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Length Distributions of Identity by Descent
Reveal Fine-Scale Demographic History

Pier Francesco Palamara,1 Todd Lencz,2 Ariel Darvasi,3 and Itsik Pe’er1,4,*

Data-driven studies of identity by descent (IBD) were recently enabled by high-resolution genomic data from large cohorts and scalable

algorithms for IBD detection. Yet, haplotype sharing currently represents an underutilized source of information for population-genetics

research.Wepresent analytical results on the relationship betweenhaplotype sharing across purportedly unrelated individuals and a pop-

ulation’s demographic history. We express the distribution of IBD sharing across pairs of individuals for segments of arbitrary length as

a function of the population’s demography, andwe derive an inference procedure to reconstruct such demographic history. The accuracy

of the proposed reconstruction methodology was extensively tested on simulated data. We applied this methodology to two densely

typed data sets: 500 Ashkenazi Jewish (AJ) individuals and 56 Kenyan Maasai (MKK) individuals (HapMap 3 data set). Reconstructing

the demographic history of the AJ cohort, we recovered two subsequent population expansions, separated by a severe founder event,

consistent with previous analysis of lower-throughput genetic data and historical accounts of AJ history. In the MKK cohort, high levels

of cryptic relatedness were detected. The spectrum of IBD sharing is consistent with a demographic model in which several small-sized

demes intermix through high migration rates and result in enrichment of shared long-range haplotypes. This scenario of historically

structured demographies might explain the unexpected abundance of runs of homozygosity within several populations.
Introduction

Demographic events such as migrations, admixture,

bottlenecks, and population expansions are known to

have a strong influence on the landscape of genetic varia-

tion in individuals from the affected groups. The genomic

footprint of these phenomena enables DNA-based inves-

tigation of past historical events that involve population

size and composition. These events need to be carefully

controlled for when one performs other analyses, such as

the study of natural selection1 and association of genotype

to phenotype.2

Methods for data-driven reconstruction of a population’s

history have been extensively investigated in the past

decade.3–17 Despite the variety of previous approaches,

there is currently little that can be quantitatively inferred

regarding the demography of a population over the last

100 generations. Existing methods are in fact generally

underpowered to detect the signature of recent demo-

graphic events, given that they are mainly focused on

the investigation of ancient events dating hundreds to

thousands of generations before the present. As next-

generation sequencing technologies enable the study of

recently arising genetic variation, the ability to reconstruct

a population’s recent history becomes crucial. Fine-scale

demographic information has the potential to reveal

dynamics of modern populations after the spread of agri-

culture, opening a dialog with historical analysis on the

basis of classical sources of information. Furthermore,

recent demography provides important contextual infor-

mation for understanding the role of rare genetic variants

in the heritability of common traits, given that popula-
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tion-specific differentiation is more pronounced when

rare alleles are considered.18

The allele frequency spectrum of a population is a

well-established source of demographic information7–11,13

because it captures the dependency between the effective

size of the population and the speed at which new muta-

tions drift to a higher frequency. The analysis of allele

frequency spectra in large data sets is therefore compelling

and computationally tractable but requires care so that one

can avoid statistical biases due to SNP-ascertainment strat-

egies.19 The analysis of low-frequency alleles holds great

promise in whole-genome-sequencing data,20 although

the presence of genotyping errors due to low coverage in

current population-wide pilot studies is a serious concern.

Even when these and other technical difficulties are

addressed, a key feature of current approaches based on

the allele frequency spectrum is the underlying assump-

tion of independence across genomic markers. As a conse-

quence, the information provided by such spectra mainly

reflects the effects ofmutation andgenetic drift and thereby

discardsmost of the footprint left by recombination events.

Linkage disequilibrium (LD) across genomic markers

captures the signatures of both genetic drift and recom-

bination events21 and has proven valuable as a source

of information for demographic reconstruction.3,10,22–24

Although summary statistics based on LD are able to

capture linkage information that is missed when only

the frequency spectrum of independent alleles is consid-

ered, their effective range is typically limited to extremely

short genomic intervals—in the order of hundreds of kilo-

bases at most—generally uninformative of recent demo-

graphic events. The accurate quantification of LD is in
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fact confounded by the limited ability to reconstruct

haplotype phase. Although several statistical methods for

haplotype phasing have been developed,25–27 their accu-

racy quickly deteriorates when long-range haplotypes

(i.e., several centimorgans long) are considered.

