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Abstract The term neuroplasticity encompasses structural and functional modifications of
neuronal connectivity. Abnormal neuroplasticity is involved in various neuropsychiatric
diseases, such as dystonia, epilepsy, migraine, Alzheimer’s disease, fronto-temporal degeneration,
schizophrenia, and post cerebral stroke. Drugs affecting neuroplasticity are increasingly used as
therapeutics in these conditions. Neuroplasticity was first discovered and explored in animal
experimentation. However, non-invasive brain stimulation (NIBS) has enabled researchers
recently to induce and study similar processes in the intact human brain. Plasticity induced
by NIBS can be modulated by pharmacological interventions, targeting ion channels, or neuro-
transmitters. Importantly, abnormalities of plasticity as studied by NIBS are directly related to
clinical symptoms in neuropsychiatric diseases. Therefore, a core theme of this review is the
hypothesis that NIBS-induced plasticity can explore and potentially predict the therapeutic
efficacy of CNS-acting drugs in neuropsychiatric diseases. We will (a) review the basics of
neuroplasticity, as explored in animal experimentation, and relate these to our knowledge
about neuroplasticity induced in humans by NIBS techniques. We will then (b) discuss
pharmacological modulation of plasticity in animals and humans. Finally, we will (c) review
abnormalities of plasticity in neuropsychiatric diseases, and discuss how the combination of NIBS
with pharmacological intervention may improve our understanding of the pathophysiology of
abnormal plasticity in these diseases and their purposeful pharmacological treatment.
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Introduction

Neuroplasticity is the ability of the brain to reorganize its
structure and function due to intrinsic or environmental
demands. More specifically, this term encompasses the
weakening and strengthening of pre-existing synaptic
connections as well as the pruning of pre-existing, and
the formation of new, synapses. First experimentally
demonstrated in 1973 by Bliss and Lømo, neuroplasticity
has attracted ever increasing attention in neuroscience
research, because it seems to form the physiological basis
of cognitive processes such as learning and memory
formation. Moreover, neuroplasticity is involved in neuro-
psychiatric diseases and rehabilitation processes, such as
reorganization of neuronal networks in schizophrenia or
re-learning of motor functions after stroke. In animal
research, protocols suitable to induce plasticity, and
mechanisms of plasticity induction, have been extensively
studied since its introduction and, conceptually, may
be transferred to non-invasive brain stimulation (NIBS)
protocols for the induction of plasticity in the human
brain. This basic research has helped to clarify mechanisms
of plasticity in the human brain in vivo, and its importance
for normal and pathological brain function. Importantly,
it was demonstrated that plasticity in humans can be
significantly modified by pharmacological agents.

Drug development for the treatment of neuro-
psychiatric diseases in humans is currently burdened by
a high rate of marketing failure at late stages due to
unsuccessful large-scale clinical trials (Woolf, 2010). For
neuropsychiatric diseases, in which alterations of plasticity
are causally involved, exploration of the impact of CNS
active drugs on neuroplasticity is likely to be a highly
attractive intermediate step. Modifying drug effects on
abnormal plasticity may constitute novel biomarkers of
monitoring or predicting treatment efficacy.

In this paper, we will first review stimulation techniques
for the induction of plasticity in animals and humans,
summarize the involved mechanisms of plasticity, and
review the pharmacology of plasticity. In the next
step, we will give an overview about abnormalities of
plasticity in neuropsychiatric diseases, as explored with
NIBS techniques, and describe pharmacological effects on

neuroplasticity and their relation to clinical symptoms
in these diseases. Finally, we will give an outlook on the
potential of NIBS-induced neuroplasticity to serve as a
biomarker for probing the therapeutic efficacy of CNS
active drugs.

Plasticity induction protocols

Animal experimentation

Repetitive electrical stimulation. Since the seminal work
by Bliss & Lømo (1973) it is known that repetitive electrical
stimulation of nerve fibres can induce an immediate and
prolonged increase in synaptic transmission. This effect
is called long-term potentiation (LTP). First described
in the anaesthetized rabbit, high-frequency stimulation
(≥10 Hz) of perforant path fibres, the main excitatory
input from the entorhinal cortex to the dentate gyrus of
the hippocampus, resulted in an increase of the population
response recorded from dentate gyrus granule cells for
up to 10 h (Bliss & Lømo, 1973). Effective stimulation
protocols comprised 10–20 Hz for 10–15 s or 100 Hz for
3–4 s.

Activity-dependent LTP of synaptic efficacy has since
been found in virtually all excitatory pathways in the
hippocampus (Bliss & Collingridge, 1993), as well as in
the neocortex (Feldman, 2009). A multitude of different
electrical stimulation protocols has proved to induce
LTP. Among the most common are tetanic stimulation,
which involves a high-frequency train of 50–100 stimuli
at 100 Hz, and theta-burst stimulation (TBS). In TBS,
typically several bursts of 3–5 stimuli at 100 Hz are
delivered at short (<1 s) inter-burst intervals. In contrast,
low-frequency stimulation typically induces long-term
depression (LTD) of synaptic efficacy (Lynch et al. 1977;
Dunwiddie & Lynch, 1978; Bramham & Srebro, 1987;
Mulkey & Malenka, 1992; Kirkwood & Bear, 1994). Thus,
synaptic transmission can be modified in a bidirectional
manner, the polarity of which depends on the rate and
pattern of synaptic activity. There is now compelling
evidence for a role of these synaptic mechanisms in
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many forms of learning and memory as well as neuro-
nal development and circuit reorganization (Katz & Shatz,
1996; Morris et al. 2003; Cooke & Bliss, 2006; Feldman,
2009).

Spike-timing dependent plasticity induction protocols.
The plasticity induction protocols reviewed above are
rate-based, i.e. they primarily rely on the presynaptic
spike frequency. In more recent years, however, a new
concept of Hebbian synaptic plasticity (Hebb, 1949) has
emerged, known as spike-timing dependent plasticity
(STDP). STDP emphasizes the temporal order instead
of the frequency of spike trains: both LTP and LTD can
be induced at low frequency depending on the precise
timing relationships between pre- and postsynaptic firing
(Markram et al. 2011). Although the temporal windows
for LTP and LTD induction differ significantly in a cell-
and synapse-type-specific manner, STDP is well pre-
served across cortical layers and brain regions. In its
classical form, synapses between excitatory neurons are
strengthened if presynaptic precedes postsynaptic activity
by some tens of milliseconds or less; if this order is reversed,
and presynaptic activity does not predict postsynaptic
spiking, synaptic efficacy is reduced (Caporale & Dan,
2008). More recent work has focused on parameterizing
STDP with respect to factors such as rate, complex spike
train motifs, or dendritic localization (Froemke et al.
2010).

Classical LTP/LTD and STDP are complementary
models of synaptic plasticity rather than exclusive of each
other; rate- and timing-dependent forms of plasticity may
co-exist at the same synapse type (Nelson et al. 2002). In
addition, synaptic activity (or a lack thereof) may trigger
slower non-Hebbian forms of plasticity including homeo-
static plasticity (Turrigiano, 2008; Pozo & Goda, 2010) and
metaplasticity (Abraham, 2008). The complexity of, and
interaction among, the various forms of synaptic plasticity
are just about to emerge (Sjostrom et al. 2001; Nelson &
Turrigiano, 2008).

DC stimulation. Brain stimulation with direct currents
(DC stimulation, DCS) to generate plasticity differs
qualitatively from the above-mentioned stimulation
protocols. In resting cells stimulation itself does not elicit
action potentials; in active cells it modulates stimulation
polarity-dependently the resting neuronal membrane
potential, resulting in immediate changes of cortical firing
rates (Creutzfeldt et al. 1962; Bindman et al. 1964). These
changes transfer to long-lasting alterations that are pre-
sent for some hours after stimulation, if DCS is applied
for sufficiently long (at least a few minutes). Anodal DCS
of the sensorimotor cortex and the visual cortex of rats
and cats enhanced spontaneous neuronal activity, and
increased the size of evoked potentials, whereas cathodal

DCS had the opposite effects (Creutzfeldt et al. 1962;
Bindman et al. 1964; Purpura & McMurtry, 1965). Since
the impact of DCS on membrane polarization depends on
the orientation of a given neuron relative to the induced
electrical field, the effects are not, however, absolutely
homogeneous (Faria et al. 2011). They might also differ,
for instance, between neurons situated at the crown of
cerebral gyri, and deep in the sulci (Creutzfeldt et al. 1962).

