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Abstract
Identifying Ca2+-binding sites in proteins is the first step towards understanding the molecular
basis of diseases related to Ca2+-binding proteins. Currently, these sites are identified in structures
either through X-ray crystallography or NMR analysis. However, Ca2+-binding sites are not
always visible in X-ray structures due to flexibility in the binding region or low occupancy in a
Ca2+-binding site. Similarly, both Ca2+ and its ligand oxygens are not directly observed in NMR
structures. To improve our ability to predict Ca2+-binding sites in both X-ray and NMR structures,
we report a new graph theory algorithm (MUGC) to predict Ca2+-binding sites. Using carbon
atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-
chain oxygen ligand coordinates, MUGC is able to achieve 94% sensitivity with 76% selectivity
on a dataset of X-ray structures comprised of 43 Ca2+-binding proteins. Additionally, prediction of
Ca2+-binding sites in NMR structures were obtained by MUGC using a different set of parameters
determined by analysis of both Ca2+-constrained and unconstrained Ca2+-loaded structures
derived from NMR data. MUGC identified 20 out of 21 Ca2+-binding sites in NMR structures
inferred without the use of Ca2+ constraints. MUGC predictions are also highly-selective for Ca2+-
binding sites as analyses of binding sites for Mg2+, Zn2+, and Pb2+ were not identified as Ca2+-
binding sites. These results indicate that the geometric arrangement of the second-shell carbon
cluster is sufficient for both accurate identification of Ca2+-binding sites in NMR and X-ray
structures, and for selective differentiation between Ca2+ and other relevant divalent cations.
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Introduction
Ca2+, a secondary messenger in cellular signal transduction, plays an important role in many
biological processes, including the regulation of cell division, differentiation, and apoptosis
in the cell life cycle 1–4. Ca2+-binding proteins are significantly related to serious diseases

*Correspondence to: Jenny J. Yang, Department of Chemistry, Georgia State University, 50 Decatur Street, 550 NSC, Atlanta, GA
30303. jenny@gsu.edu (or) Guantao Chen, Department of Mathematics and Statistics, Georgia State University, 787 COE, Atlanta,
GA 30303. gchen@gsu.edu, Tel: (001) 404-413-5520 / Fax: (001) 404-413-5551.

Supporting Information
The supporting information contains one file (SupportingInformation.pdf) with thirteen tables. Table S1 provides an example of using
an adjacent matrix to represent protein structures. Table S2 summarizes details related to parameterization for cluster cutoff and filters.
Tables S3 and S4 provide brief descriptions of the X-ray training and testing sets respectively. Tables S5 and S6 summarize the
prediction results for these X-ray datasets, respectively. Tables S7 and S8 detail the prediction results on NMR training and testing
datasets. Table S9 details the prediction results on modeled structures. Tables S10–S12 provide results for testing on Mg2+, Zn2+ and
Pb2+ datasets. Table S13 provides results for testing on a negative control dataset.

NIH Public Access
Author Manuscript
Proteins. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
Proteins. 2012 December ; 80(12): 2666–2679. doi:10.1002/prot.24149.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



such as Alzheimer’s disease 5,6, heart disease 6, diabetes 6, leukemia 7,8, and cancers 9–12.
From a molecular perspective, mutations in close proximity to the Ca2+-binding sites often
alter a protein’s ability to bind Ca2+, a malfunction which is sometimes the primary cause of
diseases 13–15. Therefore, identifying Ca2+-binding sites in proteins is a crucial step towards
understanding the molecular basis of diseases related to Ca2+-binding proteins.

As illustrated in Fig. 1A, the coordination of Ca2+ utilizes various classes of oxygen atoms
from carboxyl groups (Asp, Glu), carboxamide groups (Asn, Gln), and hydroxyl groups
(Ser, Thr) in side chains, carbonyl oxygen atoms of most residues in the main chain, and
from cofactors and water molecules. The majority of all Ca2+-binding ligands originate from
turn/loop regions 16–19. Previous studies have revealed that Ca2+ is coordinated by 3–8
oxygen ligand atoms 18,20–22 with an average of 6 ligands for all Ca2+-binding sites, or 7
ligands for only EF-hand sites 17. These hydrophilic oxygen atoms are embedded within
multiple, concentric shells of hydrophobic carbon atoms 23. Statistical analysis from us and
others revealed that a majority of Ca–O bond lengths fall within the range 2.2–2.9Å and Ca-
C bond lengths fall within the range 2.4–4.6Å in Ca2+-loaded X-ray structures 18,20–22,24.

Computational methods to predict Ca2+-binding sites have been actively pursued using
various approaches 4,25–28. Most of the published structure-based Ca2+-binding site
prediction algorithms, including FEATURE 29, Fold-X 30, and the approaches by Nayal et
al. 20 and Yamashita et al. 23, rely on the spatial coordinates of ligand oxygen atoms. Our
previous work has led to the development of two algorithms, GG31 and MUG 32 for
predicting Ca2+-binding sites by constructing a corresponding graph for each protein with a
graph theoretic algorithm to identify oxygen atom clusters 31,32. These analyses of binding
site geometry have been based mainly on X-ray structures deposited in the Protein Data
Bank (PDB), and the prediction approaches derived from them have been tested mostly on
X-ray structures with high resolutions. Unfortunately, Ca2+-binding sites with weak affinity
(0.05–2mM) often remain unidentifiable or “invisible” in crystal X-ray structures due to low
occupancy and conformational ensembles. For example, although extracellular Ca2+ is
known to regulate family C of GPCR, Ca2+ was not observed in more than 20 X-ray
structures of metabotropic glutamate receptor (mGluR) 33,34. In addition, local or global
conformational change almost always occurs upon calcium binding due to alteration of
electrostatic interactions. Further prediction of Ca2+ binding sites in X-ray structures of low
resolution and homology models requires the capability to overcome large errors and
incorrect assignments of the side-chain oxygen atoms 35,36.