In cases where long-range haplotypes can be accurately

determined (e.g., along the X chromosome or when trios

are available), the occurrence of recombination events

can be directly measured and used as a powerful signal

for demographic inference. Given that recombination

events break down haplotypes during meiotic transmis-

sions, the length and frequency of such haplotypes pro-

vide relevant information regarding population structure

or admixture.28 Mutation and recombination events occur

at comparable average rates, but individual recombination

events do not need whole-sequence resolution to be de-

tected and can be inferred from haplotype patterns with

the use of high-density SNP arrays available for very large

cohorts. The recent development of computationally effi-

cient methods for the detection of coinherited haplo-

types29,30 has enabled the study of long-range segments

that are identical by descent in currently available data

sets of tens to hundreds of thousands of samples. It might

take several years before population-wide data sets of

whole-genome sequencing close the gap with SNP data

sets in terms of sample size and data quality.

In this paper, we introduce a formal relationship

between demographic history and the distribution of

identity-by-descent (IBD) haplotypes across purportedly

unrelated individuals within the coalescent framework.31

We use this relationship to develop an efficient inference

procedure for reconstructing the growth or contraction

of a population throughout its history. Leveraging infor-

mation from long-range haplotypes, we provide insight

into the demographic history of a population at very

recent times, within tens and up to a couple of hundreds

of generations before the present. We evaluate the accu-

racy of our methodology by using simulated data, and

we demonstrate its application by reconstructing the

demographic history of two real data sets. We analyze

a cohort of Ashkenazi Jewish (AJ) individuals by recon-

structing a strong founder event separating two periods

of expansion of this population in agreement with histor-

ical accounts. Our analysis of Maasai (MKK) individuals

from the HapMap Phase 3 data set reveals high levels

of cryptic relatedness, consistent with recent reports.32,33

Using a single-population model, the analysis of IBD shar-

ing in this cohort suggests the occurrence of a severe reduc-

tion of the population size during recent generations. We

propose an alternative explanation for this phenomenon,

in which several small demes intermix through high

migration rates to mimic the haplotype-sharing pattern

of a shrinking population. This model might justify the

high levels of homozygosity observed in this and other

cohorts in recent genomic surveys34,35 and suggests that

such higher-than-expected levels might be found in addi-

tional outbred populations.
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Material and Methods

The Relationship between IBD and Demography
Coalescent theory31 indicates that, at a specific locus of their

genome, two haploid gametes from a Wright-Fisher population of

constant (haploid) effective population size Ne have a probability

of 1 / Ne of finding a common ancestor at each generation. The

time (in generations before present [gbp]) for these two individual

gametes to reach a most recent common ancestor (MRCA) when

their lineages are traced back into the past is geometrically distrib-

utedandhasanexpectedvalueofNe.Moregenerally, if apopulation

is composed of NðgÞ haploid individuals at generation g, then the

chance of finding a common ancestor at that generation is

NðgÞ�1, and the time distribution to a common ancestor assumes

a more complex form. The relationship between the probability

of finding common ancestors and the size of a population is

appealing for demographic reconstruction. One can in fact study

the distribution of time to a common ancestor at the average

genomic locus for many pairs of individuals and can therefore

gain information on a population’s size across different time scales.

In the proposed methodology, we rely on haplotype sharing

to obtain a probabilistic estimate of the time to coalescence at

any genomic site for any pair of individuals in the population at

hand. The extent of a coinherited IBDhaplotype is probabilistically

determined by the generation of theMRCA for the two individuals

at the considered locus. Unfortunately, individual segments carry

little information about specific sites unless the common ancestor

is extremely recent (e.g., less than 10 gbp36). However, because we

are interested in genome-wide, population-wide summary statis-

tics, significant information can be gathered from a large number

of segments coinherited by different pairs of individuals from the

analyzed population sample. In fact, the number of considered

pairs grows quadratically with the sample size, and the number

of expected IBD segments increases as shorter segment lengths

are considered. Leveraging these principles, we derive analytical

results for the distribution of IBD sharing across purportedly unre-

lated individuals. As detailed below, we express these quantities as

a function of historical demography in the population.
IBD and Demographic History in Wright-Fisher

Populations
Formally, consider a random pair of haploid individuals sampled

from the studied population and a specific locus along their

genome.Note that althoughwepresent this analysis in the context

of haploid individuals, the following results are easily adapted to

the case of diploid individuals by the appropriate multiplication

or division by a factor of two. We are interested in modeling the

probability that the chosen locus is spanned by a nonrecombinant

IBD segment of a specific genetic length.We abstract this length as

a continuous random variable L and denote its probability density

function by pðljqÞ, where q encodes a parameterization of the pop-

ulation’s demographic history. In the simplest case of a constant

population size, q is onlyparameterizedby the constant population

size Ne. We assume neutrality throughout; therefore, this is

a Wright-Fisher population,37 and we employ the notation

q ¼ qWF ¼ hNei. For more complex scenarios, such as an exponen-

tially expanding population, this parameterization might include

the sizesof theancestral andcurrentpopulations,NaandNc, respec-

tively, and the duration of the exponential expansion G. In such

a case, we write q ¼ qEXP ¼ hNa; Nc; Gi. In the remainder of this

work,we refer to the effective population size in a coalescentmodel
er 2, 2012



simply as population size. For practical purposes, we focus on

closed intervals R ¼ ½u; v� of possible values for L and derive

a closed-form expression for pRðljqÞ ¼
R v
u pðljqÞdl.