For the induction of DCS after-effects, the coupling
between membrane polarity alterations and presynaptic
neuronal activity seems necessary (Fritsch et al. 2010).
Enhancement of intraneuronal calcium concentration
occurs after anodal DCS (Islam et al. 1995a), and
probably triggers plastic change of synaptic efficacy, as
shown for other stimulation protocols (Malenka & Bear,
2004). Moreover, the after-effects of anodal DCS depend
on protein synthesis, alter brain-derived neurotrophic
factor (BDNF) and tyrosine kinase B activation, and are
accompanied by enhanced expression of immediate early
genes (Gartside, 1968; Islam et al. 1995b; Fritsch et al.
2010), which are all characteristics of late phase LTP-like
processes (Malenka & Bear, 2004).

In accordance with the modulating effects of DCS
on spontaneous neuronal activity, numerous animal
experiments have demonstrated a polarity-specific
alteration of learning and memory formation by DCS
(Morrell & Naitoh, 1962; Proctor et al. 1964; Albert, 1966;
Rosen & Stamm, 1972). The DCS-induced postsynaptic
alteration of membrane polarization in the presence of
presynaptic neuronal activity shares some similarities
with STDP. In contrast to STDP, which is thought to be
restricted to the set of synapses activated by the stimulation
protocol, the effects of DCS should, however, be less
specific.

Experiments in humans

The above-mentioned plasticity induction protocols are
not only able to induce synaptic plasticity in animal
slice preparations, but also in human brain tissue.
It was demonstrated that rhythmic electrical theta
burst stimulation induces glutamatergic LTP in human
hippocampal slices, and low frequency stimulation results
in depotentiation (Beck et al. 2000). Similar effects were
obtained for STDP protocols in human hippocampal
slices, but the time window to induce LTP was relevantly
broader than that seen in rodent experiments (Testa-Silva
et al. 2010). However, the opportunities to obtain human
brain tissue for experimental purposes are rare, and in vitro
results might not always be completely identical to in vivo
results, due to differences in spontaneous activity, neuro-
transmitter and neuromodulator concentration, and other
factors. Thus, during the last 20 years NIBS techniques
to elicit neuroplasticity in the intact human brain were
developed.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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Repetitive transcranial magnetic stimulation. Trans-
cranial magnetic stimulation (TMS) is a safe and painless
NIBS technique to study and interfere with ongoing
neuronal activity in conscious human subjects (Barker
et al. 1985). For TMS, a time-varying magnetic field
is generated by a brief high-current pulse in a coil of
wire placed above the subject’s head. The magnetic field
passes through the intact scalp unrestricted and induces
an electric field in the underlying brain. TMS activates
both excitatory and inhibitory neuronal elements in the
cerebral cortex (Hallett, 2007), with axons being most
likely the primary site of activation (Rotem & Moses,
2008). Thus, different patterns of neuronal activity can
be imposed on the stimulated cortex and interconnected
brain areas non-invasively.

Repetitive TMS (rTMS) can modulate human cortical
excitability for minutes and even hours beyond the
stimulation period (Ziemann et al. 2008). In the motor
cortex, these after-effects of rTMS can be measured by
the size of the electromyographic response evoked by a
single standard suprathreshold TMS pulse in the target
muscle (motor evoked potential, MEP). In non-motor
areas, long-lasting rTMS effects were demonstrated based
on neuroimaging techniques (Siebner et al. 2009) and EEG
recordings (Rossi et al. 2009; Thut & Pascual-Leone, 2010).

The threshold for inducing changes in cortical
excitability is a complex function of the intensity,
rate and duration of rTMS. For instance, in motor
cortex short trains of high-frequency 5 Hz-rTMS result
in only short-lasting increases in MEP size, which
can be prevented by blockers of voltage-gated sodium
channels (Inghilleri et al. 2004), suggestive of post-tetanic
potentiation-like plasticity. In contrast, long trains
of high-frequency rTMS (several hundred pulses at
frequencies ≥5 Hz) result in long-lasting (>30 min)
MEP increases, suggestive of LTP-like mechanisms
(Ziemann, 2004). Moreover, it is now well-established
that high-frequency rTMS at ≥5 Hz increases human
cortical excitability long-lastingly, whereas low-frequency
rTMS at around 1 Hz has the opposite effect (Ziemann,
2004; Ziemann et al. 2008). Most studies claiming an
excitability increasing effect of 5 Hz have been performed
with intervals for the purpose of coil cooling; when applied
continuously 5 Hz rTMS turned out to be inhibitory
(Rothkegel et al. 2010). Thus, human cortical excitability
can be modulated in a bidirectional and rate-dependent
manner by rTMS. Although evidence suggests that
LTP/LTD-like mechanisms play a role in rTMS-induced
long-lasting after-effects on cortical excitability (Ziemann,
2004; Ziemann et al. 2008), the exact mechanisms remain
insufficiently understood.

More recently, theta burst stimulation (TBS) as first
applied in hippocampal electrophysiology has been
successfully transferred to the human brain by means of
TMS (Huang et al. 2005). In these experiments, short

bursts (3 pulses) of magnetic stimuli were given at high
frequency (50 Hz), repeated every 200 ms. TBS of the
human motor cortex can produce a rapid bidirectional
modulation of cortical excitability as shown by increases
and decreases in MEP size, respectively. The direction of
these MEP changes is critically dependent on the pattern
of TBS. Intermittent TBS (iTBS), in which a 2 s train of
TBS is repeated every 10 s for a total of 190 s (600 pulses),
increases MEPs for up to 20 min post stimulation. In
contrast, continuous TBS (cTBS), in which a 40 s train
of uninterrupted 600 TBS pulses is given, depresses MEPs
for about 60 min post stimulation. TBS has become an
increasingly used NIBS protocol as it offers powerful
effects on human motor cortex physiology and behaviour
after very short application periods (Huang et al. 2005).

Paired associative stimulation. Recently, convergent
evidence has been accumulated that it is also possible
to induce plasticity in the human CNS by NIBS, which
shares some similarities with STDP (Müller-Dahlhaus
et al. 2010).

In paired associative stimulation (PAS) in humans two
convergent inputs are given to a cortical area repetitively
with strict temporal order and timing at low repetition
frequency. In the original experiments, PAS consisted of
electrical stimulation of the median nerve at the wrist
(MNS), followed by TMS of the contralateral primary
motor cortex (M1) after 25 ms (Stefan et al. 2000). At
this interstimulus interval, the afferent signal evoked by
MNS arrives in M1 nearly synchronously, or even shortly
before transsynaptic excitation of corticospinal neurons
by the TMS pulse. Ninety pairs of conjoint MNS and TMS
applied at a frequency of 0.05 Hz over 30 min significantly
increased MEP amplitudes in a resting intrinsic hand
muscle for 30–60 min post stimulation (Stefan et al. 2000).
This effect was critically dependent on the interval between
MNS and TMS because an interstimulus interval of only
10 ms resulted in depression of MEPs (Wolters et al. 2003).

Timing dependent associative plasticity in conscious
human subjects has also been demonstrated in primary
somatosensory cortex (Wolters et al. 2005; Litvak et al.
2007), and interhemispherically between homologous
areas of left and right M1 (Koganemaru et al. 2009; Rizzo
et al. 2009b). Recent work extended these findings by
demonstrating bidirectional associative plasticity in intra-
hemispheric cortico-cortical pathways in healthy human
subjects (Arai et al. 2011; Buch et al. 2011). Of note,
in the study by Arai and colleagues associative plasticity
in a human cortical motor network involving the
supplementary motor area (SMA) and M1 required
priming by near-simultaneous bilateral M1 stimulation to
occur, indicating state-dependency of SMA-M1 associative
plasticity (Arai et al. 2011). Furthermore, it was
demonstrated that motor learning significantly modulates
PAS-induced timing dependent plasticity (Ziemann et al.
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2004), and, conversely, motor learning can be modulated
bidirectionally by prior PAS-induced plasticity (Jung &
Ziemann, 2009), providing circumstantial evidence that
LTP-like mechanisms may be involved in human motor
learning.

