
ARTICLE

Detecting and Estimating Contamination of Human DNA
Samples in Sequencing and Array-Based Genotype Data

Goo Jun,1,3 Matthew Flickinger,1,3 Kurt N. Hetrick,2 Jane M. Romm,2 Kimberly F. Doheny,2

Gonçalo R. Abecasis,1 Michael Boehnke,1 and Hyun Min Kang1,*

DNA sample contamination is a serious problem in DNA sequencing studies andmay result in systematic genotypemisclassification and

false positive associations. Although methods exist to detect and filter out cross-species contamination, few methods to detect within-

species sample contamination are available. In this paper, we describe methods to identify within-species DNA sample contamination

based on (1) a combination of sequencing reads and array-based genotype data, (2) sequence reads alone, and (3) array-based genotype

data alone. Analysis of sequencing reads allows contamination detection after sequence data is generated but prior to variant calling;

analysis of array-based genotype data allows contamination detection prior to generation of costly sequence data. Through a combina-

tion of analysis of in silico and experimentally contaminated samples, we show that our methods can reliably detect and estimate levels

of contamination as low as 1%. We evaluate the impact of DNA contamination on genotype accuracy and propose effective strategies to

screen for and prevent DNA contamination in sequencing studies.
Introduction

Advances in array-based genotyping and next-generation

sequencing have resulted in higher throughput, lower

costs, and reduced error rates. These technologies enable

increasingly comprehensive genetic studies for a wide

range of human diseases and traits. Although they are

constantly improving, genotyping and sequencing tech-

nologies are not perfect, and careful attention must be

paid to ensure high data quality. Sensitive and efficient

methods to screen data for potential artifacts are critical.

One potential source of error is DNA sample contamina-

tion. Because samples are often processed in batches and

genotyping and sequencing protocols require multiple

steps of sample handling and manipulation in the lab, it

is not surprising that DNA from more than one individual

may end up in the same well or prepared library. In this

paper, we focus on within-species contamination in

which DNA from more than one individual is present,

either from another individual in the same study or from

an unknown individual. Note that cross-species contami-

nation can often be detected and filtered out during the

alignment of sequence reads.1 Within species contamina-

tion is harder to detect and can result in greatly reduced

genotype quality for sequencing studies; the problem is

most severe for low pass sequencing studies (where each

allele is typically supported by only a few reads) but can

affect even deep sequencing studies.

In a recent type 2 diabetes sequencing study, we identi-

fied a subset of individuals with unusually large numbers

of heterozygous genotypes and high ratios of heterozygous

genotypes to nonreference allele homozygous genotypes

(HET/HOM ratio) (see Figures 1A and 1B available online).
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We hypothesized that some DNA samples might be

contaminated, resulting in poor genotype estimates and

inflated heterozygosity and, therefore, set about to develop

methods to identify such contamination and estimate its

extent.

Here, we describe methods to detect DNA sample con-

tamination based on sequencing and/or array-based geno-

type data.We demonstrate that when sequencing is carried

out on DNA samples for which array-based genotypes are

available, it is possible to estimate the level of sample

contamination, and to identify the source of the contami-

nation (see Web Resources).2 We further demonstrate that

even with low-pass sequencing data alone, we can detect

and estimate the degree of contamination. Finally, and

perhaps most important, we demonstrate that it is possible

to detect even modest levels of DNA sample contami-

nation from array-based genotype data alone, allowing

DNA samples to be prescreened for possible contamination

prior to sequencing. Software based on our methods is

already in use by major sequencing projects, including

the 1000 Genomes Project, and is publicly available (see

Web Resources).
Material and Methods

In this section, we first describe a series of methods to evaluate

DNA sample contamination and then outline a series of experi-

ments carried out to evaluate our ability to identify contaminated

samples. We present three likelihood-based methods that detect

DNA sample contamination using (1) sequence data and array-

based genotype data, (2) sequence data alone, and (3) array-based

genotype data alone. We also present a regression-based method

that uses array-based genotype data alone. For each of these
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Table 1. Conditional Probability P(bijjeij gi) of Read bij Given True
Genotype gi, and Read Error eij

True
Genotype gi

Base Calling
Error Event eij Pr(bij ¼ A) Pr(bij ¼ B) Pr(bij ¼ E)b

gi ¼ AAa eij ¼ 0 1 0 0

eij ¼ 1 0 1/3 2/3

gi ¼ ABa eij ¼ 0 1/2 1/2 0

eij ¼ 1 1/6 1/6 2/3

gi ¼ BBa eij ¼ 0 0 1 0

eij ¼ 1 1/3 0 2/3

aAA, AB, BB: A allele homozygote, heterozygote, and B allele homozygote
bE: alleles other than A or B; assumes four possible alleles (bases)
methods, we assume that if DNA from a ‘‘contaminating sample’’

represents a fraction a of the observed data, then the same fraction

a of sequence reads and genotype array intensity will be contrib-

uted by the contaminating sample. Initially, we also assume the

presence of no more than one contaminating DNA sample (but

see Discussion).

Detecting Sample Contamination by Using Sequence

Data and Array-Based Genotype Data Jointly
We first consider the simplest situation where a set of genotypes

for each sequenced sample is known and we wish to investigate

whether sequencing reads all originate from the targeted sample

with no evidence for contaminating reads from a different sample.