As a complementary technique of structural elucidation, NMR offers us additional insights
into Ca2+-binding proteins without the requisite of crystallization 37,38. NMR structures
differ from X-ray structures in that, typically, a whole ensemble of low energy
conformations satisfying the experimental constraints is obtained from the structural
calculations. These structures represent the dynamic nature of the protein in solution.
However, the Ca2+ ions cannot be directly observed in NMR experiments, but rather are
positioned in the structure based on indirect effects exhibited by chemical shifts and
constraint-based assumptions. A barrier to identifying Ca2+-binding sites in protein
structures derived by NMR is that the geometric coordination of Ca2+-binding sites cannot
be determined by direct observation of Ca2+, and this difficulty is compounded by the fact
that the positions of the oxygen atom ligands that chelate the Ca2+ are not directly
determined either, but extrapolated from templates of their residues, because the
isotopically-abundant 16O has an intrinsic zero nuclear spin.

In this paper, we report our progress in predicting Ca2+-binding sites in proteins where the
Ca2+ ion may not be directly observable (e.g., low resolution structures, weak affinity
binding sites, and NMR structures). We hypothesized that the second, hydrophobic shell of
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carbon atoms enclosing a Ca2+-binding site could sufficiently determine the site’s location
in either X-ray or NMR structures. To test this, we developed a new algorithm, MUGC,
which is capable of predicting Ca2+-binding sites by pinpointing the Ca2+ ion position using
carbon clusters (i.e., concentric rings of carbon atoms surrounding a ring of oxygen atoms
chelating the Ca2+, Fig. 1A), and applying filters based on the centers of mass of side-chain
and main-chain oxygen atoms. We have applied MUGC to delineate Ca2+-binding sites in
both X-ray and NMR protein structures without reference to explicit side-chain oxygen
ligand atoms. The metal selectivity of MUGC has been further evaluated by analyzing three
additional protein datasets containing Mg2+, Zn2+, and Pb2+ binding sites. Additionally,
MUGC was evaluated with a negative control dataset consisting of protein structures not
known to bind Ca2+ or other metal ions.

Our results demonstrate not only that the Ca2+-binding sites in NMR and X-ray structures
can be identified based on geometric arrangement of the second-shell carbon cluster, but that
this approach with Ca2+-optimized selection parameters, can also selectively differentiate
between Ca2+ and other relevant divalent cations. We further anticipate that application of
this algorithm will enable us to identify previously-unknown Ca2+-binding sites, deepen our
understanding of structural characteristics of Ca2+-binding sites, and improve our ability to
design Ca2+-binding proteins with diversified functions.

Materials and Methods
Definition of carbon shells

As seen in Fig. 1A, the Ca2+ ion is bound to oxygen atoms either from side-chain residues
(e.g., Glu or Asp) or main-chain carbonyl oxygen, largely via electrostatic interactions.
These atoms, in turn, are covalently bound to carbon atoms, which constitute a second shell.
A third shell of carbon atoms can be defined as carbon atoms covalently bound to a second
shell. The two concentric shells of carbon atoms, in our hypothesis, constitute a scaffold
which determines the central binding site. A set of physical parameters describing the spatial
relationship of the atoms comprising the binding site can be defined by the angle Ca–C1–C2
and the distance between Ca2+ and C1 (D1 in Fig. 1A) and by the distance between Ca2+

and C2 (D2 in Fig. 1A), where C1 and C2 are carbon atoms within the second and third
shells, respectively. The binding site, which includes both the Ca2+ and oxygen atoms, is
enclosed in a second shell defined by a particular carbon cluster. The Ca2+ position then can
be calculated by geometric parameters related to the second and third shell carbon atoms.

General description of algorithm
In general, execution of this algorithm involves three major steps (Fig. 1B). In step 1, taking
a PDB structure as input, we construct the protein topological graph whose vertices are the
carbon atoms with associated oxygen atoms. Two vertices share an edge if the distance
between them is less than some defined threshold. In step 2, we search for all maximum
cliques in the graph to identify carbon clusters, and tentatively position Ca2+ at the
geometric center (Ca2+ center) of each cluster. These clusters are required to have at least
four carbon atoms, ensuring a minimum of four oxygen atoms in the site available to chelate
Ca2+ 18,39. In step 3, we apply three different filters to remove clusters that are not suitable
for Ca2+-binding. The remaining clusters, as well as the Ca2+ center of each cluster, are the
predicted Ca2+-binding sites. When using dynamic NMR structures for prediction, MUGC

screens the best-fit site among all members of the ensembles and uses more inclusive
geometric parameters than when using X-ray structures.
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The topological graph of protein carbon atoms
To localize the initial calculation of the Ca2+ position, we construct a graph representation
of the protein. First, we extract all Cartesian coordinates of carbon atoms covalently bonded
to oxygen atom(s) and calculate the distances between all of these carbon atoms. Then we
construct a graph G(V, E) where V is the vertex set and E is the edge set of G. A vertex in V
represents one extracted carbon atom. An edge is assigned between two vertices if the
distance between these two vertices (C-C distance) is smaller than a predetermined cutoff
(7.5 Å for X-ray structures and 8.3 Å for NMR structures). The constructed graph is then
recorded in an adjacent matrix (Table S1). For example, calmodulin has four binding sites
(Fig. 2A and Fig. 2B). It also has a total of 209 carbon atoms covalently bonded to oxygen
atoms. After we construct its topological graph (Fig. 2C and Fig. 2D), the four binding sites
are clearly discernible as regions of dense convergence in the graph.

Center of mass
Proteins in solution, especially their flexible side chains, are in constant motion. To deal
with this motion, we use the abstracted side-chain mass center (Fig. 2A) as the reference for
predicting Ca2+ position. Side-chain center of mass is beneficial because it reduces
sensitivity to errors in the specific locations of side-chain atoms. The mass center of each
side chain is calculated using the simple formula, where the ri is the position of each atom
and mi is the atom mass.

(1)

Ca2+ localization algorithm
After preparation of the topological graph and side-chain center of mass for a given protein,
we first search all maximum cliques in a graph constructed from the carbon atoms. Finding
all maximal cliques of a general graph is an NP-hard problem,40 requiring more than
polynomial computation time to process. Fortunately, in the generated carbon atom graph,
the size of any maximal clique never exceeds ten. This ceiling is not a theoretical one, but a
pragmatic consequence of our considering only carbon atoms which are covalently bonded
with oxygen atoms. These carbon atoms maintain some distance from each other due to the
charge repulsion from the attached oxygen atoms. Based on these properties, we apply a
well-established algorithm of Bron and Kerbosch 41 to produce all the maximal cliques
efficiently. In our case, the maximal cliques are generated within O(n) time, where n is the
number of vertices in graph G.

