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Mutations in COX7B Cause Microphthalmia with Linear
Skin Lesions, an Unconventional Mitochondrial Disease

Alessia Indrieri,1 Vanessa Alexandra van Rahden,2 Valeria Tiranti,3 Manuela Morleo,1 Daniela Iaconis,1

Roberta Tammaro,1 Ilaria D’Amato,3 Ivan Conte,1 Isabelle Maystadt,4 Stephanie Demuth,5

Alex Zvulunov,6 Kerstin Kutsche,2 Massimo Zeviani,3 and Brunella Franco1,7,*

Microphthalmia with linear skin lesions (MLS) is an X-linked dominant male-lethal disorder associated with mutations in holocyto-

chrome c-type synthase (HCCS), which encodes a crucial player of the mitochondrial respiratory chain (MRC). Unlike other mitochon-

drial diseases, MLS is characterized by a well-recognizable neurodevelopmental phenotype. Interestingly, not all clinically diagnosed

MLS cases have mutations inHCCS, thus suggesting genetic heterogeneity for this disorder. Among the possible candidates, we analyzed

the X-linked COX7B and found deleterious de novomutations in two simplex cases and a nonsensemutation, which segregates with the

disease, in a familial case. COX7B encodes a poorly characterized structural subunit of cytochrome c oxidase (COX), the MRC complex

IV. We demonstrated that COX7B is indispensable for COX assembly, COX activity, and mitochondrial respiration. Downregulation

of the COX7B ortholog (cox7B) in medaka (Oryzias latipes) resulted in microcephaly and microphthalmia that recapitulated the MLS

phenotype and demonstrated an essential function of complex IV activity in vertebrate CNS development. Our results indicate an

evolutionary conserved role of theMRC complexes III and IV for the proper development of the CNS in vertebrates and uncover a group

of mitochondrial diseases hallmarked by a developmental phenotype.
Mitochondria are key players in crucial cellular functions

that include oxidative metabolism, ion homeostasis, signal

transduction, and programmed cell death. When dysfunc-

tional, mitochondria can contribute to the pathogenesis

of a variety of human diseases, such as cancer, neurodegen-

eration, and aging.1,2

Mitochondrial disorders are associated with abnormali-

ties of the common final pathway of mitochondrial energy

metabolism, i.e., oxidative phosphorylation (OXPHOS).

Their clinical manifestations are extremely heterogeneous

and range from lesions of single tissues or structures, such

as the optic nerve in Leber’s hereditary optic neuropathy

(LHON [MIM 535000) or the cochlea in maternally

inherited nonsyndromic deafness (MIM 50008), to more

widespread lesions, includingmyopathies, encephalomyo-

pathies, cardiopathies, or complex multisystem syn-

dromes. The age of onset for these diseases ranges from

neonatal to adult life.3,4

Microphthalmia with linear skin lesions (MLS [MIM

309801]) is an X-linked dominant male-lethal neurodeve-

lopmental disorder due to mutations in holocytochrome

c-type synthase (HCCS [MIM 30056]).5 Impaired HCCS

function in yeast andmice results in OXPHOS defects, sup-

porting a crucial role for HCCS in the formation and func-

tion of the mitochondrial respiratory chain (MRC).6,7

MLS-affected females exhibit microphthalmia and

distinctive linear skin defects usually limited to the face

and neck with areas of aplastic skin, which heals to form

hyperpigmented lesions. Additional features include facial
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dysmorphisms, sclerocornea, corneal opacities, agenesis of

