but not replenished, thereby accounting

for the loss of Oil-Red-O staining and declines in OCR as TG

reserves are depleted in cultured parasites. Our data fit with the

view that reproductive maturation and regression are closely

linked to nutritional status in female schistosomes [15], and point

to FA as a key nutritional requirement for this process.

How male parasites help females to acquire FA remains to be

determined. Schistosomes eat blood, and it has been proposed that

male worms physically assist females in this process. However, we

Figure 3. Schistosomes use FA from lipid droplets for FAO to produce eggs. A. Average basal OCR of fecund females incubated without
(Ctrl) or with etomoxir (ETO) over the first 30 min ex vivo. See also Fig. S2. B. Numbers of eggs produced in 24 h per female parasite in the absence or
presence of etomoxir. C Oil-Red-O stained fecund females immediately ex vivo or at day 3 or day 13 of culture (red = Oil Red O; blue = Hoescht;
green = phalloidin) and quantitation of Oil-Red-O staining of females, as indicated. Images are optical sections through longitudinal axes. Scale
bar = 50 mm. D. Palmitate induced mitochondrial FAO (% basal OCR) of fecund females ex vivo and after 13 days in culture. E. Average basal OCR of
fecund females ex vivo and after 3 or 13 days in culture (black bars) and numbers of eggs produced within the 24 h period immediately ex vivo or in
the 24 h period prior to day 3 or day 13 of culture (pink circles). F. Quantitation of Oil-Red-O staining of fecund females cultured without or with
etomoxir for 24 h. Data are means plus SEM of readings from 5–6 individual female worms per experiment. Data are representative of at least 3
individual experiments. ns = not significant.
doi:10.1371/journal.ppat.1002996.g003
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have been unable to show any positive effect in the assays

described herein of adding red blood cells to cultures of

schistosomes, regardless of whether males are present or not (data

not shown). Since glucose is an essential nutrient for schistosomes

(Krautz-Peterson et al. 2010, and data not shown), it is possible

that virgin females are subsisting largely on glucose absorbed

directly from the blood through tegumental surface transporters

[39,40]. A plausible explanation for the observation that females

cease egg production in vitro, even when male worms are present,

is that certain FA present in vivo are missing in the media that

have been routinely used to culture schistosomes. Possibilities

include short chain FA, which are present in high concentrations

in portal blood, and which interestingly are depleted in plasma

samples from schistosome-infected mice [41,42], and stearic acid,

which when complexed with bovine serum albumin is able to

replace fetal calf serum in a defined medium that is able to support

short term egg production by cultured schistosomes [24].

It has been assumed that FAO does not occur in schistosomes, and

that glucose is the key substrate for energy generation. However, the

data presented here indicate that schistosomes use FAO specifically

for the compartmentalized process of egg production. A role for FAO

in schistosome egg production is consistent with the important roles of

FA in reproduction in insects and mammals [43,44]. It will be

important to identify the FA that support egg production and to

understand the specific mechanism by which male schistosomes assist

females in acquiring these nutrients. Unraveling the metabolic

requirements for reproduction in schistosomes may enable develop-

ment of enhanced tissue culture systems that will support continuous

egg production in vitro. This, in turn, would greatly facilitate the

application of emerging tools for transgenesis in these important

parasites [45]. Moreover, it is conceivable that a greater understand-

ing of the metabolic processes that support schistosome egg

production may offer new opportunities to simultaneously prevent

transmission and disease development.

Figure 4. Loss of ACSL and ACAD function inhibits egg production. A. Average basal OCR of fecund females incubated without (Ctrl) or with
Triascin C (TC) over the first 30 min ex vivo. B. Numbers of eggs produced in 24 h per female parasite in the absence or presence of Triascin C.
Average basal OCR (C & F), numbers of eggs produced in 72 h per female (D & G) and quantitation of Oil-Red-O staining (E) and measurement of
FAO activity (H) in control fecund females, and in fecund females electroporated with SmASCL-siRNA (siASCL) or SmACAD-siRNA (siACAD), or with
control siRNA (-ve siRNA). Data are means plus SEM of readings from 5–6 individual female worms per experiment. Data are representative of at least
2 individual experiments. See also Fig. S2.
doi:10.1371/journal.ppat.1002996.g004
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Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of Washington University School of Medicine (Animal

Welfare Assurance Number: A-3381-01).

Parasites and animals
Seven to eight wk old adult Schistosoma mansoni (NMRI strain)

were recovered from infected C57BL/6 female mice (Jackson

Laboratory). Parasites were cultured in RPMI containing 10%

fetal calf serum (FCS) (both from GIBCO), 2% antibiotic/

antimycotic, 1% HEPES, 10 mM glucose, 2 mM L-glutamine

and 1 mM sodium pyruvate (all from Sigma) at 37uC in 95%air/

5%CO2. Medium was replaced every 3 days. Eggs produced every

24 h were counted using a microscope.