For each site i, let gi be the true genotype, bij (1% j% Ri) be the base

call for the jth overlapping base (among Ri total reads overlapping

site i and passing mapping and base quality thresholds), and eij be

a latent indicator variable that takes value 0 when bij is called

correctly and 1 otherwise. Assuming that sequencing errors are

equally likely to result in any of the three alternate bases, the

conditional probabilities of observing a specific overlapping base

given the true genotype and error status Pðbij
�� gi; eijÞ can be calcu-

lated easily (Table 1). The conditional likelihood of a single over-

lapping base can then be written as the two-samplemixturemodel

P
�
bij j g1i ; g2i ; eij;a

� ¼ ð1� aÞP
�
bij j g1ij ; eij

�
þ aP

�
bij j g2i ; eij

�
where g1i and g2i are the genotypes of the targeted and contami-

nating DNA samples at site i, and a is the sample contamination

level. Note that, in this section, we assume that array based geno-

types are error-free, and therefore g1i is known. In later sections,

our methods that use either sequence or array-based data alone re-

move this restriction.

In the absence of knowledge of the identity of the contami-

nating individual, we formulate the likelihood

LðaÞ ¼
YM
i¼1

X
εi

X
g1
i

X
g2
i

8<
:

YRi
j¼1

X
eij

P
�
bij j g1i ; g2i ; eij; εi;a

�
P
�
eij
�9=;

3P
�
g2i
�
P
�
g1i j εi;Gi

�
PðεiÞ:

(Equation 1)

Here M is the number of genotyped sites for the targeted indi-

vidual, Gi is the array-based genotype for the targeted individual

at site i, and εi is a binary indicator of genotyping error events.

In Equation 1, we calculate genotype probabilities Pðg2i Þ from pop-

ulation allele frequency estimates assuming Hardy-Weinberg equi-
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librium, and error probabilities Pðeij ¼ 1Þ ¼ 10�Qij=10 and Pðeij ¼
0Þ ¼ 1� 10�Qij=10 where Qij is the phred-scale base quality score.

For simplicity, we assume Pðg1i ¼ Gi

��
ε ¼ 0;GiÞ ¼ 1 and Pðg1i ¼

ðGsGiÞjε ¼ 1;GiÞ ¼ 0:5. We estimate the contamination fraction

a by maximizing the likelihood in Equation 1, first using a grid

search on the interval [0, 1] and then applying Brent’s algo-

rithm.3

To identify the contaminating individual among the N study

individuals with array-based genotype data, we consider the likeli-

hood function

Lða; kÞ ¼
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i¼1

X
ε
1
i

X
ε
k
i
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�
for individuals 2%k%N. Using maximum likelihood across

a and k, we estimate the most likely contaminating individual k

and contamination level a. By comparing the maximum likeli-

hoods (over a) for the most likely and next most likely contami-

nating samples, including the generic individual represented

by population allele frequencies (as in Equation 1), we obtain a

measure of support for the inferred contaminating individual.

Detecting Sample Contamination by Using Sequence

Data Alone
Next, we consider the problem of identifying contamination

when prior genotype data are not available. In the absence of prior

genotype data, both gi
1 and gi

2 are unknown and the likelihood for

the contamination level a becomes

LðaÞ ¼
YM
i¼1

X
g1
i

X
g2
i

8<
:

YRi
j¼1

X
eij

�ð1� aÞP�bij j g1i ; eij
�

þ aP
�
bij j g2i ; eij

��
P
�
eij
�9=;P

�
g2i
�
P
�
g1i
� (Equation 2)

Equation 2 can be maximized using an initial grid search fol-

lowed by Brent’s algorithm. In contrast to Equation 1, in which

array-based genotype data are available, Equation 2 is symmetric

with respect to the targeted and contaminating individuals. In

this situation, with sequence data alone and without previously

known genotypes, our method cannot detect sample swaps.

Further, because LðaÞ ¼ Lð1� aÞ here we restrict attention to

0 % a % 1/2.

Detecting Sample Contamination by Using

Array-Based Genotype Data Alone
We next turn to the problem of detecting DNA sample contamina-

tion using array-based genotype data alone, an analysis that can be

carried out to identify contaminated samples prior to sequencing.

We assume the availability of relative intensity information, as

produced for example by the Illumina Infinium assay. The

Infinium assay measures the relative intensities of fluorescently

labeled probes associated with arbitrarily labeled alleles A and B.

After normalizing intensities, the Illumina software reports (1)

the genotype as AA, AB, and BB, assigning a missing genotype to

individuals with intensities outside the expected clusters, and (2)

the estimated abundance of the B allele called the B allele

frequency (BAF). We expect BAF close to 0, 1/2, or 1, for genotypes

AA, AB, and BB, respectively. We describe two types of contami-

nation detection, and estimation methods in this setting: two
er 2, 2012
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Figure 1. SNP Genotype Calling and
Estimation of Contamination from 299
European Sequenced Samples Across
chromosome 20
(A) Numbers of heterozygous genotypes.
(B) Ratio of the numbers of nonreference
homozygous genotypes to heterozygous
genotypes (HET/HOM ratio).
(C) Estimated level of DNA sample con-
tamination estimated from sequence data
only.
likelihood-based mixture-model methods based on the intensity

values and a regression-based method using BAF as input.