the corpus callosum, ventriculomegaly, microcephaly,

intellectual disability, infantile seizures, and cardiac anom-

alies. The clinical manifestations vary among affected indi-

viduals. Although most of the affected females present

with the classical phenotype, a significant number display

only a subset of features: some show the typical skin

defects without ocular abnormalities, and others display

eye abnormalities without skin defects8 (also see GeneRe-

views in Web Resources). The majority of affected indi-

viduals display monosomy of the Xp22.3 region, where

HCCS is located. Interestingly, there is no correlation

between the phenotype and the extent of the deletion.9

Several authors have suggested that tissue-specific differen-

tially skewed inactivation of the X chromosome could

play a critical role in the development of MLS (reviewed

in Van den Veyver,10 Franco and Ballabio,11 and Morleo

and Franco12), in the intrafamilial variability, and in the

clinical differences observed among simplex cases. An

example of intrafamilial variability is represented by an

affected female who only presented with the typical skin

defects and who had an affected female fetus with anen-

cephaly. The cytogenetic analyses revealed that both

mother and fetus had the same Xp22 deletion, one of

the largest described to date for MLS.9

The salient features of MLS differ from those found in

‘‘canonical’’ mitochondrial diseases that are usually char-

acterized by postnatal organ failure rather than impaired

development of multiple organs and systems. MLS
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Figure 1. Photographs of Individuals in whom COX7B Mutations Were Identified
(A and B) Photographs of case 2 at the ages of 1 year and 10 months (A) and 7 years (B). She had an asymmetric face with limited eyelid
closure and linear skin defects (which became less obvious with age) on the face and neck.
(C) Pedigree of family 1. Proband II.4 is the fourth child of healthy and unrelated parents. The couple has three healthy daughters, II.1,
II.2, and II.3, and one healthy son, II.5. Three pregnancies ended with spontaneous abortions of unknown sex early in the first trimester.
(D–H) Photographs of individual II.4 (F–H) and her mother (I.2). At birth, individual I.2 presented with linear skin defects, which healed
with scaring (arrows in D and E). Individual II.4 had facial dysmorphism with telecanthus, long upslanting palpebral fissures, a short
nose, mild retrognathia, and posteriorly rotated ears (G). Linear and patchy erythroderma is located on the cheeks and neck; it was
more pronounced at birth (F) than at the age of 5 years (H).
represents a remarkable example of a truly developmental

phenotype associated with mitochondrial dysfunction.

Moreover, the skin involvement in mitochondrial diseases

is atypical and can include hirsutism and hypertrichosis as

described in Leigh syndrome (MIM 256000) and twisted

hairs as reported in Bjornstad syndrome (MIM 262000).13

HCCS is highly conserved throughout evolution from

fungi to metazoan and catalyzes the incorporation of

heme moieties on both cytochrome (Cyt) c1, an integral

component of MRC complex (C) III, and Cytc, the mito-

chondrial CIII–CIV electron shuttle.14,15 A few clinically

diagnosedMLS cases inwhomnomutations inHCCS could

be found have been identified16,17 (B.F. and K.K., unpub-

lished results), thus suggesting genetic heterogeneity for

this disorder. In all these cases, analysis of the methylation

pattern revealed 100% skewing of X chromosome inactiva-

tion in peripheral-blood cells (data not shown).

We postulated that mutations affecting other compo-

nents of CIII–CIV could lead to the MLS phenotype. Cyto-

chrome c oxidase (COX), a fundamental MRC complex

(CIV), in humans comprises three mitochondrial-encoded

proteins (COX1, COX2, and COX3) that assemble with

ten nuclear-encoded proteins (COX4, COX5A, COX5B,

COX6A, COX6B, COX6C, COX7A, COX7B, COX7C, and

COX8) to form the mature holocomplex.18–21 Because of

the expected X-linked inheritance pattern, we selected,

among possible candidates, the only X-linked gene,

COX7B (MIM 603792), which encodes a small and poorly

characterized subunit of CIV.22,23 We then analyzed 14

available MLS-affected females in whom mutational
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analysis failed to detect mutations in HCCS, and we found

three mutations in COX7B.

Case 1 is the first child of unrelated Jewish parents. She

was born at term and displayed linear skin lesions on the

neck and face at birth. Her mother had had two previous

spontaneous abortions of unknown sex during the first

trimesterofpregnancy.This individualpresentedwith facial

dysmorphisms, short stature, microcephaly, and poor

growth. Eye examination was normal and showed neither

microphthalmia nor visual impairment. Her psychomotor

development was normal. A full description of this case is

available.24 Fluorescent in situ hybridization (FISH) studies

excluded deletion and translocation of the Xp22 region.

Case 2 was born at term from nonconsanguineous

parents. She presented with poor growth, microcephaly,

multiple linear skin defects on the face and neck, an asym-

metric face with limited eyelid closure, a small chin, and a

right clumped foot. A right diaphragmatic hernia was

surgically corrected. A cranial ultrasound revealed a thin

corpus callosum. No ocular abnormalities were detected.

An echocardiogram showed ventricular hypertrophy,

pulmonary hypertension, and a small atrial septal defect.