Constraints and filters
We tentatively place Ca2+ in the geometric center of the carbon clusters, and then determine
if they qualify based on constraints from various filters including the center of mass of side-
chain, elimination of redundant predictions, van der Waals clashes, formal charge and
geometric constraints. Initial parameters were selected based on parameters used in previous
studies and statistical analyses conducted in our laboratory18,31,39. These parameters,
including cutoff distances, were then optimized based on values for selectivity and
sensitivity from analysis of the training dataset. These optimized parameters (Table S2) were
then applied to the test dataset. For example, the range of distance between Ca2+ and second
shell carbon atom (D1 in Fig. 1A) is reported to be between 3.0 – 4.6Å for main-chain
carbonyls18. The covalent bond length between second shell carbon atoms and its next-outer
shell carbon is 1.54Å. Therefore, we can estimate that the distance between a Ca2+ and the
third shell carbon atoms may not exceed 6.14Å and should also be greater than D1. If a
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predicted Ca2+ position falls outside of this range, this position is not likely a correct
prediction.

Performance evaluation on binding sites and binding residues
A Predicted True Site (PTS) is a true Ca2+-binding site for which there is at least one
Correct Hit (CH). Sensitivity (SEN) is applied to represent the percentage of PTS in all
Documented Sites (DS). Selectivity (SEL) is applied to represent the percentage of Correct
Hit (CH) in Total Predictions (TP). Sensitivity measures the proportion of actual binding
sites which are correctly identified. Selectivity measures the proportion of predicted binding
sites which are correct. Higher selectivity indicates fewer false positive predictions (= over-
predicted sites). Higher sensitivity and selectivity are important for reducing the number of
predictions and classification errors.

(2)

(3)

As MUGC predicts both Ca2+ position and binding residues, Correct Hit (CH) could be
defined in two ways. In the first definition, a CH is a predicted position falling within a
specific distance (here 3.5 Å 31,32,42,43) of the documented Ca2+ position. In the second
definition, a CH is a predicted cluster of residues that contains at least two true Ca2+-binding
residues 39. In NMR, where Ca2+ is not observable, we measure the prediction performance
by comparing the predicted residues to the holo X-ray crystal structures.

Algorithm implementations
The implementation language is mainly Java. The original source codes are available upon
request. Matlab, Mathematica and PyMOL were used for graphing and visualization. LPC/
CSU online servers were used for identify binding ligand from holo structures 44.

Results
Non-redundant X-ray dataset

To validate our hypothesis, we used two X-ray datasets: a training dataset (Tables S3 and
S5), a testing dataset (Tables S4 and S6), and a negative control dataset (Table S13). For the
datasets we generated, “non-redundant” applies to sequence identity, and means that we
used only sequences with 10% or less similarity. For the published dataset, we made sure
that no identical proteins were included within a single dataset. This also applied to the
NMR dataset.

The X-ray training dataset (Table S5) was originally from Schymkowitz et al. 30 The X-ray
testing dataset (Table S6) was reproduced by incorporating the Ca2+-binding proteins from
Pidcock and Moore’s datasets 17 and the validation structures for NMR testing dataset. We
eliminated the redundant proteins in the datasets and revised the testing datasets to ensure
that at least one binding site in each protein was coordinated by at least four binding ligand
atoms. Binding sites with low coordination numbers (three or less) may, due to crystal
packing or non-specific binding, imply reduced stability and lower binding affinity at
best 39. The X-ray training dataset contained 18 proteins with 45 documented Ca2+. The
testing dataset contained 43 proteins with 108 documented protein-coordinated Ca2+. The X-
ray training and testing datasets contained continuous (e.g. lactalbumin: 1B9O.pdb and
calcineurin: 1AUI.pdb), semi-continuous (e.g. lipase: 1OIL.pdb and proteinase K:
2PRK.pdb), and discontinuous binding sites (e.g. thermitase: 1THM.pdb and penicillin
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acylase: 1AI4.pdb). The negative control dataset contained 24 proteins selected at random
with resolution ≤ 2.0 Å, less than 90% sequence homology, and no indication of metal
binding sites in the selected structure or in related structures. All X-ray crystallography
structures were obtained from the PDB.

Sensitivity depends on C-C cutoff
Sensitivity of MUGC was found to increase as the C-C cutoff increases on the X-ray training
dataset as well as the over-predicted rate (Fig. 3). The over-prediction rate is calculated by
dividing the number of false positive predictions by the total number of documented sites.
This is consistent with previous finding that O-O cutoff is positively correlated with
sensitivity and false positive predictions31,45. We have used the larger 7.5Å as cutoff,
because this accommodates a distance twice the length of the combined Ca2+-O and C-O
bond lengths and we have effective methods to eliminate false positives within this range.

Filters help to eliminate false positive predictions
One of the concerns arising from not directly utilizing coordination atoms to predict Ca2+-
binding sites in proteins is the possibility of a large number of false positive predictions. To
reduce the number of reported false positive predictions, three types of filters were
incorporated into the algorithm: 1). A charge filter, which requires that at least one
negatively-charged residue is present within the tentative binding site; 2). Geometric shell
filters, which select the putative sites according to geometric relationships between the
calculated Ca2+ position and the second and third shell carbon atoms; 3). Filters based on
side-chain center of mass and van der Waals clashes. The side-chain center of mass is used
in conjunction with main-chain oxygen atoms. If a main-chain oxygen atom is under
consideration as the binding ligand, then the distance between the side-chain center of mass
and Ca2+ must be greater than that of the Ca-O (carboxylic) distance in the X-ray structure.

We use calmodulin (3CLN.pdb) from the X-ray training dataset to illustrate how these filters
work. First, we used vertices representing 209 carbon atoms, using 7.5 Å as C-C cutoff, to
construct a topological graph (see Methods). By searching all maximal cliques in the graph,
4626 non-redundant carbon clusters comprising four or more carbon atoms were obtained.
Among the 4626 clusters, 4589 are false positive predictions. The charge filter first
eliminates 1639 carbon clusters. Next, the geometric shell filters eliminate an additional
2453 clusters, including 1405 clusters where the distance between Ca2+ center and third
shell carbon atom is smaller than the distance between Ca2+ center and the second shell
carbon atom, and another 1048 are eliminated based on previously-reported geometric
parameters.18 The third and final filter eliminates another 497 clusters. For example, we
assume that the clash radius between Ca2+-nitrogen is 2.55 Å. If the distance between the
Ca2+ center and each nitrogen atom is smaller than this value, we consider that there exists a
clash and thus eliminate this cluster. Parameterization details are provided in the supporting
information.