Metabolism assays
Real-time measurements of OCR and extracellular acidification

were made using an XF-24 Extracellular Flux Analyzer (Seahorse

Bioscience). Worms were plated in XF-24 Islet Capture Micro-

plates (one worm per well) and analyzed in non-buffered RPMI

1640, 25 mM glucose, 10% FCS, 100 U/mL penicillin/strepto-

mycin, 2 mM L-glutamine and 1 mM sodium pyruvate under

basal conditions or in the presence of oligomycin (3 mM), fluoro-

carbonyl cyanide phenylhydrazone (FCCP, 4.5 mM), rotenone

(0.3 mM), antimycin A (3 mM), etomoxir (200 mM) (all from Sigma)

or Triacsin C (10 mM, Enzo Life Sciences). For FAO assay, real-

time oxidation rates of palmitate in worms was assessed by

extracellular flux analysis as described above. Basal OCR rates

were measured prior to 2 h treatment with palmitate (200 mM)

with fatty acid free bovine serum albumin (BSA), or with fatty acid

free BSA (0.17 mM) alone (Seahorse Bioscience).

Treatment of adult S. mansoni with small interfering RNA
(siRNA)

siRNA targeting acyl-CoA synthetase (ACSL; GI: 256090263 and

GI: 238666949) and acyl-CoA dehydrogenase (ACAD; GI:

353231171 and GI: 256070604) were designed and synthesized by

Ambion, Applied Biosystems (Silencer Select Custom Designed siRNA;

http://www5.appliedbiosystems.com/tools/sirna/). siACSL: sense-

GCAUACAGAUGGAAGUUUAtt; antisense-UAAACUUCCAU-

CUGUAUGCat. siACAD: sense-GGAAUCAAAUGAUAUCUUA-

tt; antisense-UAAGAUAUCAUUUGAUUCCat. Silencer Negative

control siRNA#1, which is not matched to any sequence in the

parasite genome, was also provided by the manufacturer and used as a

control. siRNA (10 mM) was delivered by electroporation [46].

Oil-Red-O staining and quantification
Parasites were fixed in 4% paraformaldehyde (Electron

Microscopy Sciences) diluted in PBSTx (PBS, 0.3% Triton X-

100) for 1 h, [47], dehydrated in 60% isopropanol for 15 min,

stained with Oil-Red-O (Sigma) overnight [48], washed in PBSTx

4 times and stained with phallotoxin-Alex Fluor 488 (Invitrogen)

and Hoechst at 4uC for 1 h prior to imaging using a Leica SP5 LSCM

confocal microscope and a PL APO CS 206NA = 0.70 objective in

the format of 204862048. To quantify Oil-Red-O staining, dye was

eluted in 100% isopropanol for 30 min and absorbance of the eluate

vs. 100% isopropanol at 490 nm was measured [48].

Statistical analyses
The significance of observed differences was assessed using

Student’s t-test.

Supporting Information

Figure S1 Fundamental parameters of mitochondrial
function. Related to Fig. 1. The XF-24 Extracellular Flux Analyzer,

(Seahorse) was used to measure OCR as a basal rate, and after the

addition of Oligomycin (an inhibitor of the mitochondrial ATP

synthase, FCCP (to uncouple ATP synthesis from the electron

transport chain, ETC), or Antimycin A and Rotenone (to block

complex I and III of the ETC, respectively), as indicated. Resulting

changes in OCR indicate the amount of oxygen consumed for

mitochondrial ATP production, the maximal mitochondrial respira-

tion rate when proton flux is uncoupled from ATP synthesis, and finally

the amount of oxygen that is consumed by non-mitochondrial

processes when the ETC is inhibited. The SRC (spare respiratory

capacity) is the difference between maximal and basal OCRs.

(DOCX)

Figure S2 Dose response to etomoxir. Average basal OCR

of fecund females incubated without (0) or with etomoxir (ETO) at

different concentrations, over the first 30 min ex vivo. Data are

means plus SEM of readings from 5–6 individual female worms

per experiment.

(DOCX)

Figure S3 RNAi-mediated knockdown of, and targeted
inhibition of, SmACSL and SmACAD. Related to Fig. 4.
Treatment of fecund parasites immediately ex-vivo with siRNA

specific for SmACSL (A) or SmACAD (C) led to a 50%–60%

reduction in encoding mRNAs after 72 h. Data points are means

plus SEM of readings from 5–6 individual female worms per

experiment. For real time RT-PCR, RNA was extracted using

RNeasy (Qiagen), contaminating genomic DNA was removed

using Turbo DNA-free endonuclease (Ambion) and cDNA was

synthesized using SuperScript II reverse transcriptase (Invitrogen),

and oligo dT. RT-minus controls were performed to confirm

absence of genomic DNA (data not shown). SmACSL transcripts

were quantified relative to a-tubulin using Applied Biosystems’

7500 real-time PCR system and SYBR green PCR Master Mix

(Applied Biosystems), and the 22DDCt method. Dissociation curves

were generated for each real-time RT-PCR to verify the

amplification of only one product. SmACSL primers were:

forward 59-TATGCCTCTGCCCAACTCTC-39 and reverse 59-

CACGTACGGGAAGTGCTAAA-39. SmACAD primers were:

forward 59-GCTGTCACACCACCTTGTCC-39 and reverse 59-

TCCAGATTGACTTGGCCTCT-39. a-Tubulin (GI: 8355916)

primers were: forward 59-TAGAGCGTCCAACCTACACAA-39

and reverse 59-GGAAGTGGATACGAGGATAAGG-39. B.
Quantitation of Oil-Red-O staining of fecund females cultured

without (Ctrl) or with Triacsin C (TC) for 24 h.

(DOCX)
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