She also had left renal agenesis and ureteral duplication

of the right kidney. During a follow-up examination, she

showed short stature. Linear skin defects healed over

time, although they were still evident on the cheeks and

chin (Figures 1A and 1B). She had mild psychomotor

delay and learning difficulties. Routine cytogenetic anal-

ysis revealed a normal female karyotype. FISH studies

excluded deletion and translocation of the Xp22 region.
Journal of Human Genetics 91, 942–949, November 2, 2012 943



Figure 2. COX7B Mutations in Individuals with MLS
(A) Sequence electropherograms from genomic DNA of case 1. She was found to be heterozygous for a de novo 1 bp deletion (leading to
a frameshift) in exon 3 of COX7B.
(B) Sequence electropherograms from genomic DNA of case 2. She was found to be heterozygous for a de novo splice site mutation, c.41-
2A>G, in intron 1.
(C) Sequence electropherograms from genomic DNA of individual II.4 from family 1. The heterozygous mutation c.55C>T (p.Gln19*) in
exon 2 was found in individuals II.4 and I.2.
(D) Sequence electropherograms of COX7B transcripts obtained from a minigene assay. Representative sequences of a transcript
(containing the spliced exon 2 of COX7B) obtained from the WT construct is shown on the top, whereas one representative transcript
obtained from the minigene with the c.41-2A>G mutation is shown on the bottom. Mutant (c.41-2G) COX7B transcripts result in a
truncated COX7B (p.Val14Glyfs*19). Nucleotide triplets and encoded amino acids are indicated.
In family 1, proband II.4 is the fourth child of unrelated

individuals. Before she was born, her mother, individual

I.2, had three pregnancies that ended with spontaneous

abortions of unknown sex within the first trimester

(Figure 1C). At birth, individual I.2 presented with linear

skin defects, which became less obvious with age (Figures

1D and 1E). She has mild myopia and normal cognitive

functions. Proband II.4 was born at 30 weeks of gestation

with a normal birth weight and microcephaly. She pre-

sented with linear and patchy erythroderma (more evident

at birth) on the cheeks and neck (Figures 1F and 1H), facial

dysmorphisms (including telecanthus, arched eyebrows,

long upslanting palpebral fissures, a short nose, mild retro-

gnathia, and posteriorly rotated ears) (Figure 1G), and

tetralogy of Fallot. She also had an asymmetric thorax

withwidely spacednipples, bilateral clinodactylyof thefifth

fingers, andabilateral sandalgap. Shedeveloped intellectual

disabilities andwas diagnosedwith attention-deficit/hyper-

activity disorder at 4 years of age. When she was 3 months

old, brain magnetic resonance imaging showed delayed
944 The American Journal of Human Genetics 91, 942–949, Novemb
myelination. She had poor vision, and an ophthalmologic

examination revealed pale optic discs and altered visual-

evoked potentials. Array-comparative-genomic-hybridiza-

tion analysis (Agilent 44K) in II.4 revealed a 387 kb micro-

duplication of unknown clinical significance on 12p13.33

and excluded a deletion of the Xp22 region. This micro-

duplication was also present in her healthy father.

Individuals enrolled in this study were collected under

the approval of the ethics committee responsible for each

center, and informed consent was obtained from subjects

or their legal representatives.

COX7B (RefSeq accession number NM_001866.2) is

localized to the Xq21.1 region, comprises three coding

exons, and encodes an 80 amino acid mitochondrial

protein. Using specific primers listed in Table S1 (available

online), we sequenced the coding region and exon-intron

boundaries of COX7B in the above-described cases. In case

1, this analysis led to the identification of a heterozygous

1 bp deletion, c.196delC (leading to a frameshift), in

exon 3 of COX7B (Figure 2A). This mutation most likely
er 2, 2012



Table 1. Clinical Features Reported inMLS-Affected Individuals Carrying Deletions or PointMutations inHCCS or PointMutations in COX7B

HCCS Deletions or Point Mutationsa COX7B Point Mutations

Occurrence Case 1 Case 2

Family 1

Clinical Features II.4 I.2

Microphthalmia 43/55 (78%) � � � �

Sclerocornea 22/55 (40%) � � � �

Other eye abnormalities 28/55 (51%) � � þb �

Linear skin lesions 42/55 (76%) þ þ þ þ

Nail dystrophy 3/55 (5%) þ � � �

Microcephaly, agenesis of the corpus
callosum, and other CNS abnormalities

24/52 (43%) þ þ þ �

Intellectual disability 9/42 (21%) � þ þ �

Short stature 16/36 (44%) þ þ � �

Cardiac abnormalities 21/52 (40%) � þ þ �

Diaphragmatic hernia 3/55 (5%) � þ � �

Genitourinary abnormalities 14/55 (25%) � þ � �

Please note that for each feature listed in the table, the total number of individuals taken into account includes only cases in whom each clinical feature was
analyzed and documented.
aSee GeneReviews in Web Resources, as well as Sharma et al.,8 Kono et al.,26 and Zumwalt et al.27
bPale optic discs and altered visual-evoked potentials.
leads to the generation of a COOH-terminal truncated

COX7B with 46 novel amino acids (p.Leu66Cysfs*48).