In calmodulin, carbon clusters which sequentially passed all filters, are scored as firm
predictions; this number is consistent with the documented binding sites. We also have
applied the filters separately, to illustrate improved results obtained by sequential
combination. The eliminated clusters are summarized in Table I.

Performance on X-ray testing dataset
MUGC was evaluated with the Ca2+-loaded X-ray testing dataset (Table S6). Out of the 108
documented protein-coordinated Ca2+ ions in the testing dataset, 99 are chelated by more
than three binding residues. If we use the predicted Ca2+ position (CP) as a measure, MUGC

identified 102/104 sites with coordination numbers greater than three. Five binding sites in
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this dataset have only three binding residues each. In terms of binding residues (BR), MUGC

is able to identify 98/99 binding sites having more than three binding residues and 4/9
binding sites having three or fewer binding residues (Tables II and S6). The only binding
site that was not successfully predicted by MUGC was due to the fact that no negatively-
charged residues are encountered in this binding site. This is discussed in greater detail in
the Discussion section.

For the negative control dataset comprising proteins without known Ca2+-binding sites, we
define True Negative (TN) as any prediction which does not identify a Ca2+-binding site,
and False Negative (FN) as any prediction which does identify a Ca2+-binding site. Based
on these criteria, MUGC correctly predicted 16/24 proteins as non-Ca2+-binding proteins,
with the remaining 8/24 proteins incorrectly identified as having Ca2+-binding sites. A
summary of predictions for this dataset is reported in Supplemental Table S13. The
prediction success rate (66%), while lower when compared to values reported for sensitivity
and selectivity with the testing dataset, still indicates that the majority of proteins were
identified correctly. We can further speculate that one or more of the 8 FN predictions may
be Ca2+-binding sites that remain to be identified as such. These results show that our
hypothesis is valid on X-ray-derived Ca2+-loaded structures.

Structural differences between X-ray crystallographic sites and NMR solution sites
Ca2+ binding sites with high affinity in X-ray structures are well defined due to direct
observation of electron density of the metal and its coordinating oxygen atoms. For example,
the static features of EF-hand Ca2+-binding sites in proteins such as a troponin C exhibit
structurally-similar pentagonal bipyramidal geometries (Fig. 4A). This geometry is well
conserved in more than 10 X-ray structures of troponin C 21. In contrast, Ca2+-binding sites
in NMR structures usually are not well defined due to lack of directly observable constraints
and the dynamic nature of the ensembles. In addition, Ca2+-binding sites are often located
on the highly solvent-accessible surface, which reduces the possible connectivity that can be
used to define the Ca2+-binding site. For example, the high-resolution structure of troponin
C (2TN4.pdb), determined in the presence of 10 mM of Ca2+, has 23 structures in its NMR
ensemble. Surprisingly, the third Ca2+-binding site (D103, N105, D107, Y109 and E114) in
the least-energy (first) structure of the ensemble cannot be recognized as a Ca2+ site by the
criteria developed for static structures.

Fig. 4B illustrates this lowest-energy structure, while Fig. 4C shows a composite of all
structures in the ensemble. Dynamic motion of the Ca2+-binding sites is implicit in the NMR
ensemble, where an ideal binding conformation may exist only temporarily. Such
observations motivated us to investigate the performance of algorithms on predictions of
NMR structures.

Non-redundant NMR dataset
To validate our hypothesis on NMR structures, we used a published training dataset 39

(Table S7) and constructed a testing dataset (Table S8). The training NMR dataset (Table
S7) contains six, EF-hand-type Ca2+-binding proteins with a total of 16 binding sites. In four
of these the authors originally deposited structures for which they imposed Ca2+ constraints
in determining the structures: calmodulin (2BBM.pdb), parvalbumin (2PAS.pdb), yeast
frequenin (1FPW.pdb), and epidermal growth factor receptor pathway substrate 15
(1C07.pdb). It is not possible for us to project the original structures as they might have been
constructed without invoking the Ca2+ constraints. In the other two cases (troponin C:
1TNW.pdb and calbindin D9K: 2BCB.pdb) the structures submitted were not modified
based on Ca2+ constraints.
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We feel it important to include in the testing set only NMR structures which were calculated
without use of Ca2+ constraints. The testing dataset (Table S8) contains 11 NMR structures,
all of which meet this criterion. Two additional criteria were imposed: i) The data
corresponded to the holo forms of the proteins (i.e., all binding sites were occupied by Ca2+

in solution); ii) The NMR structures had corresponding holo structures derived
crystalographically, so that prediction results could be validated.

Analysis of C-C distance and geometric centers on a NMR training dataset
We analyzed the C-C distance of binding sites in the NMR structures with and without Ca2+

constraints added to the structural calculations. Each ensemble in the NMR training dataset
was evaluated. If the total number of ensembles was greater than 20, we used only the first
20 ensembles in our training NMR dataset. These data show that in the NMR structures with
Ca2+ constraints, the second shell C-C distances are clustered between 4 and 7Å, and 90%
of the distances fell below 8.3Å, which was used as cutoff for identification of the majority
of the carbon atom clusters.

The distribution of C-C distances in NMR binding sites exhibits a lower mean and smaller
deviation in the constrained structures (Fig. 5A) as compared with structures lacking Ca2+

constraints (Fig. 5B). This is consistent with our intuition that the addition of Ca2+ to the
structures pushes carbon clusters closer to each other in the binding sites, and therefore the
NMR structures should be closer to their X-ray holo counterparts.