Detecting Sample Contamination byUsing Array Data

Alone—Mixture Models for Intensity Data
We implement our mixture model on the genotype intensity data

in two ways. One implementation estimates model parameters by

examining signal intensity distributions for each marker across all

samples; a second implementation estimates signal intensity

distributions by examining all markers for a single sample. Both

implementations use genotype intensity values normalized by

the GenomeStudio software as input, to reduce technical differ-

ences across samples and markers.

In the multisample implementation, for each marker i, we

model the normalized A and B allele intensity data xiðxA; xBÞ for
an uncontaminated DNA sample as a bivariate Gaussian distribu-

tion:

piðxi j giÞ � N
�
m
gi
i ;

Xgi

i

�
; gi ¼ fAA;AB;BBg;1%i%M

Here, gi is again the true genotype at marker i, mgi
i is the intensity

mean vector for marker i given gi, and
Pgi

i is the covariance matrix

of the A and B allele intensities. We estimate m
gi
i and

Pgi
i using

observed signal intensities and called genotypes at marker i across

all genotyped individuals. To reduce the impact of genotype

misclassification, we exclude samples with call rate <99% and

markers with minor allele frequency <1%. Assuming that the

observed DNA sample is a mixture of two unrelated DNA samples,

we can model the intensity values as a bivariate Gaussian mixture:

pi
�
xi j g1i ; g2i ;a

� � N
�
am

g1
i

i þ am
g2
i

i ;a2
Xg1

i

i

þ ð1� aÞ2
Xg2

i

i

�
1%i%M

where g1i and g2i are the genotypes of the two samples at marker i.

Given data on M independent markers, we formulate the likeli-

hood of a sample using the intensity distribution estimated across

multiple samples as

LðaÞ ¼
YM
i¼1

X
g1
i

X
g2
i

pi
�
xi j g1i ; g2i

�
P
�
g1i
�
P
�
g2i
�
: (Equation 3)

Genotype probabilities Pðgki Þ in Equation 3 can be calculated

assuming Hardy-Weinberg equilibrium using allele frequencies
The American Journal of Human Gen
estimated from the called genotypes or

from external data. As before, we estimate

a by maximum likelihood using a grid

search on the interval [0, 1/2] followed by

Brent’s algorithm. With genotype array

data alone,we cannotdetect sample swaps.
The single-sample implementation is analogous to the multi-

sample implementation. In the multisample implementation,

the bivariate Gaussian parameters for pi at each marker are esti-

mated across all N samples, whereas in the single-sample imple-

mentation, parameters for pk are estimated across all M markers

called in the individual. The corresponding likelihood of single-

sample implementation follows

LðaÞ ¼
YM
i¼1

X
g1
i

X
g2
i

pk
�
xi j g1i ; g2i

�
P
�
g1i
�
P
�
g2i
�

where pkðxjg1i ; g2i Þ is mixture of bivariate Gaussians whose param-

eters are estimated across all markers for individual k.

The multisample implementation is appropriate when many

samples have been genotyped and can be used to estimate the

distribution of signal intensities for each marker. The single-

sample implementation can be used when data are available on

only one or a few samples.

Detecting Sample Contamination byUsing Array Data

Alone—Regression-Based Method
Our second genotype-array-based method detects contamination

by identifying systematic shifts between the expected, and ob-

served BAF in sites called as homozygous. Consider an individual

with genotype AA whose DNA sample is contaminated. As the

population frequency of the B allele increases, the sample is

increasingly likely to be contaminated with the B allele (Figure 2).

In the case of no contamination, we expect BAF values close to 0,

1/2, and 1 for genotypes AA, AB, and BB, respectively. In the pres-

ence of contamination, we expect for AA and BBhomozygotes that

E½BAF j g ¼ AA;a; pB� ¼ apB

E½BAF j g ¼ BB;a; pA� ¼ 1� apA

where pA and pB are the population frequencies of A and B and a is

again the contamination level. To estimate contamination, we fit

the linear regression model

BAF ¼ gþ apþ tIðg ¼ AAÞ þ ε (Equation 4)

where g is the intercept, p ¼
	

pB; if g ¼ AA
�pA; if g ¼ BB

; t is the difference

in expected BAF between AA and BB genotypes, and ε is a normally

distributed error term. This regression framework allows us to
etics 91, 839–848, November 2, 2012 841



Figure 2. Distribution of Array Intensity
for Contaminated and Uncontaminated
Samples
BAF versus population MAF for (A) uncon-
taminated (a ¼ 0) and (B) contaminated
(a ¼ 10%) samples. Normalized intensity
plots for (C) uncontaminated (a ¼ 0) and
(D) contaminated (a ¼ 10%) samples.
estimate the contamination level a and to test for contamination

by evaluating the null hypothesis that the slope a ¼ 0 against the

one-sided alternative a > 0.