The resulting mutant protein is predicted to lack the

domain that interacts with the two COX subunits, namely

COX4 and COX6C.22 The mutation was absent in the

parents (paternity confirmed) and in 200 ethnically

matched controls (data not shown).

In case 2, COX7B sequence analysis revealed the pres-

ence of a heterozygous splice mutation (c.41-2A>G) in

intron 1 (Figure 2B). The mutation was absent in the

parents. This mutation is predicted to create in intron 1

a novel splice acceptor site one base before the wild-type

(WT) splice site. In vitro analysis of the c.41-2A>G change

was performed by the Exon Trapping System (GIBCO

Invitrogen). A 2,705 bp genomic fragment that encom-

passes intron 1, exon 2, and intron 2 of COX7B for both

WT and mutant sequences was cloned into vector pSPL3,

sequenced for integrity, and transfected into COS-7 cells.

We analyzed ten WT (c.41-2A) and ten mutant (c.41-2G)

COX7B transcripts. In all transcripts obtained from the

WTminigene, we identified a normal sequence (Figure 2D).

In contrast, 90% of the mutated transcripts contained

an additional guanine at the beginning of exon 2; this

addition led to out-of-frame transcripts and most likely

to the formation of a truncated COX7B with 18 novel

amino acids at the COOH-terminal region (p.Val14Glyfs*

19) (Figure 2D).

Finally, we also identified a heterozygous nonsense

mutation (c.55C>T [p.Gln19*]) in the second exon of

COX7B in individual II.4 (Figure 2C). The mutation was

identified in both individual II.4 and her mother (I.2),

whereas the three healthy sisters (II.1, II.2, and II.3) of
The American
individual II.4 and her healthy brother (II.5) inherited

the WT COX7B allele from their mother (Figure 1C). This

mutation might result either in a functional null allele as

a result of nonsense-mediated mRNA decay (NMD) or

in a COX7B lacking a large COOH-terminal portion

(Daa19–80). The latter assumption is more likely given

that mRNAs with a premature termination codon located

within 50–55 nt upstream of the most 30 exon-exon junc-

tion are generally not targeted for NMD.25

None of the nucleotide changes were present in the

available databases (dbSNP or the National Heart, Lung,

and Blood Institute [NHLBI] Exome Variant Server). All

together, our results clearly indicate that mutations in

COX7B cause MLS. Table 1 illustrates the clinical features

observed in individuals with deletions or point mutations

in HCCS and those observed in individuals with point

mutations in COX7B. Some of the individuals in whom

no mutation in either COX7B or HCCS could be identified

might bear small deletions not identified in the present

study. It is also possible that mutations in other MRC-

associated genes will possibly explain these cases.

The function of COX7B within CIV is still unknown. To

investigate this issue, we silenced COX7B in HeLa cells

by using ON-TARGET siRNA (Dharmacon) against

human COX7B and ON-TARGET Non-Targeting siRNA

(Dharmacon) to a final concentration of 50 nM. Measured

by quantitative real-time PCR, the degree of COX7B

silencing in siRNA-treated HeLa cells (HeLaCOX7B) was

>50% higher than the levels detected in HeLa cells

incubated only with the transfection reagent (HeLaWT)

and HeLa cells transfected with nontargeting siRNA

(HeLaC) (Figure S1).
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Figure 3. COX7B Is Necessary for CIV Activity, Assembly, and MRC Functioning
(A) COX histochemical reactions in HeLaWT, HeLaC, and HeLaCOX7B cells; note the marked reduction in HeLaCOX7B cells compared to
controls. The bottom panel shows the number of COX-positive cells in each sample.
(B) In-gel activity of CIV on 1D-BNGE in the same cells. 1D-BNGE was performed on mitochondria isolated from HeLa cells as
described.29 COX-specific in-gel activity was visualized on 100 mg of protein (for each sample) run through 1D-BNGE as described.30