There exists at least one structure in the ensemble that is similar to the site conformation
seen in models derived from X-ray diffraction of holo structures. Naturally, such sites are
recognized as having canonical Ca2+-binding geometry. For example, in the NMR structures
of calbindin D9K (2BCB.pdb, derived without Ca2+ constraints), we observe that the
geometric Ca2+ center determined by the main-chain carbon atoms of residues E17, D19,
Q22, together with side-chain carbon of E27, is geometrically similar (within 0.55Å) to the
Ca2+ center documented in the holo X-ray-derived structure (4ICB.pdb). Fig. 4D shows this
NMR-observed binding loop superimposed on the X-ray structure. Similar congruity is seen
between the geometric center fixed by side-chain carbon atoms from D54, N56, D58, E65
and main-chain carbon from E60 as seen in the holo X-ray structure and in the second-
ranked structure in the NMR ensemble (Fig. 4G). These observations encouraged us to use
more inclusive parameters for the carbon clusters on NMR structures and predict Ca2+-
binding positions based on all ensembles.

Performance on NMR training dataset and testing dataset
For the training dataset (Table S7), MUGC identified all binding sites with a selectivity of
88%. For the testing dataset (Table S8), MUGC predicted 20 Ca2+-binding sites out of the
(X-ray authenticated) 21 binding sites with 95% sensitivity and 81% selectivity. These
results show that using second shell carbon atoms can predict Ca2+ positions in the NMR
structures.

MUGC’s capability on modeled structures
Among NMR structures (the testing dataset), the second binding site of the human centrin 2
(in complex with a 17 residue peptide (P1-XPC) from xeroderma pigmentosum group C
protein) is missed because the binding site simply deviates too much from the site
conformation seen in holo X-ray structures (RMSD of the loop is 2.594 Å) 4. That MUGC

misses such distorted sites raises an interesting question: How much distortion from an ideal
site can MUGC cope with?
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To address this question, we performed an additional experiment. We removed Ca2+ ion
from the structure of a bovine intestinal Ca2+-binding protein (PDB: 3ICB; 8.7 kDal, 2 sites)
and ran a molecular dynamics (MD) simulation (using AMBER) to generate 199
conformations (refer to Table S9 for the MD protocol). Each conformation has two Ca2+

sites, for a total of 398 binding sites. MD simulation, in the absence of cohesive Ca2+,
represents a deliberate attempt to allow the potential ligands to distort a known binding site
in a chemically realistic way. Using the simulated structures (in which we “know” site
ligands and, roughly, Ca2+ centers), we let MUGC make its predictions. Typical of short-
term MD simulations, the individual structures from the trajectory ensemble do not deviate
much from the original structure (maximum RMSD is 2.00, Table S9). MUGC predicted
384 out of the 398 Ca2+-binding sites.

Although we have not analyzed binding site integrity in detail across this trajectory, the
average RMSD of 1.65 Å is on the order that one might expect for homology modeling or
contemporary crystallographic refinement. Perhaps more to the point, it is almost exactly the
tolerance our algorithm allows for 3rd-shell-carbon-to-Ca2+ distance (4.54 to 6.14 Å, Δ =
1.60). We presume the 14 missed sites (3.5%) represent the high-end fringe of the average
RMSD, and conclude that, though 14 of these “distortions” confounded MUGC (not to
mention the apparent outlier in the NMR structures of human centrin 2), this performance
testifies to the value of using carbon shell information to track binding sites.

Metal selectivity for Ca2+ over other divalent ions
Many proteins have well-documented binding sites for divalent metal ions other than Ca2+.
It becomes particularly relevant to ask whether the criteria we have developed to recognize
Ca2+ sites from second-and third- shell carbon coordinates are able to discriminate sites
known to bind other divalent metals of similar size. That is, how selective are these criteria
for Ca2+ binding as opposed to other divalent metals?

To address this question, we conducted additional research to determine whether the use of
carbon shells in MUGC could successfully discriminate between binding sites for Ca2+ as
opposed to other divalent metals. Three additional testing datasets (Tables S10–S12)
comprising X-ray structures of other metal binding proteins, were evaluated for Mg2+ (52
sites), Zn2+ (51 sites) and Pb2+ (47 sites). Mg2+ and Zn2+ were selected for comparison due
to their similar ionic radii (Mg2+ =0.72 Å, Zn2+ =0.75 Å) 46, and because they, along with
Ca2+, are the most abundant physiologically-relevant metals involved in biochemical
reactions. Pb2+ was selected due to its similar ionic radius with Ca2+ (1.19 vs. 0.99 Å) 46 and
a volume of evidence indicating a close relationship between Pb2+ toxicity and Ca2+

metabolism 47–51.

For these analyses, a binding site was considered misclassified if a Ca2+-binding site was
predicted within a non-Ca2+ ion (i.e., if it placed a Ca2+ ion within 3 Å of the documented
divalent metal 32,39, and if this predicted site is not known to be a true Ca2+-binding site.)
Results of our analyses indicate that MUGC does not misidentify, as Ca2+-binding sites,
83%, 96% and 89%, respectively, of documented Mg2+, Zn2+, and Pb2+ binding sites.
Moreover, these are under-estimates, since there is no assurance that the “misidentified”
sites may not in fact represent sites which can alternatively bind Ca2+, but which have not,
as yet, been unidentified experimentally. Indeed, several of the “misidentified” Mg2+ and
Zn2+ sites exhibit coordination geometries (and/or utilize ligands) that would be atypical for
Mg2+ (e.g., carbonyl oxygen atoms as seen in IKCZ.pdb) but not for Ca2+. Moreover, for
some of the documented Mg2+-binding sites, very high concentrations of Mg2+ were added
during crystallization (e.g., 250 mM 52 in 1OBW.pdb and 100 mM 53 in 1KCZ.pdb). Thus it
would be reasonable to reexamine some of these “misidentified” Ca2+-binding proteins to
ascertain if in fact they might be cryptic Ca2+-proteins.
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If we discard such questionable cases from our statistics (identified as “Other” in
“Misclassified” column of Tables S10–S12), our final results indicate that none of the
remaining binding sites for proteins in the Mg2+, Zn2+, or Pb2+ datasets are improperly by
MUGC as Ca2+-binding sites, demonstrating excellent metal selectivity.