Instead of using the A or B allele frequency as covariate in the

regression, we instead use the population minor allele frequency

(MAF). This avoids the need to convert Illumina A/B allele calls

to actual A/G/C/T alleles. Letting f be the MAF

PrðB is minor allele j g ¼ AA; f Þ

¼ PrðB is minor allele; g ¼ AA; f Þ
PrðB is minor allele; g ¼ AA; f Þþ PrðA is minor allele; g ¼ AA; f Þ

¼ ð1� f Þ2
ð1� f Þ2þf 2

so that

E½BAF j g ¼ AA;a; f � ¼ a
f ð1� f Þ

ð1� f Þ2þf 2
:

Although the relationship between MAF f and contamination

level a is not linear, we found that using a regression model of

the form

BAF ¼ gþ af þ tIðg ¼ AAÞ þ ε

produces nearly identical results to using the model in Equation 4,

which requires knowledge of population allele labels and replaces f

with p (data not shown). Thus, it is possible to detect contamina-

tion using only AB genotypes and without decoding the corre-

spondence between labels A and B and the underlying A, C, G,

and Talleles. This ability to avoid decoding the A and B allele labels
842 The American Journal of Human Genetics 91, 839–848, November 2, 2012
is important for early steps of data analysis

and quality control which, in this way, can

proceed without worrying about vagaries

of specific genome builds and other infor-

matics challenges that must be tackled

before later rounds of analyses.

Assumptions
For ease of computation and notation,

our models make several assumptions.

The likelihood methods compute likeli-

hoods over multiple markers and/or

aligned base positions, as simple products

of single marker and/or single base call

likelihoods. As written, the resulting likeli-

hoods are strictly correct when sequencing

errors are independent at each aligned base

and markers are in linkage equilibrium;

when these assumptions are violated, the

likelihoods are approximate.4 In practice,

violation of these assumptions can be
reduced by: (1) trimming overlapping ends of reads generated

from the same template before analysis, (2) ensuring that variant

sites considered in analysis are adequately spaced (so that it is

unlikely that multiple base calls originating from a single DNA

template are used in analysis), and (3) further trimming marker

lists so they include only markers that are in linkage equilibrium.

In the next section, we discuss empirical assessments of our

method using real data demonstrating that our methods are

highly accurate in real data settings.

Experimental Data
We assessed our contamination estimation and testing methods

using in silico contaminated samples and intentionally contami-

nated real samples.

To evaluate our sequence-based methods, we constructed

in silico contaminated sequence data by randomly mixing aligned

sequence reads from 21 CEU individuals sequenced at ~43

coverage on an Illumina platform as part of the 1000 Genomes

Project. We retained reads from the targeted sample with proba-

bility 1-a, and from the contaminating sample with probability

a ranging from 0.1% to 50%. To avoid artifacts from intrinsic

contamination of the original sequence data, we chose as targeted

samples those with estimated contamination ba < 0.1%. Because

samples had slightly different mean genome coverage and

coverage varied across each genome, the nine levels of intended

contamination a actually varied slightly across the samples. For

all mixture-model-basedmethods, we estimated a using both joint

and sequence-only methods. In both cases, we calculated likeli-

hoods based on sites with MAF > 5% (across 87 CEU samples)

assayed on the Illumina HumanOmni2.5 array using sequence
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Figure 3. Estimated Contamination Levels for In Silico Contaminated Samples
(A) Joint sequence and array-based method, (B) sequence-only method, and (C) between these two methods.
reads above phred-scale mapping and base quality thresholds of

13. We based analyses on the entire genome (~1.2M SNPs), chro-

mosome 20 alone (~30K SNPs), or thinned sets of 1,000 to

100,000 evenly spaced SNPs. We also estimated a using our

sequence-only methods based on allele frequency estimates from

89 British (GBR), 93 Finnish (FIN), 381 European (CEU, GBR,

FIN, TSI, IBS), or 246 African (YRI, LWK, ASW) samples to evaluate

the impact of errors in estimated SNP allele frequencies.

To evaluate our genotype-array-only methods, we experimen-

tally constructed contaminated DNA samples by combining pairs

of HapMap CEU individuals and pairs of HapMap YRI individuals.

We targeted six contamination levels, ranging from a ¼ 0 to 10%.

For each contamination level, we targeted three pairs of CEU indi-

viduals, and three pairs of YRI individuals. We genotyped the 36

resulting samples with the Metabochip, an Illumina genotype

array that assays ~200,000 SNPs of interest for studies of cardio-

metabolic traits.5 We used normalized array intensity values,

BAF, and genotypes produced by the Illumina’s GenomeStudio

software run with default options.

Finally, to evaluate empirically our sequence-based methods, we

examined potential contamination in 299 actual DNA samples

sequenced genome-wide by a large sequencing center at ~43

average coverage in a study of type 2 diabetes. One hundred and

fifty samples were sequenced before a change in the sample

handling process in August 2010; the remaining 149 samples

were sequenced after the change. Among 299 sequenced samples,

227 were also genotyped with the Illumina HumanOmni2.5 array.

After quality control of the array data, call rates for each sample

and each SNPwere>98%.We applied our sequence-basedmixture

methods to these data across all SNPs with estimated MAF > 5%.