Transcranial direct current stimulation. Based on
the above-reviewed animal experiments, stimulation
protocols were developed which allow the induction of
long-lasting cortical excitability alterations in humans
via non-invasive application of direct currents through
the intact scalp (transcranial direct current stimulation,
tDCS). Stimulation is performed by relatively large
electrodes (sizes employed so far about 3.5–35 cm2)
positioned over the scalp area covering the region of
interest. It was shown first for M1, but later also for other
areas, such as visual and somatosensory cortices, that
tDCS is able to induce prolonged alterations of cortical
excitability, which can last for over one hour after the end
of stimulation, if its duration is in the range between 10
and 15 min (Nitsche & Paulus, 2000, 2001; Nitsche et al.
2003b; Antal et al. 2004b; Matsunaga et al. 2004). Hereby,
the duration and strength of the after-effects depends
on stimulation intensity and duration. Moreover, the
efficacy of stimulation depends on the position of the
return electrode, supporting the relevance of the current
flow/electric field relative to neuronal orientation in
space (Nitsche & Paulus, 2000). For the motor cortex,
anodal tDCS enhances, while cathodal tDCS diminishes,
corticospinal excitability, as explored by recruitment
curves obtained for MEP amplitudes elicited by single
pulse TMS of M1 (Nitsche et al. 2005). This effect might
be causally related to an impact of tDCS on indirect
waves (I-waves) of the multiple-discharge corticospinal
volley (Lang et al. 2011). At the intracortical level,
anodal tDCS enhances cortical facilitation, and decreases
cortical inhibition, whereas cathodal tDCS results in
opposite effects. Apart from its local effects on the
areas under the electrodes, tDCS affects activity and
excitability of widespread cortical and subcortical areas
(Lang et al. 2004). These remote effects of tDCS might,
at least partially, be due to effects of tDCS on functional
connectivity of cortical and subcortical areas connected
with the cortical areas under the electrodes (Keeser et al.
2011). Application of tDCS during learning processes can
improve learning performance, an observation that is in
favour of overlapping mechanisms of action shared by
learning and DCS-induced plasticity (Nitsche et al. 2003c;
Antal et al. 2004a; Reis et al. 2009).

Similarities and differences between plasticity
induction protocols

The reviewed plasticity induction protocols, both in
animal preparations and humans differ qualitatively

from each other. Repetitive and associative stimulation
protocols elicit action potentials, and induce plasticity
via their specific frequency or timing, whereas DCS
modulates spontaneous neuronal network activity by
subthreshold effects on neuronal resting membrane
potentials. However, all of these techniques are suited to
generate plasticity at excitatory glutamatergic synapses
in animals and humans (see also below). In animal
experiments, plasticity at inhibitory GABAergic synapses
has also been described (Maffei, 2011), while this form of
plasticity is less well explored in humans.

The duration of the after-effects of NIBS in humans
is similar to that of early LTP and LTD in animal pre-
parations. While the principal mechanisms of action of
the stimulation protocols are similar in animal and human
experiments, there are also important specific differences:
for repetitive stimulation, the classical stimulation
protocols in animal slice preparations stimulate afferent
connections of the target area, while in humans axons
in the target area itself are stimulated. In addition,
input specificity is compromised in human NIBS studies
because hundreds of thousands of axons of diverse origin,
including axons from excitatory as well as inhibitory
neurons, are stimulated simultaneously. For instance,
whereas STDP as studied at the cellular level critically
depends on coordinated pre- and postsynaptic activity
in single neurons (or even in single pre- and post-
synaptic elements), experiments at the system level
of the human cortex have demonstrated PAS-induced
after-effects by near-synchronous activation of the target
area by two convergent inputs (e.g. by afferent activation
via peripheral nerve stimulation and associative TMS
of the target area or an interconnected brain area).
The input specificity of these effects is in the order of
cubic centimetres of cortex, and thus multiple orders
of magnitude higher than the scale at which synaptic
plasticity operates. Thus, comparisons between different
levels of observation (i.e. cellular vs. system level)
should be done with caution. However, physiological
properties and modelling of PAS-induced changes in
cortical excitability (for review see e.g. Müller-Dahlhaus
et al. 2010) are to some degree reminiscent of STDP
as observed for excitatory-to-excitatory connections in
animal experiments (Caporale & Dan, 2008), suggesting
at least some correspondence between these phenomena.
Finally, the majority of plasticity induction procedures in
animal experimentation were conducted in hippocampal
or prefrontal cortex slices, whereas studies in humans have
mainly focused on the motor cortex. This further limits
direct comparability between both strains of experiments
because neuronal architecture and receptor density, which
are relevant for neuroplastic processes, differ substantially
between these areas.

Taking into account these differences and similarities
between plasticity induction procedures applied in
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Table 1. Synopsis of the main plasticity-producing stimulation protocols applied in animal experimentation and their counterparts
for non-invasive brain stimulation in humans, including protocol characteristics, effects, and mechanisms of action

Repetitive stimulation Associative stimulation Tonic stimulation with DC

Animals Humans Animals Humans Animals Humans

Stimulation Electrical
stimulation of
afferents

TMS of axons of
cortical
neurones

Pre- and
postsynaptic
electrical

Peripheral nerve
electrical and
TMS of cortex;
dual-coil TMS
of cortex

Epidural/
intracortical/
transcranial
electrical
stimulation
of cortex

Transcranial
electrical
stimulation
of cortex

Protocols High/low
frequency,
theta-burst

High/low
frequency,
theta-burst

Near-synchronous/
a-synchronous

Near-synchronous Anodal/cathodal Anodal/cathodal

Effects LTP:
high-frequency,
theta-burst

LTP-like:
high-frequency,
intermittent
theta-burst

LTP:
near-synchronous
(pre-before-post)

LTP-like:
near-synchronous;
conditioning
pulse-before-test
pulse in target
area

LTP: anodal LTP-like: anodal

LTD: low-
frequency

LTD-like: low
frequency,
continuous
theta-burst

LTD: asynchronous;
near-synchronous
(post-before-pre)

LTD-like:
near-synchronous;
test pulse in
target
area-before-
conditioning
pulse

LTD: cathodal LTD-like: cathodal

Synapses Glutamatergic,
GABAergic

Glutamatergic Glutamatergic,
GABAergic

Glutamatergic ? Glutamatergic

Note that transcranial magnetic stimulation (TMS) generates its effects via electrical stimulation of axons of cortical neurons. LTP,
long term potentiation; LTD, long term depression; GABA, γ-aminobutyric acid.

animals and humans, the currently available procedures
do not allow one-to-one comparability, but due to similar
stimulation protocols, modes of action, and physiological
characteristics of the induced effects it can be stated
that NIBS in humans is capable of inducing LTP- and
LTD-like plasticity, similar to LTP/LTD as studied on a
cellular level (Cooke & Bliss, 2006). A synopsis of the
characteristics, mechanisms of action and effects of the
main plasticity-inducing protocols in animal preparations
and humans is given in Table 1.

Pharmacological modulation of plasticity

Animal experimentation

Drivers of plasticity. The glutamatergic system. Neuro-
transmission at most excitatory synapses in the brain
operates through two types of ionotropic glutamate
receptors termed α-amino-3-hydroxy-5-methyl-4- iso-
xazolepropionate (AMPA) and N-methyl-D-aspartate
(NMDA) receptors. Whereas NMDA receptors are the
main driver for induction of LTP, AMPA receptor-
mediated synaptic neurotransmission is the key target

of LTP expression. In the following the molecular
mechanisms of LTP and LTD are reviewed in more detail.

Induction of long-term plasticity at most excitatory
synapses depends on synaptic activation of NMDA
receptors and subsequent calcium influx through the
NMDA receptor channel (Lynch et al. 1983; Morris
et al. 1986; Malenka et al. 1988). However, under
resting membrane conditions, NMDA receptors are
blocked by magnesium. Only after removal of the
magnesium block by sufficient depolarization of the post-
synaptic membrane is the NMDA receptor functioning
and calcium may flow into the postsynaptic cell. This
voltage-sensitivity of the NMDA receptor complex may
explain the frequency-dependence of LTP/LTD induction.
High-frequency stimulation results in strong postsynaptic
depolarization, NMDA receptor activation and high levels
of postsynaptic calcium which triggers the molecular
pathways for LTP, whereas low-frequency stimulation
evokes less NMDA receptor-mediated calcium influx
resulting in LTD. In addition, the NMDA receptor
voltage-sensitivity serves as a coincidence detector for pre-
and postsynaptic activity in associative LTP.