Discussion
Key factors for metal coordination

Our studies have revealed several key properties that are important for metal coordination.
First, a second-shell of carbon clusters encloses the first shell atoms which directly
coordinate Ca2+. We hypothesize that the Ca2+ position within a Ca2+-binding protein is
determined as much by the positions of carbon atoms in the hydrophobic shells surrounding
Ca2+ as by the immediate positions of the oxygen ligands comprising the actual binding site.
A practical corollary to this hypothesis is that, in cases where the coordinates of ligand
oxygens are poorly defined, the surrounding carbon shells can be relied upon to accurately
predict the location of the Ca2+ center. Such cases are observed in crystallographically
determined structures, where coordinates of side-chain oxygens may be poorly resolved
because of their mobility. Limitations associated with positioning of oxygen atoms in NMR
structures are also observed, specifically because the naturally-abundant isotope of oxygen
is spectroscopically silent in NMR. In the case of backbone oxygen atoms, these
reconstructed positions have higher precision, precisely because the geometry is fixed and
no torsion angle is involved. However, for sidechain oxygens, such as from the carboxylic
groups of Asp and Glu, which are subject to torsional rotations, there are substantial
uncertainties in the positions. The present work represents the first attempt to exploit the
relative placement of the carbon atoms to pinpoint Ca2+ centers without reference to the
locations of the directly ligated oxygen atoms, particularly those from side-chain.

From the structural perspective of binding sites, the first (hydrophilic) oxygen shell in the
binding sites permits the protein’s exposure to water and hydrated Ca2+. This immediate
binding scaffold is supported by a second (hydrophobic) shell of carbon atoms, which may
restrict flexibility within the site and thereby ameliorate the decrease in binding-associated
entropy 54. In order to exercise the regulatory role of Ca2+ in the cell, binding sites in
proteins must be able to bind and release Ca2+ within a physiological range of Ca2+

concentrations. This implies not only the existence of a “pre-organized” site, but also
restricted structural flexibility within that site 21,23,54, as well as the stable positioning of
carbon atoms oriented in such a way to facilitate formation of the hydrophilic oxygen shell
which coordinates the Ca2+ directly. Our earlier studies demonstrated that the oxygen shell
in the Ca2+-binding site has an identifiable geometry (i.e., four or more oxygen atoms in the
site, all separated from each other by an oxygen-oxygen distance ≤ 6Å) 31,32. Our current
studies, described here, suggest that this structural regularity must be supported by the
associated C-O bonds, implying an appropriately arranged geometry for the surrounding
carbon shell – an arrangement which should also be identifiable.

Second, we have shown that the vast majority of Ca2+-binding sites have at least one
negatively-charged residue within the tentative binding site. This observation justifies the
utility of applying a charge filter, which improves selectivity in predicting various classes of
Ca2+-binding sites in the protein data bank 18. In its analysis of X-ray structures, the MUGC

algorithm missed only one site in the complex formed between proteolytically-generated
lactoferrin fragment and proteinase K (1BJR.pdb) – an exception to the rule, in that there is
no negatively-charged binding residue in this binding site which has a coordination number
of four. The Ca2+-binding site was composed of residues R12, S15, N257 and A273 55. It is
likely that this binding site does not have strong Ca2+-binding affinity.
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Third, our analysis of calmodulin has also shown that it is important to ensure that the
predicted Ca2+ positions contain neither Van der Waals clashes nor over-lapping side-chain
centers of mass. The concept of side-chain center of mass (SC-CoM) has been previously
used in protein structural prediction 42. In this work we present a novel application for the
use of SC-CoM as an aid to predict Ca2+-binding sites. In a sense, side-chain center of mass
is used here as a surrogate for poorly-resolved ligand oxygen coordinates.

Implications for metal selectivity
From Tables S10–S12, we can conclude that, in most cases, MUGC does not mis-classify
other metal binding sites as Ca2+-binding sites. There are two key design features in MUGC

to help distinguish Ca2+-binding sites from non-Ca2+-binding sites. First, carbon clusters
utilized by MUGC are restricted to those with associated oxygen atoms and were required to
have at least four carbon atoms. Differences in coordination numbers between Ca2+ and the
other metals, as well as variations in ion solvation, result in different ions having different
numbers of carbon atoms associated with binding. For example, Mg2+ tends to be more
highly-solvated than Ca2+, and the presence of more water molecules results in fewer carbon
atoms within the microenvironment of the binding site. Additionally, both Zn2+ and Pb2+

typically utilize fewer binding ligands than Ca2+, and utilize different ligand types 56. As a
hard Lewis acid, Ca2+ binds preferentially with oxygen atoms whereas both Zn2+ and Pb2+,
considered borderline Lewis acids, may bind with either hard or soft bases, utilizing both
nitrogen and sulfur ligands, as well as oxygen. Due to the smaller number of oxygen-based
ligands for these metals, MUGC selectively eliminates those sites as potential Ca2+-binding
sites.

The second key design feature for identification of Ca2+-binding sites relates to ionic radius,
which is another factor by which proteins discriminate between divalent ions 57. For
example, Mg2+ is 28% smaller than Ca2+, and this smaller VDW radius alters the geometry
of the binding site which then may not accommodate the larger Ca2+ ion. After carefully
calibrating the geometric parameters in MUGC with respect to Ca2+ radius and to the spatial
relationships of binding ligands in Ca2+-binding sites, MUGC can distinguish Ca2+-binding
sites from those of other metals.

Our results indicate that the algorithmic approach of MUGC provides a useful tool for
delineating metal binding sites. This differentiation is achieved by carefully tuning the
geometric and chemical parameters of MUGC based on analysis of empirical data associated
with Ca2+-binding, and parameter optimization.

Comparison of MUGC with other algorithms
Ca2+-binding sites in proteins can be classified into continuous and discontinuous types.
Continuous Ca2+-binding sites are formed by the ligand residues from a contiguous stretch
of amino acid residues, and include EF-hand Ca2+-binding proteins such as calmodulin and
calbindinD9K. Discontinuous Ca2+-binding sites are formed with ligand residues non-
adjacent in the primary sequence. Unlike several metal ions such as zinc and iron (with
defined coordination geometry and sidechain ligand residues) Ca2+-binding sites in proteins
are highly irregular and with diversified coordination number (3–8). Ca2+ ligand atoms can
come from side chain carboxyls of Asp and Glu, from amides of Asn and Gln, from
hydroxyls of Thr and Ser, and from mainchain carbonyls of all residue types, as well as from
solvent such as water 56. Thus, while methods based on sequence-profiles and machine-
learning for prediction for some metal ions are reasonably accurate, these prediction
algorithms are limited to continuous calcium binding sites, largely canonical EF-hand
calcium binding motifs. In our previous paper by Zhou et al, we have designed a Ca2+-
binding protein Search Server named CaPS, which extends prediction of Ca2+-binding sites
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in proteins from canonical EF-hand motifs to pseudo EF-hand and other EF-hand like motifs
based on sequence patterns and signatures4. We have successfully applied this method to
predict EF-hand-like calcium binding proteins in bacterial and virus systems58,59.