For these samples, we called genotypes from the sequence data

using glfMultiples6 followed by refinement using BEAGLE.7

From these sequence-based genotype data, we calculated the ratio

of heterozygous genotypes to homozygous nonreference geno-

types (HET/HOM ratio) and genotype discordances with the

HumanOmni2.5 data. All procedures above were approved by

the institutional review boards of the University of Michigan

and proper informed consent was obtained.

Results

Detecting Sample Contamination Using Sequence

Data

We estimated a for the 189 samples constructed with in

silico contamination (0.1% % a % 50%) based on random
The American
pairings of 1000 Genomes Project CEU samples (see Mate-

rials and Methods). The estimated contamination level ba
conformed well to the intended contamination level a,

with Pearson correlation coefficient r¼ 0.9996 for the joint

method and r ¼ 0.9840 for the sequence-only method

(Figure 3). Both methods tended to overestimate contami-

nation, especially when a < 1%. Generally, absolute error

jba�aj increasedwithaand relative error jba�aj/adecreased
with a. For example, the absolute error was 0.038% 5

0.024% for the joint method and 0.037% 5 0.021% for

the sequence-only method when a z 0.1% but increased

0.41% 5 0.30% and 0.56% 5 0.55% when a z 10%

(Figure 3). In contrast, the relative error of the estimated

contamination was 0.380 5 0.257 (mean 5 SD) for the

joint method and 0.390 5 0.241 for the sequence-only

method when a z 0.1%, but it was reduced to 0.044 5

0.035 and 0.056 5 0.055 when a z 10%. Finally, for the

sequence-only method, because ba is bounded at 50%, we

observed a downward bias for a near 50%.

We evaluated the impact of estimated population allele

frequencies on accuracy of contamination estimates (Fig-

ure S1). Compared to the original sequence-only estimates

of ba that used CEU allele frequencies, using allele frequen-

cies from the GBR samples resulted in reduced estimates ofba (mean ratio5 SD for baGBR=baCEU ¼ 0.8845 0.083). Allele

frequencies from the more distantly related FIN samples

resulted in further reduced contamination estimates

(mean ratio 5 SD for baFIN=baCEU ¼ 0.804 5 0.135). Allele

frequencies from the broader European (EUR) continental

population (CEU, GBR, FIN, IBS, and TSI) performed better

(mean ratio5 SD for baEUR=baCEU ¼ 0.9265 0.054), whereas

allele frequencies from the very different African (AFR)

samples (YRI, LWK, and ASW) resulted in severe reduc-

tion in contamination estimates (mean ratio 5 SD forbaAFR=baCEU ¼ 0.160 5 0.121).

Next, we evaluated the impact of the number of sites

analyzed on contamination estimates using thinned sets

of 1,000, 10,000 or 100,000 evenly spaced markers and

using only chromosome 20 sites. These smaller numbers

of sites resulted in less accurate estimates of contamina-

tion, particularly at lower levels of contamination (Fig-

ure S2); for example, when a¼ 1%, themean relative errors
Journal of Human Genetics 91, 839–848, November 2, 2012 843
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Figure 4. Estimated Versus Intended
Contamination Levels from the Experi-
mentally Contaminated Array Intensity
Data
Threemethods—regression-basedmethod,
multisample mixture model method, and
single-sample mixture model method—
were compared in two populations (CEU
and YRI).
jba � aj/a for the joint method, were 0.414, 0.135, 0.103,

and 0.099 for 1,000, 10,000, 100,000, and all 1.2M sites,

and 0.112 when using the 30,471 chromosome 20 sites.

Because computation times scale linearly with the number

of sites analyzed, an (initial) analysis based on 10,000 sites

or on all chromosome 20 sites requires 120- to 40-times less

computing effort than an analysis of 1.2M sites.

We also compared our joint method to ContEst2 (April

2012 version), which uses genotype and sequence data

together to estimate contamination levels in a likelihood

framework. We obtained very similar results for their

method and ours when a > 1%; when a < 1% ContEst

tended to overestimate contamination levels to a larger

degree than ours (Figure S3).

Estimation and Testing of Sample Contamination

from Genotype Array Data Only

Next, we applied our genotype array-only methods to our

deliberately constructed contaminated samples genotyped

with the Metabochip. Applying the single-sample and

multisample mixture model methods produced contami-

nation level estimates that matched our constructs, except

for two YRI samples with 3% intended contamination

(Figure 4). Estimates from the regression-based method

also showed very strong concordance except for these

same two samples.We observe that the twomixture-model

methods tend to over-estimate a, whereas the regression-

based method tends to underestimate a.

Using the mixture-model methods, 0 of the 6 un-

contaminated CEU samples were identified as contami-

nated, whereas 3 of 6 uncontaminated YRI samples

were identified as slightly (0 < ba < 1%) contaminated.

We suspect that this misclassification is due at least in

part to not having had Metabochip cluster data for

African samples and therefore having used our available

Finnish samples for defining the clusters used in genotype

calling. The mixture-model methods correctly identified

22 of 24 intentionally contaminated samples, the ex-

ceptions being the two YRI samples with 3% intended

contamination.
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Using the regression-basedmethod,

we tested the hypothesis of no conta-

mination across 24 contaminated

and 12 uncontaminated samples at

significance level 0.05/36 ¼ 0.0013;

the results correctly identified the

contamination state of 34 of the 36
experimental samples except for the two YRI samples

with intended a ¼ 3%. Given our consistent results across

our three different methods, we suspect that this pair of

YRI samples was not successfully contaminated during

the experimental process.