Apart from NMDA receptors, kainate receptors – a third
type of ionotropic glutamate receptor – and metabotropic
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glutamate receptors have also been implicated in the
induction of LTP (Bashir et al. 1993; Bortolotto et al. 1999).
Furthermore, induction of LTP at excitatory synapses
may also depend on neuron–glia interactions, as D-serine
from astrocytes is necessary for LTP in nearby synapses
(Henneberger et al. 2010).

The intracellular signalling pathways triggered by a
strong increase in postsynaptic calcium include activation
of protein kinase C, calcium/calmodulin-dependent
protein kinase II and tyrosine kinases (Malinow et al.
1989; O’Dell et al. 1991). These molecular events
result in phosphorylation of AMPA receptors in the
postsynaptic membrane and insertion of new AMPA
receptors into it (Malinow & Malenka, 2002). Thus,
LTP is primarily expressed as an increase in AMPA
receptor-mediated neurotransmission, although the
NMDA receptor-mediated component of glutamatergic
neurotransmission may also be potentiated (Bashir et al.
1991). In the extreme case, under resting conditions
‘silent’ (i.e. AMPA receptor-lacking) synapses are activated
by insertion of functional AMPA receptors upon LTP
induction (Liao et al. 1995). In contrast, LTD is mediated
by AMPA receptor internalization (Beattie et al. 2000).
In addition, there is evidence for presynaptic expression
mechanisms of LTP and LTD, which involve diffusion
of retrograde messengers such as nitric oxide (Schuman
& Madison, 1991), platelet-activating factor (Kato et al.
1994) or endocannabinoids (Sjostrom et al. 2003) from
the post- to the presynaptic element. Currently, to what
extent even the best-studied form of synaptic plasticity,
NMDA receptor-dependent LTP, is expressed pre- or post-
synaptically is still a matter of ongoing debate (Lisman,
2009).

LTP at excitatory synapses develops in stages,
from a short-lasting (less than one hour), protein
kinase-independent phase to three different levels of
long-lasting potentiation, requiring protein phosphory
lation, protein synthesis, and gene transcription,
respectively (Bliss & Collingridge, 1993; Raymond,
2007). These functional alterations of synaptic neuro-
transmission are paralleled by morphological changes of
dendritic spines, the main site of glutamatergic synapses in
the brain (Segal, 2005; Alvarez & Sabatini, 2007; Holtmaat
& Svoboda, 2009).

The GABAergic system. γ-Aminobutyric acid (GABA)
acts as the main inhibitory neurotransmitter in the
mammalian brain and operates through two classes
of receptors, a ionotropic GABAA and a metabotropic
GABAB receptor.

A role for GABAergic inhibition in modulating
excitatory synaptic plasticity has long been recognized, as
GABA receptor blockers promote LTP of glutamatergic
neurotransmission in the hippocampus (Wigstrom
& Gustafsson, 1983) and the neocortex (Artola &
Singer, 1987). Interestingly, GABAAergic inhibitory

control of excitatory synapses is released during
high-frequency synaptic transmission by autoinhibition
of GABAergic terminals via GABAB receptors, thus
allowing for sufficient postsynaptic depolarization to
activate NMDA receptors and induce LTP (Davies et al.
1991).

Studies on synaptic plasticity have mainly focused on
plasticity of excitatory synapses. However, more recent
evidence suggests that GABAergic synapses themselves are
also highly dynamic and capable of activity-dependent
long-term plasticity (Gaiarsa et al. 2002). Both classical
LTP/LTD and STDP may be induced at GABAergic
synapses (Maffei, 2011). Some forms of inhibitory
synaptic plasticity, e.g. by high-frequency stimulation,
also require postsynaptic activation of glutamatergic
receptors, while GABAA receptor activity seems to be
more involved in maintaining plasticity. Thus, both
excitatory and inhibitory inputs are integrated in this
form of heterosynaptic inhibitory plasticity, which serves
to fine-tune neural networks and maintain circuit stability
by dynamically regulating the balance between excitation
and inhibition. In addition, inhibitory synaptic plasticity
may impact on induction of plasticity between excitatory
neurons, thus adding to the complex interplay between
different forms of neural plasticity.

The mechanisms of induction and expression of
inhibitory synaptic plasticity show significant differences
between cell-types, brain areas and developmental stages
(Maffei, 2011), but in common with the induction of
excitatory synaptic plasticity the rise in intracellular
calcium concentration plays a crucial role for triggering
inhibitory synaptic plasticity (Gaiarsa et al. 2002).
Expression of LTP at GABAergic synapses induced by
high-frequency stimulation involves BDNF retrograde
signalling in visual cortex and hippocampus, allowing
for a spatially restricted action of GABAergic plasticity
at specific synapses. However, at synapses in the ventral
tegmental area NO signalling is involved in GABAergic
plasticity, which has a more widespread influence on
multiple presynaptic GABAergic terminals and thereby
changes excitability and information processing in a
larger portion of the microcircuit. As for excitatory
synaptic plasticity, the site of expression of long-term
alterations of GABAergic neurotransmission can be both
pre- and postsynaptic, depending on the form of induced
plasticity (classical LTP/LTD; STD-LTP/-LTD), the type of
inhibitory neuron, the brain area, or even the layer within
a given cortical area (Maffei, 2011).

Voltage-gated ion channels. As reviewed above, LTP of
synaptic efficacy is a calcium-dependent process, which
is classically induced by calcium influx through NMDA
receptor channels. An alternative way of postsynaptic
calcium influx is through voltage-gated calcium channels
(VGCCs), which have also been implicated in induction of
LTP (Westenbroek et al. 1990). Additionally, VGCCs may
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be involved in presynaptic expression of LTP (Ahmed &
Siegelbaum, 2009).

Transmission and integration of synaptic inputs
depends on dendritic excitability. There is increasing
evidence for an active role of dendrites in neuronal
information processing (Johnston et al. 1996). Modulation
of the distribution and/or function of dendritic
voltage-gated ion channels may therefore change the
neuronal input–output relationship, a form of plasticity
termed intrinsic plasticity (Remy et al. 2010). Moreover,
there is a complex, reciprocal relationship between
dendritic excitability and synaptic plasticity (Sjostrom
et al. 2008). Since postsynaptic, dendritic depolarization is
critical for the induction of synaptic long-term plasticity
(see above), changes in, for example, back-propagating
action potential and/or dendritic spike generation may
critically modulate the plastic properties of synapses.
Conversely, dendritic excitability can be altered by synaptic
plasticity, with fundamental implications for information
processing and subsequent memory storage in neuronal
networks.

Modulators of plasticity. In contrast to the
above-mentioned drivers of plasticity, several neuro-
transmitter systems (dopaminergic, cholinergic, seroto-
nergic and noradrenergic) have modulating roles on
plasticity. Activation of these neuromodulating systems
is not a necessary precondition to induce plasticity, but
these systems have the capacity to modify the amount
and direction of plasticity induced. Typically, the impact
of neuromodulators is not restricted to a single type of
receptor or channel, but involves a diversity of structures,
often in a non-linear manner. Thus, the net effect
of a neuromodulator on plasticity is often not easily
predictable. Although neuromodulators modify plasticity
not only at the cortical, but also at subcortical levels, we
will restrict our overview to cortical plasticity, which is
the focus of action of the plasticity induction protocols
applied in humans.