In an effort to compare the prediction capability of MUGC with the sequence-pattern search
algorithms, we have submitted the sequences from the training dataset (with 52 calcium
binding sites) to the CaPS web-server. CaPS is able to identify all EF-hand-like patterns in
14 calcium-binding sequences on the query proteins without false positive. However, the
sensitivity of CaPS (26%) is significantly lower than MUGC (92%) on the whole training
dataset, due to its limitation with regards to discontinuous binding sites (data not shown).

We have further compared the capability of MUGC with three structural-based algorithms,
including our previous reported MUG, SitePredict, and WebFeature (the web-based
implementation of FEATURE) using an NMR testing dataset.

The MUG web-server does not accept NMR ensembles, so we submitted each member of
the ensemble one by one; WebFeature and SitePredict do accept ensembles of structures. In
these NMR structures there are no documented Ca2+ ions. The prediction results are
summarized in Tables III and IV.

To compare results with FEATURE, whose output is the predicted Ca2+ positions in the
structures, we calculated the sensitivity and selectivity by mapping the Ca2+ position into the
binding residues. If we observe at least one documented binding residue within 4Å of the
predicted position, then we count this position as correct prediction. Failure to meet these
criteria results in a false positive. FEATURE predicted 7/21 binding sites with 33%
sensitivity and 100% selectivity. Despite this algorithm’s advantage in selectivity, however,
it fails to identify a significant proportion of sites in the dataset. This observation illustrates
the persistent tradeoff between sensitivity and selectivity.

Most of the published algorithms designed to predict Ca2+-binding sites are based on
optimal ligand geometry deduced from high-resolution X-ray static structures, and thus rely
heavily on the accuracy of the placement of ligand oxygen atoms. In contrast, MUGC and
SitePredict deliberately avoid use of specific side-chain and ligand coordinates in an effort
to desensitize the method to vagaries in the location of ligands typical in low-resolution or
homology-modeled structures.

To compare our results with SitePredict (whose output is a list of residues involved in
binding) we used such residues as a measurement of correctness of the prediction.
According to its web-server (dated current as of Dec. 14, 2011) a default cutoff of 4 is used
for predictions in binding residues (scores greater than 4 are considered as binding residues).
We first compared MUGC with SitePredict in NMR structures. SitePredict predicted 7/21
binding sites. Our data have shown that MUGC exhibits significantly better performance in
terms of sensitivity than SitePredict under conditions where both have comparable
selectivity. The performance comparison with FEATURE and SitePredict, underscores the
inadequacy of site-recognition algorithms, informed by static structures, to recognize sites in
dynamic situations 25.

We also compared MUGC with SitePredict for performance with X-ray structures. As for
testing on NMR structures, we considered that SitePredict is able to predict a binding site, if
it is able to identify at least one binding residue in an authentic site. For our comparative
analysis, we applied a more stringent definition for the MUGC’s true-positive prediction
sites by requiring that there be at least two binding residues predicted in the authentic site. If
the predicted residue is not a binding residue, then it is a false positive residue. In the case
that one binding residue appeared in two sites (thermolysin: 1HYT.pdb), we counted it twice
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for SitePredict’s true positive residue, but once for MUGC’s true positive. The results show
that, using these criteria, MUGC has a sensitivity of 94%, while detecting the binding sites at
a selectivity rate of 43% (Fig. 6). On the same dataset, SitePredict has a sensitivity of 59%
and a selectivity of 20%. These results suggest that the performance of predicting binding
residues is improved by using second shell carbon atoms.

A comparison between MUGC and our previously-reported MUG algorithm indicated little
difference in results when analyzing the static X-ray structure dataset: with MUGC

exhibiting 89% sensitivity and 76% selectivity, compared to 91% sensitivity and 73% for
MUG. However MUGC results showed improvement compared to MUG with the testing
NMR dataset: MUGC has better sensitivity (95%), and fewer false positive predictions,
although the selectivity of 81% leaves room for improvement. The comparable results for
MUG were a sensitivity of 90% with a selectivity of 61%. MUGC’s superior performance
with NMR datasets (Table III), however, is somewhat muted by the fact that these datasets
are small. The PDB contains many fewer NMR structures than X-ray structures, and very
few Ca2+-binding proteins in NMR structures inferred without Ca2+ constraints. Manually
combining the two algorithms yields in 100% sensitivity and 71% selectivity.

Challenges in algorithm evaluations
In this work, several statistical measurements were applied to assess the quality of our
predicted results and to estimate errors. First, we evaluated prediction error based on the
difference in distance between the predicted and documented Ca2+ centers 29,30. Second, we
evaluated a classification error based on ligand residues predicted to be involved in binding
versus documented binding ligand residues (See Table II). Third, we evaluated a negative
control dataset comprising proteins not currently known to bind Ca2+ or other metal ions.

The challenge for evaluating the accuracy of predicting Ca2+-binding sites stems from the
fact that no consensual standard of quality has emerged from previous studies. Earlier
works, such as those of Yamashita et al. 23 and Di Cera et al. 20, listed the prediction results
but did not include statistical evaluations of the results. Glazer et al. applied sensitivity and
selectivity to compare the performance of FEATURE with results reported by Nayal and Di
Cera 25, however Schymkowitz et al. have argued that the Fold-X algorithm was better at
placing the Ca2+ position than was FEATURE 30. Babor et al. 60 later noted a large number
of false positive predictions associated with Fold-X, and also suggested that its force-field
optimization step is very sensitive to small changes of position due to the electrostatic nature
of the interactions. Quality evaluation is further complicated, as seen in this study, when the
“structure” is in fact an ensemble of structures. A concise quality measurement over the
ensemble is problematic.