We evaluated a modified version of our regression-based

methodby including data onheterozygous sites in addition

to homozygous sites or by binning SNPs by MAF; these

modified approaches performed lesswell onboth simulated

and experimental data. The additional noise in the BAF at

heterozygous sites made the estimation of contamination

less accurate. Attempts to smooth out the uneven MAF

distribution of SNPs on a genotype array by binning and

averaging over BAF simply reduced power and failed to im-

prove estimation.We also evaluated the regressionmethod,

restricting analysis to various MAF bins, and observed that

the method performed best when SNPs across the entire

MAF spectrum were included (data not shown).

Type 2 Diabetes Study

As described in the Introduction, in a recent sequencing

study, early in the study we identified a subset of indi-

viduals with unusually large numbers of heterozygous

genotypes and high HET/HOM ratios compared to other

sequenced individuals (Figures 1A and 1B). We applied

our sequence-based and sequence-only methods to these

samples. Because HumanOmni2.5 genotype data were

available on only 227 of these 299 individuals, we display

results for the sequence-only method (Figure 1C); contam-

ination level estimates for the sequence and array data

jointly were very similar, particularly for individuals with

higher contamination levels (Figure 5). Consistent with

our impression based on genotype calls and HET/HOM

ratio, our methods identified a cluster of contaminated

samples among the 150 samples sequenced before August

2010 with 45, 24, and 16 of these 150 samples estimated to

have contamination levels of ba R 1%, R 2%, and R 5%,

respectively (Table 2).

Comparison of results (Figure 1; Table 2; Figure S3)

suggests that our contamination estimates were more
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sensitive than heterozygosity and HET/HOM ratio for de-

tecting contaminated samples, particularly at lower levels

of contamination. For example, the average HET/HOM

ratios among the ten samples with 2% % ba < 5% and

the 254 samples with ba % 1% were nearly identical: 1.92

and 1.91. Investigation by the sequencing center suggested

that contaminating samples were often in adjacent lanes

to the targeted samples during library construction. Fol-

lowing modification of the library construction process

in August 2010, none of the 149 samples sequenced later

that year had estimated contamination level ba R 0.5%

(Figure 1C).

To assess the impact of DNA sample contamination

on genotyping accuracy, we compared genotypes called

from the diabetes sequence data to the HumanOmni2.5

genotypes. As expected, discordance between the se-

quence-based genotypes and the highly accurate array

genotypes increased with increasing estimated contamina-

tion. For homozygotes, average genotype discordance rates

doubled in samples with 1%% ba % 5% compared to those

with ba % 1% and increased by a factor of ~20 for ba R 5%

(Table 1; Figure 6). The impact of contamination was less

strong for heterozygous sites, but genotype discordance

rates were still nearly doubled when ba R 5% compared

to those in samples with ba % 1%. The stronger effect of

contamination on homozygous genotypes occurs because

even modest numbers of contaminating sequence reads

may result in calling a homozygote as a heterozygote.
Discussion

In this paper, we describe several methods to identify

within-species DNA sample contamination based on the

analysis of sequence read data and/or array-based genotype

data. We first describe a mixture-model method that uses
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both sequence reads and array-based genotypes and then

show that this method can be extended naturally to iden-

tify contaminated samples when only sequence reads are

available. Both these sequence-based methods are highly

sensitive, allowing detection of DNA sample contamina-

tion of 1% or less even with low-coverage (43) sequence

data. As expected, the combination of sequence reads

and array-based genotypes results in greater sensitivity

than sequence data alone, but the difference is modest

(Figure 3). Both of our sequence-based mixture-model

methods are more sensitive than traditional checks that

test for an excess of heterozygous genotypes or an unusu-

ally high ratio of heterozygous to nonreference homozy-

gous genotypes (HET/HOM ratio)—both of which can

only detect contamination rates of >5%–10% (Figure S3).

A further advantage of our sequence-based methods is

that they operate directly on the sequence reads (or BAM

files) and so can be applied prior to variant calling. In

sequencing studies, the availability of array-based geno-

types for all samples allows identification of contami-

nating DNA samples and resolution of sample swaps.

As with other analyses of short read sequence data, the

sequence-based mixture-model methods are computation-

ally intensive. Given low-coverage (43) whole-genome

sequence data and focusing on sites with MAF > 5% from

the Illumina 2.5M genotype array, our sequence-based

analyses required ~1.6 hr compute time per DNA sample

on a single 2.8GHz processor. Increasing sequence coverage

results in an approximate linear increase in compute time.

To reduce computational burden, or if sequence read data

come in large batches, we often do initial DNA contamina-

tion checking using a subset of the genome. For example,

analysis limited to chromosome 20 requires only ~2% the

compute time, thus permitting rapid real-time early quality

control and timely feedback to the sequence production

group; for contamination levels >1% and when the target-

ing and contaminating samples are unrelated, chromo-

some 20 analysis is also nearly as sensitive as analysis of

the entire genome (Figure S2).