The intensity of the COX-specific band was markedly reduced in HeLaCOX7B lysate.
(C) 1D-BNGE immunoblot analysis of mitochondria immune visualized with antibodies against COI and against the 70 kDa (SDHA) CII
subunit used as a control.
(D) Immunodetection of CIVassembly intermediates on two-dimensional BNGE immunoblot showsmarked decrease in the steady-state
level of CIV holoenzyme detected by the COI antibody in HeLaCOX7B cells. The amount of loaded samples is the same as in (C).
(E) The OCR was measured by microscale oxygraphy in different conditions as described in Invernizzi et al.31 The resulting OCR profile
in HeLaWT, HeLaCOX7B, and HeLaC cells was normalized to cell number.
(F) Analysis of the MRR in HeLaWT, HeLaCOX7B, and HeLaC cells. MRR was calculated by the subtraction of the rotenone-insensitive
OCR from OCR-F (OCR after FCCP addition). Error bars represent the standard deviation; *p < 0.05, **p < 0.01, ***p < 0.001 in an
unpaired, two-tailed Student’s t test.
We first carried out a COX-specific histochemical reac-

tion28 that showed markedly reduced signal in HeLaCOX7B

cells compared to bothHeLaWTandHeLaC cells (Figure 3A).

We then measured in-gel COX activity on mitochondrial

extracts fromHeLaWT, HeLaC, andHeLaCOX7B cells (extracts

were separated by one-dimensional blue-native gel elec-

trophoresis [1D-BNGE]). The COX-specific reactive band

was markedly reduced in the HeLaCOX7B extract, in striking

contrast with the robust reaction detected in both HeLaWT

and HeLaC extracts (Figure 3B). Holo-COX immuno-

detection by immunoblot analysis on 1D-BNGE with anti-

COX subunit I (COI) antibodies showed marked reduction

of the fully assembled COX inHeLaCOX7B cells as compared

toHeLaWTandHeLaC samples (Figure 3C). Likewise, immu-

noblot analysis on two-dimensional BNGE showed that

COI cross-reacting material was present at the position

corresponding to the fully assembled COX in HeLaWT
946 The American Journal of Human Genetics 91, 942–949, Novemb
and HeLaC samples, whereas it was hardly detectable

in HeLaCOX7B samples insomuch that it prevented the

visualization of any possible subassembly intermediate

(Figure 3D).

We also analyzed the oxygen-consumption rate (OCR)

in living cells by using microscale oxygraphy (XF96

Seahorse) according to described protocols.31 The OCR

was measured in basal conditions (OCR-B) in the presence

of the CV inhibitor oligomycin (OCR-O), corresponding to

respiration state 4, and in the presence of the OXPHOS

uncoupler FCCP (OCR-F), corresponding to respiration

state 3.31,32 Values were significantly lower in HeLaCOX7B

cells than inHeLaWTandHeLaC cells (Figure 3E); as a conse-

quence, the maximal respiration rate (MRR), an index of

the functional reserve of mitochondrial respiration that

is obtained by the subtraction of OCR-B from OCR-F,31,32

was also reduced (Figure 3F). These results demonstrate
er 2, 2012



Figure 4. cox7B Downregulation In Vivo
Mimics MLS
Bright-field dorsal views of embryos in-
jected with a control MO (A), cox7B MO
(B), cox7B MO þ hCOX7B mRNA (C),
cox7B MO þ c.196delC-hCOX7B mRNA
(D) at stage 38. The injection of the cox7B
MO induced microphthalmia (vertical
dashed line in B) and microcephaly (hori-
zontal dashed line in B). The overexpres-
sion of hCOX7B mRNA fully rescued mi-
crophthalmia and microcephaly (vertical
and horizontal dashed lines in C), induced

by MOs showing the specificity of the morphant phenotype. No amelioration of the phenotype was observed in embryos coinjected
with cox7B MO þ c.196delC-hCOX7B mRNA, indicating that this mutation impairs COX7B activity (D). Scale bars represent 100 mm.
MOs (Gene Tools) were injected into fertilized embryos at the 1- to 2-cell stage. mRNA sequences corresponding to WT hCOX7B
and c.196delC hCOX7B were obtained with the SP6 mMessage mMachine kit (Ambion). Rescue experiments were performed by
coinjection of WT hCOX7B and c.196delC hCOX7B with the cox7B MO into one blastomere of the embryos at the 1- to 2-cell stage.
eGFP mRNA was always included in the injection solutions as a reporter.
that the COX7B subunit is necessary for COX activity,

COX assembly, and mitochondrial respiration.