The dopaminergic system. Dopamine (DA) has major
modulating effects on glutamatergic synaptic plasticity.
DA enhanced LTP and LTD in slice and in vivo animal
experiments for repetitive electrical stimulation (Otani
et al. 1998; Bailey et al. 2000), and LTP, or the time
window for induction of LTP, in the case of STDP
(Zhang et al. 2009; Edelmann & Lessmann, 2011).
This effect of DA is non-linear and depends on sub-
type of receptor activation as well as the concentration
of background DA. It was proposed that low back-
ground DA favours LTD induction, whereas high back-
ground DA fosters LTP induction and even further
increases of DA result in no plasticity, if combined with
phasic, activation-dependent DA increases (Goto et al.
2010). Dopaminergic subtypes of receptors contribute

differently to these plasticity-modulating effects: whereas
D1 receptor activation enhances LTP and LTD for
repetitive stimulation-induced plasticity (Chen et al. 1996;
Otmakhova & Lisman, 1996; Bach et al. 1999; Bailey et al.
2000; Gurden et al. 2000; Huang et al. 2004), increasing
but also decreasing effects on LTP and LTD occur with
D2 receptor activation (Frey et al. 1989; Chen et al.
1996; Otani et al. 1998; Gurden et al. 2000; Spencer
& Murphy, 2000; Manahan-Vaughan & Kulla, 2003).
For STDP, D1 receptor activity was shown to enhance
LTP, or broaden the time window for LTP induction,
and converted the effect of LTD-inducing protocols into
LTP (Zhang et al. 2009; Edelmann & Lessmann, 2011).
However, abolishment of LTD by D1 receptor blockade
has been reported in another study (Pawlak & Kerr,
2008). In contrast, D2 receptor activity might reduce
LTP (Pawlak & Kerr, 2008). Because DA has a complex,
often non-linear and subtype-of-receptor-specific impact
on diverse ion channels, receptors and enzyme cascades
involved in neuroplasticity, how DA affects plasticity is
difficult to predict and incompletely understood (Seamans
& Yang, 2004). However, since D1 and D2 receptors have
antagonistic effects on NMDA and GABA receptors (D1
receptors enhance the activity of both kinds of receptors,
while D2 receptors reduce their activity; Seamans & Yang,
2004), it might be speculated that the balance of the
effects of DA subtypes of receptors on NMDA and GABA
receptors determines the net impact of DA on neuro-
plasticity (Goto et al. 2010; Xu & Yao, 2010).

The cholinergic system. The cholinergic system also has
a prominent impact on cortical plasticity. For NMDA
receptor-dependent LTP induced by repetitive electrical
stimulation, a permissive function of the cholinergic
system could be demonstrated: cholinergic activation
promotes LTP, whereas cholinergic antagonists block it
(Blitzer et al. 1990; Brocher et al. 1992; Hasselmo & Barkai,
1995; Auerbach & Segal, 1996). Similarly, cholinergic
activation enhances NMDA receptor-dependent LTD
(Huerta & Lisman, 1995; Kirkwood et al. 1999). The
two major acetylcholine receptor subtypes (muscarinergic
(mAChR) and nicotinergic receptors (nAChR)) seem to
be involved in LTP and LTD enhancement (Burgard &
Sarvey, 1990; Fujii & Sumikawa, 2001; Shinoe et al. 2005;
Scheiderer et al. 2008; Jia et al. 2010). One important
common mechanism seems to be that activation of both
receptor subtypes results in depolarization of the post-
synaptic membrane or increase of intracellular calcium
level (Sawada et al. 1994; Huerta & Lisman, 1995; Auerbach
& Segal, 1996; Gu, 2002). Although a plasticity-enhancing
effect of cholinergic activation has been demonstrated
in the majority of studies, two studies also showed
a dose-dependent reduction at high concentrations of
acetylcholine (Maeda et al. 1993; Sugisaki et al. 2011). For
STDP the situation might be somewhat different, because
here M1 mAChR activation prevented LTP induction, but
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enhanced and broadened the window for induction of
LTD (Seol et al. 2007; Huang et al. 2012).

The serotonergic system. Serotonin (or 5-HT) also had
a prominent, but seemingly heterogeneous, impact on
LTP and LTD in animal preparations, as induced by
repetitive electrical stimulation. A number of studies
showed an LTP-reducing or -abolishing effect of serotonin
enhancement or 5-HT receptor activation (Staubli &
Otaky, 1994; Edagawa et al. 1998; Kojima et al. 2003;
Mnie-Filali et al. 2006). However, 5-HT antagonists can
also abolish LTP (Sanberg et al. 2006; Huang & Kandel,
2007). In addition a nil effect of 5-HT on LTP was reported
(Normann & Clark, 2005), and some studies even showed
enhanced LTP under serotonergic activation (Kojic et al.
1997; Mori et al. 2001). Taken together, these results are in
favour of a non-linear, dosage-dependent effect of 5-HT on
LTP. Moreover, age, cortical area, the types of serotonergic
subtypes of receptors, and duration of 5-HT receptor
activation all seem to affect the impact of this neuro-
modulator on LTP (Kojic et al. 1997; Mori et al. 2001;
Ohashi et al. 2002; Ryan et al. 2009; Bhagya et al. 2011).

5-HT receptor activation blocks LTD or even converts
it into LTP (Kemp & Manahan-Vaughan, 2005; Normann
& Clark, 2005; Jang et al. 2010), whereas 5-HT antagonists
enhance LTD in brain slices of adult animals (Kemp &
Manahan-Vaughan, 2005). However, in the visual cortex
of juvenile cats, serotonin enhances LTD (Kojic et al. 1997).
Thus, the effects of 5-HT on LTD may also be affected by
the specific conditions of the slice preparations.

The adrenergic system. The adrenergic impact on
plasticity seems relatively uniform, as can be derived from
the results of animal slice experiments. Noradrenergic
activity enhances LTP (Hu et al. 2007; Tully et al. 2007;
Korol & Gold, 2008). Likewise, adrenaline enhances LTD
(Marzo et al. 2010), while noradrenaline blocks LTD
(Katsuki et al. 1997). However, the effects of adrenergic
subtypes of receptors on LTP and LTD differ significantly.
Activation of β-adrenergic receptors uniformly enhances
LTP induced by high-frequency stimulation, and by STDP
protocols, and moreover, demonstrates an important
role in the conversion of early to late LTP (Gelinas
& Nguyen, 2005; Tenorio et al. 2010; Wojtowicz et al.
2010). In accordance, blockade of these receptors pre-
vents the induction of LTP (Kemp & Manahan-Vaughan,
2008; Flores et al. 2010). In contrast, the activation of
adrenergic α1 and α2 receptors reduces LTP (Mondaca
et al. 2004; Takamatsu et al. 2008; Wang et al. 2008),
and therefore counteracts the effects of β-adrenergic
receptors on plasticity. With regard to LTD, the effects
of β-adrenergic receptor activation are conflicting: Kemp
& Manahan-Vaughan (2008), as well as Lemon and
colleagues (Lemon et al. 2009) described an enhancement
of LTD, whereas a diminution or prevention was found
in other studies (Katsuki et al. 1997; Lin et al. 2008).
For α-adrenergic receptors, α2 receptor activation reduces

LTD (DeBock et al. 2003), while activation of α1 receptors
enhances it (Marzo et al. 2010).

Taken together, the overall effect of adrenergic
activation seems to be an enhancement of LTP, and maybe
also LTD. With regard to adrenergic subtypes of receptors,
at least partially antagonistic effects have been described.
In contrast to the other neuromodulators, however, a
non-linear dosage-dependency of the effects has not been
described so far.

Experiments in humans

Pharmacological testing of NIBS-induced plasticity in
humans is important because it cannot be taken for
granted that effects observed in in vitro animal studies
do translate one-to-one to the human brain in vivo. The
human studies reviewed below were performed in healthy
young adults and, typically, the effects of a single drug dose
on NIBS-induced plasticity were explored in a randomized
placebo-controlled design.

Drivers of plasticity. The glutamatergic system.
Memantine, an NMDA receptor antagonist, abolishes
the LTP-like plasticity induced by iTBS and the LTD-like
plasticity induced by cTBS (Huang et al. 2007). This
provides evidence that TBS-induced plasticity depends
on activation of NMDA receptors. Similar blocking
effects on PAS- and tDCS-induced LTP-like and LTD-like
plasticity were obtained under the NMDA receptor
antagonist dextromethorphan (Liebetanz et al. 2002;
Stefan et al. 2002; Nitsche et al. 2003a; Wolters et al.
2003). In contrast, the partial NMDA receptor agonist
d-cycloserine enhances LTP-like plasticity induced by
anodal tDCS (Nitsche et al. 2004b).

The GABAergic system. The GABAergic drugs diazepam
and tiagabine reduce PAS-induced LTP-like plasticity
(Heidegger et al. 2010). Similarly, the GABAB receptor
agonist baclofen leads to suppression of PAS-induced
LTP-like plasticity (McDonnell et al. 2007). In contrast,
lorazepam, a positive allosteric modulator at the GABAA

receptor, has no effect on tDCS-induced LTD-like
plasticity, while it reduces LTP-like plasticity in the early
phase after anodal tDCS, but enhances and prolongs
LTP-like plasticity in the late phase (Nitsche et al. 2004c).
Magnetic resonance (MR) spectroscopy experiments
support a role for GABA in tDCS-induced plasticity,
since induction of LTP-like and LTD-like plasticity is
associated with a reduction of GABA concentration in
the stimulated cortex (Stagg et al. 2009a). Similarly, cTBS
reduces GABA concentration in the stimulated cortex
(Stagg et al. 2009b). Although it is not clear at the
moment whether in vivo concentrations of GABA detected
by MR spectroscopy represent synaptic or extrasynaptic
GABA levels (Stagg et al. 2011), the above-mentioned
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studies provide evidence for a regulating role of GABA
in NIBS-induced LTP-/LTD-like plasticity in the human
cortex.