Although our analysis of sequence-based methods

focused on low-coverage whole-genome sequences, we

have found that our sequence-based methods robustly

identify contamination in other types of sequencing

data. For example, our methods have been successfully

applied to targeted whole exome sequence data in the

1000 Genomes Project in addition to the low-coverage

sequence data. We also found that our sequence-based

methods robustly detect contamination in RNA-seq data

with or without external genotypes. In these data sets,

focusing on exonic or on-target sites provided more accu-

rate estimates of contamination levels than using all sites

(data not shown).

The models on which we base these methods (of course)

do not capture all features of the sequencing experiment.

One such feature is reference bias, in which more refer-

ence-sequence bases are observed than expected at a

variant site, potentially resulting in an upward bias in
Journal of Human Genetics 91, 839–848, November 2, 2012 845



Table 2. Summary of Estimated Contamination Levels ba Ratio of the Numbers of Heterozygous to Nonreference Allele Homozygous
Genotypes, and Genotype Discordance with Array Data for 299 Samples from Type 2 Diabetes Study Using Sequence Data Only

Array Genotypes? Measure

ba (sequence only)

<1% 1%–2% 2%–5% R5%

Yes (n ¼ 227) Number of samples 208 13 1 5

� Before August 2010 81 13 1 5

� After August 2010 127 0 0 0

RR discordancea 0.0021 0.0030 0.0071 0.0492

RA discordanceb 0.0154 0.0157 0.0172 0.0300

AA discordancec 0.0085 0.0143 0.0377 0.176

HET/HOM ratiod 1.92 1.84 2.16 2.66

No (n ¼ 72) Number of samples 46 8 7 11

� Before August 2010 24 8 7 11

� After August 2010 22 0 0 0

HET/HOM ratiod 1.87 1.88 1.88 2.64

aRR discordance: Genotype discordance when array-based genotype is homozygous reference
bRA discordance: Genotype discordance when array-based genotype is heterozygous
cAA discordance: Genotype discordance when array-based genotype in homozygous nonreference
dHET/HOM ratio: Ratio of number of heterozygous genotypes to homozygous nonreference genotypes
estimated contamination levels. Poorly aligned bases,

inaccurate base quality scores, and asymmetric calling

errors between bases may have the same effect. Currently,

both our sequence-basedmethods assume that the popula-

tion from which the contaminating sample is drawn

is known, and we observed reduced sensitivity with

incorrect population allele frequencies. When the popula-

tion of the contaminating DNA sample is unknown, our

method could be extended to iterate over alternative pop-

ulation allele frequencies to identify the most likely source

population for a contaminant, and to more precisely esti-

mate the level of contamination. Our implementation

uses a simple error model. Preliminary evaluations of

more sophisticated genotype error models made little

difference to our results.

In several sequencing studies, including the type 2 dia-

betes study described above, we have observed that our

methods estimate a large fraction of samples to be contam-

inated at very low but nonzero levels, and likelihood ratio

tests of a ¼ 0 against the alternative a > 0 result in

apparent ‘‘contamination detection’’ for most samples.

In contrast, when we simulated uncontaminated DNA

samples consistent with all our model assumptions, we

found ba > 0 for only 33% of samples as opposed to 50%

expected by a 1:1 mixture between c0
2 and c1

2 distribu-

tions.8 Furthermore, although both our likelihood-based

methods naturally lead to confidence intervals for the level

of estimated contamination, we generally find these inter-

vals to be too narrow and do not recommend their use.

These contrasting findings likely reflect the impact of not

modeling some of the sequencing experiment features

described above. Careful examination of the impact of un-

certainty in population allele frequency, of variation in
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read depth by genotype, of the fraction of duplicate reads,

and of runs of homozygosity, could help to identify impor-

tant features that are missing from the model. We are

working to include some of these features in our models,

methods, and software.

Identifying contaminated samples using array data alone

provides the opportunity to avoid sequencing contami-

nated samples. Both of our genotype-array-only methods –

whether mixture model or regression based–result in

enhanced sensitivity compared to previous strategies that

identify likely contaminated samples as those with low

genotype call rates. Low genotype call rates can identify

heavily contaminated DNA samples as well as those that

fail for other technical reasons. However, in our experimen-

tally contaminated samples genotyped with the Metabo-

chip, even at 5% contamination, all four samples had

genotype call rates > 99.5%, and even at 10% contamina-

tion, call rates were still between 96.8% and 97.9%. Our

mixture- and regression-based methods allowed accurate

detection of contamination levels as low as 1%.