Finally, to evaluate the role of COX7B in vivo, we down-

regulated cox7B in medakafish (Oryzias latipes) by using

a morpholino (MO)-based knockdown approach. We iden-

tified the medaka COX7B ortholog (cox7B) by screening

available genomic sequences by using the human and

murine COX7B sequences (RefSeq NP_001857.1 and

NP_079655.1, respectively). The entire cox7B coding

sequence, including part of the 50 UTR, was isolated

by reverse-transcriptase-PCR amplification from cDNA

derived from a pool of medaka embryos at different

stages (data not shown). The medaka cox7B transcript

(HE717026) encodes a 78 amino acid protein with 51%

identity to the human COX7B. We designed a specific

MO against the second splice acceptor site (cox7B MO)

and injected it into embryos at the 1- to 2-cell stage.

Embryos injected with a mutated form of the MO (control

MO) were used as controls. The efficiency and specificity of

MOs (Gene Tools) were verified with the recommended

controls33 (Figure S2 and Tables S1 and S2).

The cox7B morphants showed a dose-dependent pheno-

type characterized by microcephaly and microphthalmia

(Figures 4A and 4B and Table S2). The presence of micro-

phthalmia after cox7B downregulation demonstrates that

COX7B plays a role in eye development. Therefore, the

lack of microphthalmia in the cases analyzed (Table 1)

might be explained by a selective pattern of X inactivation

in those individuals.11,12 The identification of additional

cases with COX7B mutations will be crucial for clarifying

this issue. Morphant embryos also displayed cardiovas-

cular abnormalities with evident pericardial edema and

formation of an unlooped heart (Figure S3). Interestingly,

two of the cases with COX7B point mutations presented

with cardiac abnormalities. These defects, which are

similar to those observed in hccs morphants (B.F., unpub-

lished data), were progressive and led to death at the

hatching stage. Injection of morphants with human (h)

COX7BmRNA rescued the phenotype (Figure 4C and Table

S2), demonstrating that COX7B function is important for
The American
proper development and is conserved among vertebrates.

On the contrary, injection of c.196delC hCOX7B did not

rescue the phenotype, indicating that this mutation

impairs COX7B activity (Figure 4D and Table S2).

In summary, our results indicate that severe impairment

of the MRC’s terminal segment, which funnels all the

reducing equivalents from both NADHþHþ and FADH2

electron donors to O2, causes a severe developmental

phenotype, which is an uncommon feature in canonical

mitochondrial disorders. Interestingly, mutations in

nuclear-encoded subunits of CIII–CIV are exceptionally

rare in humans. To date, a single homozygous missense

mutation in the nuclear COX6B1 (MIM 124089), encoding

a COX subunit, has been reported in an individual with

mitochondrial encephalomyopathy (COX deficiency

[MIM 220110]).34

HCCS and COX7B are both ubiquitously expressed (data

available at BIOGPS database) given that they are required

for cellular respiration. However, the phenotypic manifes-

tations observed in MLS-affected females mainly affect the

CNS and other specific organs, suggesting that dosage and

function of these proteins are critical for selected tissues. It

is possible that differential tissue sensitivity to mitochon-

drial ATP depletion (high versus low energy demand)

and/or overproduction of reactive oxygen species might

elicit different molecular responses in the absence of

HCCS or COX7B in selected tissue types and might there-

fore induce the blockage of cell replication and/or an

increased cell death.1,35,36

Deregulation in these processes andX chromosome inac-

tivation could concur to select OXPHOS-proficient cells in

HCCS- and COX7B-depleted tissues, thus attenuating or

abolishing MRC defects in the surviving tissues and indi-

viduals. BothHCCS andCOX7B are subjected to X inactiva-

tion. Interestingly, X-linked genes show variable patterns

of inactivation and are expressed to different extents

from some inactive X chromosomes, suggesting a remark-

able degree of expression heterogeneity among females.37

The molecular basis of many inherited developmen-

tal disorders that involve the CNS still remains to be
Journal of Human Genetics 91, 942–949, November 2, 2012 947



determined. On the basis of our results, MRC-related genes

might very well underlie lethal and so far unrecognized

developmental disorders and should be considered as

possible candidates for these conditions.

All together, our results indicate an essential role for

MRC function in correct CNS development and uncover

the existence of a group of mitochondrial diseases in

which impairment of the CIII–CIV MRC segment results

in developmental defects.
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with Linear Skin Defects Syndrome, http://www.ncbi.nlm.nih.

gov/books/NBK7041

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/
Accession Numbers

The EMBL Nucleotide Sequence Database accession number for

the medaka cox7B sequence reported in this paper is HE717026.
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