Yet another challenge comes from the definition of a false positive. We take as the most
rigorous standard, namely the position of Ca2+ explicitly observed by X-ray diffraction of
holo proteins. But X-ray models are not infallible; absence of Ca2+ at a physiologically
functional binding site, especially a low affinity one, may simply mean that Ca2+ failed to
crystallize at that site. Ironically, one might argue that the most exquisite use of prediction
algorithms would be to reveal sites not visualized to contain crystallized Ca2+, but
subsequently proved to be bona fide sites.

To predict sites of Ca2+ binding in proteins where the site may be indeterminate because of
invisibility in X-ray and NMR structures, we have developed a graph-based, site-recognition
algorithm which relies on carbon shell and side-chain center of mass information. This work
shows that, using information from carbon atoms, with formal ionic charges and center of
mass as additional filters, we can accurately identify Ca2+-binding sites in X-ray holo
structures. The binding sites in four holo NMR structures, computed with Ca2+ constraints,
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could be identified easily by this algorithm. Additionally, by testing 21 NMR binding sites
that do not utilize Ca2+ constraints, we have demonstrated improved prediction results with
NMR structures using carbon atoms comprising the second and third concentric shells
surrounding the binding sites. Finally, our results also demonstrate that the new algorithm is
optimized for prediction of Ca2+-binding sites, and able to discriminate Ca2+ from other
divalent metal ions such as Mg2+, Zn2+ and Pb2+. The successful identification of Ca2+

positions by using the carbon shell deepens our understanding of the structure of Ca2+-
binding sites, thus further enhancing our capability to design Ca2+-binding proteins 61–63.
This new algorithm may be applied advantageously to unrefined homology models, low-
resolutions models and NMR structures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Definition of shells and algorithm workflow
(A) The central Ca2+ is coordinated by the first shell of oxygen atoms (light gray), which is
concentrically embedded into two other shells of carbon atoms (black). Depending on the
length of the alkyl side chain, an atom of the second or third shell has a covalent bond with
an atom from the first or second shell. D1 represents the distance between Ca2+ and second
shell carbon atoms. D2 is the distance between Ca2+ and third shell carbon atoms. A1 stands
for the angle formed by Ca2+ and the second and third shell carbon atoms, respectively (Ca-
C1-C2). (B) Workflow of MUGC.
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Figure 2. The structure of calmodulin (CaM) and topological graph of carbon atoms
(A) CaM with center of mass of side chain (the small dots). (B) Ca2+ binding site EF-I of
CaM. (C) Topological graph of all carbon atoms in CaM associated with potential oxygen
ligands (includes both side-chain and main-chain carbon atoms in putative binding residue).
(D) The graph of CaM site EF-I loop.
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Figure 3. Performance in terms of sensitivity on X-ray dataset depending on C-C cutoff
Sensitivity of MUGC increases as the C-C cutoff increases on the X-ray training dataset as
well as the over-predicted rate (the number of false positive predictions divided by the total
number of documented sites).
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Figure 4. Structure comparison between X-ray holo and NMR structures
(A) X-ray structure of troponin C (2TN4.pdb) at a resolution of 2.00 Å. (B) First ensemble
of NMR troponin C (1TNW.pdb) determined without Ca2+ constraints. (C) All
conformations in the NMR ensemble of troponin C (1TNW.pdb), determined without Ca2+

constraints. Sub-figures (D) through (G) indicate the alignments of the binding site in
calbindin D9K NMR structures inferred without Ca2+ constraints (blue) and holo X-ray
structure (green). Ca2+ in X-ray is gray and the geometric center of a carbon cluster in the
NMR structure is red. (D) Ca2+ can be placed in the binding site formed by the loop A14-
E27 in this first member of the ensemble. (E) The binding site formed by the loop D54-E65
of the first member of the ensemble does not appear to accommodate Ca2+, though it is
present in the X-ray structure (gray). (F) Similarly, the binding site formed by the loop A14-
E27 of the second structure in the ensemble cannot accommodate Ca2+, while (G), that
formed by the loop D54-E65, can.
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Figure 5. C-C distances analysis
(A) four NMR structures from the training dataset with Ca2+ constraints (1C07.pdb,
1FPW.pdb, 2BBM.pdb and 2PAS.pdb). (B) Troponin C NMR structures without Ca2+

constraints (1TNW.pdb).
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Figure 6.
Comparison between MUGC and SitePredict based on residues on testing X-ray dataset.
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Table I

False positive predictions (calmodulin: 3CLN) remaining following applications of different filters in either
consecutive sequencea or individuallyb.

Filter Type

Chgc Geomd COMe

Sequential

2950 497 0

4589 2950 497

Individual

2950 129 267

4589 4589 4589

a
Filters were applied consecutively.

b
Each Filter was applied individually.

c
Charge filter.

d
Geometric filter.

e
Center of mass and clash filter. Numerator represents remaining false positive predictions.
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Table II

Performance on 43 proteins with 108 Ca2+ in testing X-ray dataset, measured by CPa and BRb.

CP BR

TDS c

SEN d 94% 94%

SELe 76% 43%

CN f (n > 3)

SEN 98% 98%

SEL 76% 43%

a
Prediction based on Ca2+ position.

b
Prediction based on binding residues.

c
Total documented sites.

d
Sensitivity.

e
Selectivity.

f
Coordination number.
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Table III

Identification of Ca2+ positions on NMR structures by MUGC, MUG and FEATURE.

MUGC MUG FEATURE MUGC+ MUG

PTS a 20 19 7 21

DS b 21 21 21 21

CH c 330 284 21 610

TP d 403 451 21 859

SEN e 95% 90% 33% 100%

SEL f 81% 63% 100% 71%

a
Predicted True Sites.

b
Documented Sites.

c
Correct Hits.

d
Total Predictions.

e
Sensitivity.

f
Selectivity.
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Table IV

MUGC and SitePredict predictions based on binding residues in NMR structures.

MUGC SitePredict

PTS a 20 7

DS b 21 21

CH c 87 12

TP d 327 34

SEN e 95% 33%

SEL f 26% 35%

a
Predicted True Sites.

b
Documented Sites.

c
Correct Hits.

d
Total Predictions.

e
Sensitivity.

f
Selectivity.
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