Voltage-gated ion channels. Since voltage-gated
ion channel activity determines neuronal membrane
excitability, and calcium influx is prominently involved
in plasticity induction in basic experiments, an
impact of voltage-gated ion channels on NIBS-induced
plasticity is plausible. In accordance with this, the
voltage-gated sodium channel blocker lamotrigine reduces
PAS-induced LTP-like plasticity (Heidegger et al. 2010),
and carbamazepine abolishes anodal tDCS-induced
LTP-like plasticity, but not LTD-like plasticity induced
by cathodal tDCS (Nitsche et al. 2003a). The most
likely explanation for the nil effect on LTD-like plasticity
is the fact that cathodal tDCS hyperpolarizes neuro-
nal membranes, which precludes an additional impact
of voltage-dependent sodium channel blockers on
membrane polarization. Furthermore, L-type calcium
channel blockade by nimodipine abolishes TBS-induced
LTP-like plasticity (Wankerl et al. 2010) and eliminates
PAS-induced LTD-like plasticity (Wolters et al. 2003).
Finally, the T-type calcium channel antagonist flunarizine
abolishes anodal tDCS-induced LTP-like plasticity but, for
the same reasons as indicated above, does not influence
cathodal tDCS-induced LTD-like plasticity (Nitsche et al.
2003a).

Taken together, blockade of voltage-gated sodium and
calcium channels reduces or abolishes LTP-like plasticity
in all stimulation protocols explored, while the effects on
LTD-like plasticity seem to depend on the specific plasticity
induction protocol.

Modulators of plasticity. The dopaminergic system.
Among the neuromodulating neurotransmitter systems,
the impact of dopamine on NIBS-induced plasticity has
been explored most extensively. The consistent abolition of
PAS-, tDCS- and rTMS-induced plasticity by D2 receptor
blockade by sulpiride or haloperidol demonstrates that
dopaminergic activity is a necessary precondition to
inducing plasticity in human motor cortex (Nitsche et al.
2006, 2009a; Monte-Silva et al. 2011).

Global dopaminergic activation (i.e. activation of D1
and D2 receptors) has heterogeneous effects on plasticity,
depending on the plasticity induction protocol, and
drug dosage. Low-dose and high-dose L-dopa abolishes
tDCS- and PAS-induced LTP-/LTD-like plasticity, with the
exception of LTP-like plasticity induced by PAS, which
converts to LTD-like plasticity. In contrast, medium-dose
L-dopa prolongs LTP-like plasticity induced by PAS,
but converts it into LTD-like plasticity in the case of
tDCS (Monte-Silva et al. 2010). The reasons for these
conspicuous differences of drug effects on plasticity
induced by different NIBS protocols (see also below) are

not fully understood but are certainly linked to differences
in the underlying physiology (e.g. STDP-like effects after
PAS versus membrane polarization effects after tDCS).
The effect of low-dose dopaminergic activation seems to
be driven by D2 receptors, because low doses of the D2/D3
receptor agonist ropinirol induce largely identical effects
to L-dopa on NIBS-induced plasticity. However, medium
doses do not affect plasticity, independent of the NIBS
protocol (Monte-Silva et al. 2009).

Taken together, a certain amount of activity of the
dopaminergic system is necessary for the induction of
plasticity. Further enhancement of dopaminergic activity
results in non-linear effects on plasticity, which depend on
dosage, the plasticity induction protocol, and the balance
of D1 versus D2 receptor activation.

The cholinergic system. Global cholinergic activation
(i.e. activation of both mAChR and nAChR) by
the cholinesterase inhibitor rivastigmine enhances and
prolongs LTP- and LTD-like plasticity induced by
PAS, whereas it abolishes LTP-like plasticity induced
by anodal tDCS (Kuo et al. 2007). Tacrine, another
cholinesterase inhibitor, has no effect on PAS-induced
plasticity (Korchounov & Ziemann, 2011). The reason
for these conflicting results might be a dose-dependent
effect of cholinergic activation on plasticity, which has
not yet been explored. With regard to the contribution
of mAChR vs. nAChR, nicotine abolishes tDCS-induced,
but prolongs PAS-induced LTP-like plasticity, while it
abolishes LTD-like plasticity in both stimulation protocols
(Thirugnanasambandam et al. 2011). Finally, the mAChR
antagonist biperiden reduces LTP-like plasticity induced
by PAS (Korchounov & Ziemann, 2011).

In summary, cholinergic activity seems to exert
important modulating effects on NIBS-induced plasticity,
but the knowledge about subtype-of-receptor and
dose-dependent effects is limited.

The serotonergic system. Only one study is available
with regard to the impact of serotonin on NIBS-induced
plasticity in humans: a single dose of the serotonin
reuptake inhibitor citalopram enhances and prolongs
LTP-like plasticity induced by anodal tDCS, while it
converts LTD-like plasticity induced by cathodal tDCS into
LTP-like plasticity (Nitsche et al. 2009b).

The adrenergic system. The monoamine reuptake
inhibitor amphetamine enhances the duration of the
LTP-like after-effects induced by anodal tDCS (Nitsche
et al. 2004a). In contrast, methylphenidate has no effect on
PAS-induced LTP-like plasticity (Korchounov & Ziemann,
2011). The LTP-/LTD-like after-effects of anodal and
cathodal tDCS are reduced by β-adrenergic receptor
blockade accomplished by propanolol (Nitsche et al.
2004a), and LTP-like plasticity induced by PAS is abolished
by the α1 receptor antagonist prazosine (Korchounov &
Ziemann, 2011). From these results it is clear that the
adrenergic system has significant impact on NIBS-induced
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plasticity in humans, although the specific effects might
somewhat differ between stimulation protocols.

Similarities and differences

For the drivers of plasticity, the results of animal and
human studies are largely comparable: plasticity at both
levels of experimentation depends on activation of the
glutamatergic system and calcium influx. Accordingly,
anti-glutamatergic drugs and calcium channel blockers
have diminishing effects on plasticity in animal and human
experiments.

With regard to neuromodulators, the dopaminergic
system has been most extensively explored. Dopamine
affects glutamatergic plasticity in a complex non-linear
fashion. Here the results of experiments in humans
and animals are in rough accordance, although not all
determinants of the modulating impact of dopamine on
plasticity have been identified, and a direct comparison
might be difficult due to differences of spontaneous
cortical activity, connectivity, transmitter concentration,
and other factors. For the cholinergic system, most
animal experiments show a plasticity-promoting effect,
whereas experiments in humans show that the effects
of the cholinergic system on plasticity might depend on
the specific stimulation protocol. Furthermore, animal
experiments are in favour of a non-linear effect of
cholinergic activation on plasticity, which has so far not
been studied in humans. The effects of serotonin on
plasticity, as so far explored only in animal experiments,
seem to be heterogeneous, and depend on subtype
of receptor activation and dosage. Noradrenergic and
adrenergic activation were shown to have LTP-enhancing
effects in both animal and human experiments. A synopsis
of the available pharmacological studies on NIBS-induced
plasticity in human cortex is provided in Table 2.

Pathological alterations of plasticity in
neuropsychiatric diseases, as explored by
NIBS techniques, and their modulation by
pharmacological interventions

Abnormal neuroplasticity has come increasingly into the
focus as a correlate and pathophysiological mechanism
in many neuropsychiatric diseases during the last years.
Beyond stroke and Alzheimer’s disease, where the causal
impact of pathological alterations of plasticity for the
development and progress of clinical symptoms as well as
the therapeutic relevance of plasticity-modifying therapies
is relatively well explored (for recent reviews see Floel
& Cohen, 2010; Boggio et al. 2011; Dimyan & Cohen,
2011; Freitas et al. 2011), it was demonstrated that neuro-
plasticity is also altered in dystonia, migraine, depression,
schizophrenia and other neuropsychiatric diseases. In

the following, we will exemplify currently available
knowledge about the involvement of pathologically altered
neuroplasticity in Parkinson’s disease and schizophrenia,
including the effect of pharmacological interventions on
plasticity and clinical symptoms. Figure 1 gives an over-
view of the application of non-invasive brain stimulation
(NIBS) for the prediction of drug efficacy in neuro-
psychiatric disorders.