In contrast to the sequence-based methods, our geno-

type-array-only methods have modest computational

requirements. For example, analysis of 36 samples geno-

typed at 200,000 SNPs required <100 seconds on a single

2.8GHz processor for either the mixture-model or regres-

sion-based methods. Further, these genotype-array-only

methods were remarkably sensitive for contamination

detection even with modest numbers of SNPs. For

example, using our experimentally contaminated samples

and defining contamination detection as ba > 1%, power to

detect contamination using the regression method based

on 1,000 random subsets of 50, 100, 500, and 1,000 homo-

zygous SNPs was 37.3%, 59.6%, 99.0%, and 100%,
er 2, 2012
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Figure 6. Genotype Discordance between Sequence-Based and Array-Based Genotypes
A function of estimated contamination level ba in the type 2 diabetes sequencing study; contamination level estimates based on the
combined sequence and genotype array data, stratified by genotypes from HumanOmni2.5 array data.
(A) Homozygous reference genotypes, (B) heterozygous genotypes, and (C) homozygous nonreference genotypes.
respectively (Table S1). A confidence interval for the esti-

mated contamination level can also be obtained from

a simple linear regression model, ignoring uncertainty in

key parameters such as the site-specific allele frequencies.

We found that, unlike the likelihood-based methods, the

regression-based method provides reliable p value and

confidence interval with even a modest number of SNPs.

Of course, neither genotype-array-based method elimi-

nates the possibility of introducing contamination during

subsequent library preparation or sample sequencing.

Our genotype-array-based mixture-model methods rely

on good estimates of the means and variances of the geno-

type intensity clusters. Estimation can be carried out across

multiple samples (for eachmarker) or using a single sample

(and pooling estimates across markers). The single-sample

method has the obvious advantage that it can be applied to

one or a few samples, permitting analysis to be carried out

for small studies or on-the-fly as each sample is processed;

a further advantage is that the method can analyze rare

genotypes for which intensity distributions may be poorly

estimated in methods that examine intensity distributions

one site at a time, even across many individuals. The

single-samplemethod also has disadvantages. The distribu-

tion of intensities across all SNPs for a given sample gener-

ally has larger variance than that for a given SNP across

many samples;9 for contamination detection, this larger

variance leads to somewhat less sensitive contamination

detection when small numbers of markers are available.

Regularizing parameters that share information across sites

could increase the performance of the intensity-based

mixture models for array data. Compared to the mixture-

model method, the regression method has the advantage

of providing a better calibrated hypothesis test for contam-

ination. In practice, running multiple methods on the

array data will increase the confidence in analysis results.

All our contamination detection methods assume the

targeted DNA sample is contaminated by DNA from one

other unrelated individual. Given a fixed total contamina-

tion level a, contamination from two or more individuals

increases the likelihood that multiple alleles will be
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observed at a marker and typically results in inflated

estimates of a. For example, when we simulated contami-

nating reads originating from two, three, and four con-

taminating samples, we observed 1%–9%, 4%–11%, and

8%–14% relative increases in the estimated contamina-

tion levels compared to actual contamination (Table S2).

The joint sequence and array-based method, which relies

mostly on genotype concordance rather than increased

heterozygosity, showed only a small loss of precision

with multiple contaminating samples. In contrast, if a

DNA sample is contaminated with DNA from a relative

of the targeted individual, the genetic similarity between

the targeted and contaminating sample will result in an

underestimate of a. Simulation results suggest that given

contamination at level a from an individual sharing a

fraction f of genes with the targeted sample results in an

estimated contamination level of (1-f )a, for example, a/2

for sibling or parent-offspring pairs (data not shown).

There are additional applications not yet covered by

our method. We have implemented and evaluated our

genotype-array-only methods for Illumina genotyping

platform only. In principle, our methods can also support

Affymetrix intensity data, as used in tools such as Bird-

seed10 or PennCNV11, which work with both Affymetrix

and Illumina platforms. For the sequence-based mixture

models, an interesting application would be detection of

heterogeneous cell populations within tumors. Our experi-

ence suggests that even small contamination levels can be

detected using only a small number of informative sites, so

that this might well be practical.

We have described an efficient set of methods to

detect DNA sample contamination that should be useful

for investigators planning or carrying out large-scale

sequencing studies. For studies based on DNA samples

with prior GWAS or other large-scale genotype data, we

recommend using the genotype array-only methods to

detect contaminated samples prior to sequencing. These

methods are useful even for small genotyping arrays with

only thousands of SNPs. Based on results for the geno-

type-array analysis, an investigator may decide to obtain
Journal of Human Genetics 91, 839–848, November 2, 2012 847



new DNA samples when there is evidence of contamina-

tion or to eliminate those individuals from the study.

Whether or not the genotype-array-based contamination

prescreening is carried out, we recommend using the

sequence-based methods to screen DNA samples for con-

tamination. Based on the results of this sequence-based

contamination analysis, the investigator might choose to

eliminate from downstream analyses substantially con-

taminated samples or to resample and resequence those

individuals; for example, the 1000 Genomes Project chose

to eliminate all DNA samples with estimated contamina-

tion ba > 2%.12

Application of these DNA contamination detection

methods provides a sensitive method to identify contami-

nated samples and to maximize sequence data quality. In

addition, it may prove helpful to develop analysis methods

that explicitly incorporate detection and estimation of

DNA sample contamination into variant calling and/or

downstream analysis.
Supplemental Data

Supplemental Data includes four figures and two tables, and can

be found with this article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

Our initial description on sample identity verification (April 29,

2010), http://genome.sph.umich.edu/wiki/Verifying_Sample_

Identities_-_Implementation

Contamination detection software package, http://genome.sph.

umich.edu/wiki/ContaminationDetection
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