Parkinson’s disease

M1 is innervated by dopaminergic fibres originating in the
ventral tegmental area and contributing to M1 plasticity.
On a behavioural level these fibres were demonstrated to
be necessary for successful motor skill learning in the rat
(Hosp et al. 2011). The same group showed in the rat M1
that antagonists of D2 but not D1 receptors reduce the size
of the M1 forelimb representation, and increase movement
thresholds and motor response latencies as determined
by direct electrical stimulation of M1 (Hosp et al. 2009).
Thus, abnormal motor cortical plasticity in patients with
Parkinson’s disease (PD) may be caused by intrinsic M1
pathology, and/or altered signalling from the basal ganglia.
The latter has to be kept in mind in the context of NIBS,
since rTMS of M1 can induce dopamine release in the
striatum (Strafella et al. 2003). M1 plasticity is abnormal
in PD patients as measured by different rTMS protocols.
Low-frequency (1 Hz) rTMS applied to premotor cortex
normalizes abnormally increased baseline intracortical
excitability in M1 in PD patients, while the same rTMS
protocol increases M1 excitability in healthy controls
(Buhmann et al. 2004). A single dose of L-dopa reverses
and thus normalizes the direction of excitability changes
along the premotor–M1 connection in PD (Buhmann
et al. 2004). Another premotor cortex-to-M1 connectivity
study in PD tested short-term plasticity induced by 5 Hz
rTMS of M1 before and after conditioning dorsal premotor
cortex stimulation with 5 Hz rTMS (Suppa et al. 2010).
Short-term facilitation of MEPs occurred only when the
PD patients were on dopaminergic therapy (Suppa et al.
2010).

Further examples of abnormal plasticity in PD are
reduced LTP-/LTD-like plasticity induced by PAS (Ueki
et al. 2006), or TBS (Eggers et al. 2010; Stephani et al.
2011; Suppa et al. 2011; Kishore et al. 2012). Another
study, however, did not find a difference in TBS-induced
plasticity between PD patients and healthy controls
(Zamir et al. 2012). For PAS, however, other data by
Bagnato and co-workers (Bagnato et al. 2006) showed
enhanced PAS-induced plasticity when the PD patients
were off medication, which normalized in the On-state.
The reasons for the disparity between those studies
are at present unclear. PD patients with either On–Off
fluctuations or dyskinesias provide an opportunity to
compare plasticity in states with either insufficient or
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Table 2. Impact of CNS-active drugs on NIBS-induced plasticity in human cortex

Pharmacodynamic Dosage NIBS LTP-like LTD-like
Study Substance effect (mg) protocol plasticity plasticity

Glutamate
Huang et al. (2007) Memantine NMDA receptor

antagonist
5 + 5 + 10 TBS ⇓ ⇓

Stefan et al. (2002);
Wolters et al. (2003)

Dextromethorphan NMDA receptor
antagonist

150 PAS ⇓ ⇓

Liebetanz et al. (2002);
Nitsche et al. (2003a)

Dextromethorphan NMDA receptor
antagonist

150 tDCS ⇓ ⇓

Nitsche et al. (2004b) d-Cycloserine NMDA receptor
agonist

100 tDCS ⇑ •

Teo et al. (2007) d-Cycloserine NMDA receptor
agonist

100 TBS ⇓, conversion n.t.

to LTD
GABA

Heidegger et al. (2010) Diazepam
Tiagabine

GABAAR: positive
allosteric modulator

20 PAS ⇓ n.t.

GABA reuptake
inhibitor

15

Nitsche et al. (2004c) Lorazepam GABAAR: positive
allosteric modulator

2 tDCS ⇑, initial delay •

McDonnell et al. (2007) Baclofen GABABR agonist 50 PAS ⇓ n.t.
Voltage-gated ion channels

Heidegger et al. (2010) Lamotrigine Voltage-gated sodium
channel blocker

300 PAS ⇓ n.t.

Liebetanz et al. (2002);
Nitsche et al. (2003a)

Carbamazepine Voltage-gated sodium
channel blocker

300 + 300 tDCS ⇓ •

Wankerl et al. (2010) Nimodipine Voltage-gated calcium
channel blocker

30 TBS ⇓ n.t.

Wolters et al. (2003) Nimodipine Voltage-gated calcium
channel blocker

30 PAS n.t. ⇓

Nitsche et al. (2003a) Flunarizine Voltage-gated calcium
channel blocker

10 tDCS ⇓ •

Dopamine
Monte-Silva et al. (2011) Sulpiride D2 receptor antagonist 400 TBS ⇓ ⇓
Nitsche et al. (2009a) Sulpiride D2 receptor antagonist 400 PAS • ⇓
Nitsche et al. (2006) Sulpiride D2 receptor antagonist 400 tDCS ⇓ ⇓
Korchounov & Ziemann

(2011)
Haloperidol D2 receptor antagonist 2.5 PAS ⇓ n.t.

Thirugnanasambandam
et al. (2011)

L-Dopa Dopamine precursor 25 PAS ⇓ ⇓

Thirugnanasambandam
et al. (2011)

L-Dopa Dopamine precursor 100 PAS ⇑ •

Thirugnanasambandam
et al. (2011)

L-Dopa Dopamine precursor 200 PAS ⇓ conversion •
to LTD

Monte-Silva et al. (2010) L-Dopa Dopamine precursor 25 tDCS ⇓ ⇓
Kuo et al. (2008),

Monte-Silva et al.
(2010)

L-Dopa Dopamine precursor 100 tDCS ⇓ conversion ⇑
to LTD

Monte-Silva et al. (2010) L-Dopa Dopamine precursor 200 tDCS ⇓ ⇓
Monte-Silva et al. (2009) Ropinirole D2/3 receptor agonist 0.125 PAS ⇓ •
Monte-Silva et al. (2009) Ropinirole D2/3 receptor agonist 0.5 PAS • •
Monte-Silva et al. (2009) Ropinirole D2/3 receptor agonist 1 PAS ⇓ •
Monte-Silva et al. (2009) Ropinirole D2/3 receptor agonist 0.125 tDCS ⇓ ⇓
Monte-Silva et al. (2009) Ropinirole D2/3 receptor agonist 0.5 tDCS • •
Monte-Silva et al. (2009) Ropinirole D2/3 receptor agonist 1 tDCS ⇓ ⇓
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Table 2. Continued

Pharmacodynamic Dosage NIBS LTP-like LTD-like
Study Substance effect (mg) protocol plasticity plasticity

Nitsche et al. (2009a) L-Dopa + sulpiride Activation of D1
receptor under D2
receptor blockade

100 + 400 tDCS • •

Acetylcholine
Kuo et al. (2007) Rivastigmine Cholinesterase

inhibitor
3 PAS ⇑ ⇑

Kuo et al. (2007) Rivastigmine Cholinesterase
inhibitor

3 tDCS ⇓ ⇓

Korchounov & Ziemann
(2011)

Tacrine Cholinesterase
inhibitor

40 PAS • n.t.

Korchounov & Ziemann
(2011)

Biperiden Muscarinic receptor
antagonist

8 PAS • n.t.

Thirugnanasambandam
et al. (2011)

Nicotine Nicotinic receptor
agonist

15, patch tDCS ⇑ ⇓

Thirugnanasambandam
et al. (2011)

Nicotine Nicotinic receptor
agonist

15, patch tDCS ⇓ ⇓

Serotonin
Nitsche et al. (2009b) Citalopram Serotonin reuptake 20 tDCS ⇑ ⇓ conversion

inhibitor to LTP
Adrenaline/noradrenaline

Nitsche et al. (2004a) Amfetaminil Precursor of
amphetamine,
monoaminergic
reuptake inhibitor

20 tDCS ⇑ •

Korchounov & Ziemann
(2011)

Methylphenidate Monoaminergic
reuptake inhibitor

40 PAS • n.t.

Nitsche et al. (2004a) Propanolol β-Adrenergic receptor
antagonist

80 tDCS ⇓ ⇓

Korchounov & Ziemann
(2011)

Prazosine α-Adrenergic
antagonist

1 PAS ⇓ n.t.

Summary of the impact of pharmacological interventions affecting the glutamatergic, GABAergic, dopaminergic, cholinergic,
serotonergic and adrenergic systems, and ion channel activity, on non-invasive brain stimulation-induced plasticity in healthy sub-
jects. n.t., not tested; tDCS, transcranial direct current stimulation; PAS, paired associative stimulation; TBS, theta burst stimulation; LTP,
long-term potentiation; LTD, long-term depression; GABAAR, γ-aminobutyric acid type A receptor; GABABR, γ-aminobutyric acid type
B receptor; •, no plasticity; ↓, decrease of plasticity; ↑, increase of plasticity.

too much dopamine. Since dopamine replacement in
PD patients in the Off-state re-establishes the LTP-like
plasticity induced by PAS it was claimed that plasticity
impairment in PD is caused by dopamine depletion
(Ueki et al. 2006). The finding that the LTP-like plasticity
induced by PAS was re-established in the non-dyskinetic
group but not in the dyskinetic group (Morgante
et al. 2006) might be a hint for a non-linear (i.e.
inverse U-shaped) effect of dopamine on plasticity in
PD patients, similar to such non-linear dose-dependent
effects demonstrated in healthy controls (see above,
Pharmacological modulation of plasticity/Experiments
in humans/Modulators of plasticity/The dopaminergic
system). These data demonstrate a clear association
between clinical symptoms and NIBS-induced plasticity.

In another disease possibly associated with a
dopaminergic deficit, idiopathic restless legs syndrome,

PAS does not result in LTP-like plasticity without
treatment. PAS-induced plasticity is, however, restored
after 4 weeks of dopaminergic treatment (Rizzo et al.
2009a).

Further support for the necessity of a sufficient
dopamine concentration for maintaining the capacity
for plasticity induction comes from a rather complex
newly developed protocol, which explored L-dopa dose
effects in PD patients. The authors tested depotentiation
(induced by a short TBS protocol) of LTP-like plasticity
previously induced by a longer TBS protocol and followed
by a 1 min contraction of the target muscle. Patients
without L-dopa-induced dyskinesias had normal LTP- and
depotentiation-like effects when they took their full dose of
L-dopa; however, halving the dose led to the disappearance
of the LTP-like plasticity (Huang et al. 2011). With
this half dose, however, patients with L-dopa-induced

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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dyskinesias could be successfully potentiated, but they
were unresponsive to the depotentiation protocol. These
findings suggest that depotentiation is abnormal in
M1 of PD patients with levodopa-induced dyskinesias
and that LTP-like plasticity is more readily affected by
administration of L-dopa than the clinical symptoms in
these patients.

In summary, overwhelming evidence in clinical studies
of PD patients exists that supports the necessity for the
presence of a sufficient level of dopamine for inducing
plasticity. Furthermore, there is substantial evidence that
the effects of dopamine enhancement on plasticity and
clinical symptoms are tightly linked. This underscores
the potential of NIBS-induced plasticity to serve as a
biomarker for clinical restoration in PD.

Schizophrenia

Beyond positive symptoms like hallucinations and
delusions, and negative symptoms (reduction of inter-
ests, emotions, missing ability to feel joy, amongst others),
cognitive dysfunction in schizophrenia (ScZ) has gained
increased attention during the last years, which might
be caused by abnormal neuroplasticity. It has been
demonstrated that ScZ patients display reduced cortical
connectivity (Balu & Coyle, 2011), and also enhanced,
but aberrant connectivity (Barbalat et al. 2009; Cole

et al. 2011). Hereby different parameters of functional
connectivity seem to be altered differently in ScZ: the
strength of functional connectivity is reduced, whereas
the diversity of functional connections is increased (Lynall
et al. 2010). Moreover, dysfunctional NMDA receptors, as
well as dopaminergic alterations are critically involved in
this disease (Paz et al. 2008; Howes & Kapur, 2009; Balu &
Coyle, 2011).

In principal generally, LTP-like plasticity was reduced
or abolished in ScZ patients, when induced by
high-frequency rTMS, PAS, or anodal tDCS (Oxley et al.
2004; Frantseva et al. 2008; Hasan et al. 2011b). Similarly,
LTD-like plasticity induced by either low-frequency rTMS
or cathodal tDCS was absent (Fitzgerald et al. 2004; Hasan
et al. 2011a). While those studies explored M1 plasticity,
Barr and colleagues (Barr et al. 2011) investigated the
effects of plasticity induction by high-frequency rTMS of
the dorsolateral prefrontal cortex on gamma oscillations.
The findings demonstrate enhanced oscillatory activity
during the performance of a working memory task before
rTMS in ScZ, but a reduction after rTMS, while gamma
oscillations were enhanced by rTMS in healthy controls.
With the exception of the study conducted by Fitzgerald
and colleagues (Fitzgerald et al. 2004), patients in all
other studies were explored under anti-psychotic (i.e.
anti-dopaminergic) treatment. Since dopamine has a
prominent impact on plasticity in humans (see above),

Figure 1. Application of non-invasive brain stimulation (NIBS) for the prediction of drug efficacy in
neuropsychiatric disorders
This schematic diagram shows how NIBS can be used for the identification of effective drug therapies in neuro-
psychiatric disorders. In the first step, NIBS can be applied to identify abnormal neuroplasticity, and to explore
its association with clinical symptoms. NIBS can then serve to explore the impact of medication on abnormal
plasticity, and to predict medication effects on the relief of symptoms. In the case of a causal relationship
between medication-induced clinical response and plasticity, NIBS can serve as biomarker of responsiveness to
drug treatment.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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this makes it difficult to ascertain whether the alterations
of plasticity in ScZ are disease- or medication-related.
The finding, however, that medicated and non-medicated
patients showed similar plasticity deficits (Fitzgerald et al.
2004) favours a disease-related alteration. Although most
of the NIBS-induced plasticity studies conducted so far
show reduced plasticity in ScZ patients, the diverse impact
of the disease on various aspects of functional connectivity
(see above) might hint at the possibility that there is also
a less uniform effect of ScZ on plasticity, which might be
uncovered by future NIBS experiments.

Unfortunately, no studies are available at present that
probe the effects of anti-dopaminergic medication on
disturbed plasticity in ScZ, and any possible association
with clinical symptoms, including cognitive performance.
In one study, at least, an association between the level
of impairment of LTP-like plasticity induced by PAS
and motor skill learning was described in ScZ patients
(Frantseva et al. 2008). Although these patients were
tested under anti-dopaminergic medication, this result
supports the notion that NIBS-induced LTP-like plasticity
is a candidate biomarker for cognitive performance in
schizophrenia.

Outlook

Knowledge about the physiological basis of neuro-
plasticity, and its functional consequences has
considerably enhanced during the last decades, not
only based on animal experimentation, but also in
humans. Due to the recent development of NIBS
techniques, it is now possible to induce alterations in
cortical excitability in conscious human subjects, which
resemble synaptic plasticity as studied at the cellular
level. Interestingly, recent studies provide evidence for
a causal relationship between pathological alterations
in NIBS-induced plasticity and clinical symptoms in
a number of neuropsychiatric diseases. Furthermore,
many CNS-active drugs affecting synaptic plasticity
also show modifying effects on the magnitude and
direction of NIBS-induced neuroplasticity. Therefore, it
appears a promising approach to explore the suitability
of neuroplasticity induced by NIBS as a biomarker
for the clinical efficacy of newly developed drugs to
treat neuropsychiatric diseases, as well as for individual
adjustment of drug type and dosage. This approach might
thus help to close the gap between pre-clinical studies
and pharmacotherapy in patients by applying CNS-active
drugs that modulate synaptic plasticity. However, the
number of studies exploring causality between alterations
in NIBS-induced neuroplasticity and clinical symptoms
in neuropsychiatric diseases is currently limited. This
deficit applies to an even larger extent to experiments
studying the causal relationship between pharmacological
modulations of NIBS-induced plasticity and clinical

symptoms. There is an urgent need for this type of
study before it can be ultimately decided if, indeed,
NIBS-induced neuroplasticity is a reliable and valid
biomarker for the exploration of the clinical efficacy of
CNS-acting drugs. This review provided a comprehensive
rationale in support of continuing research along this
direction towards identifying the clinical utility of
pharmacological modulation of NIBS-induced plasticity
in patients with neuropsychiatric diseases.
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