We denote time in generations before the present throughout.

The time gmrca of the individuals’ MRCA at the considered locus

is generally unknown. We therefore marginalize it asZv
u

pðl j qÞdl ¼
Zv
u

XN
g¼1

pðl; gmrca ¼ g j qÞdl: (Equation 1)

When the time to the MRCA is known, the length of the result-

ing shared segment is only dependent on the number of genera-

tions separating the two individuals (i.e., ltqjgmrca). Manipulating

this expression, we therefore obtainZv
u

pðl j qÞdl ¼
XN
g¼1

pðgmrca ¼ g j qÞ
Zv
u

pðl j gmrca ¼ gÞdl: (Equation 2)

The distribution of the distance to the first recombination event

encountered as we move either upstream or downstream of a

chosen genomic site is exponentially distributed (it has a mean

of g=50cM) because this is a haplotype shared by two individuals

separated by 2g generations. The total length of the shared

segment is therefore distributed as the sum of two independent

exponential random variables parameterized by their mean of

g=50cM, resulting in an Erlang-2 distribution with the same

parameter. We therefore have

Zv
u

pðl j qWFÞdl ¼
ZN
0

24pðtmcra ¼ t j qWFÞ
Zv
u

Erl2

�
l;

t

50

�
dl

35dt;
(Equation 3)

where we also standardly switch to a continuous time axis38 by re-

placing the discrete gmrca with a continuous tmrca, still measured in

generations. Note that we are not measuring time in units of Ne

generations as it is often done in the coalescent literature.39 To

complete the above formulation, we substitute the distribution of

the time toMRCA for a specific demographic setting q. In the coales-

cent framework, for the simple case of a population of constant size

Ne and nonoverlapping generations, the probability of finding

a common ancestor at gmrca ¼ g is geometric with parameter

pðgmrca ¼ gjqÞ ¼ 1=Ne (or exponential at the continuous limit).

Substituting this expression into Equation 3, we obtain the desired

relationshipbetweensharingof IBDhaplotypes andpopulation size:

pRðl j qWFÞ ¼
ZN
0

24e�t=Ne

Ne

Zv
u

Erl2

�
l;

t

50

�
dl

35 dt

¼ 100N2
e ðv � uÞ½25ðuþ vÞ þ uvNe�

ð50þ uNeÞ2ð50þ vNeÞ2
:

(Equation 4)

Varying Population Size
When more complex population dynamics are considered, the

probability of coalescence cannot be modeled through a simple

geometric distribution. In general, for a population with demo-

graphic history q, we can define a function Nðg; qÞ to express the

population size at generation g. We can then express the chance

of coalescence as

pðgmrca ¼ g j qÞ ¼ 1

Nðg; qÞ
Yg�1

j¼1

�
1� 1

Nðj; qÞ
�
: (Equation 5)
The American
Equation 5 is very general and might lead to more complex

instantiations for Equation 3. However, we consider a special

and useful case in which the population history converges to

Na ¼ lim
g/N

Nðg; qÞ. By definition, there exists a finite time G

before which Nðg; qÞ ¼ Na for all g > G. In practice, we consider

G to be the time before the period in history we aim to describe

in detail, and we also note that demographic events preceding

a sufficiently ancient generation G are unlikely to affect the prob-

ability of sharing IBD haplotypes longer than a chosen threshold.

We observe that for any such converging history q, we can always

obtain a closed-form expression regardless of the specific form of

Nðg; qÞ for g%G. For a population size of Nðg; qÞ, such that

Nðg; qÞ ¼ Na for all g > G, Equation 5 can in fact be rewritten asZv
u

pðl j qÞdl ¼ f1ðl; q; u; v; 1.GÞ þ f2ðl; q; u; v; Gþ 1.NÞ;

(Equation 6)

where

f1ðl; q; u; v; 1. GÞ ¼
XG
g¼1

 Yg�1

j¼1

1� 1

Nðj; qÞ

!
1

Nðg; qÞ
Zv
u

Erl2
�
l;

g

50

�
dl

and

f2ðl; q; u; v; Gþ 1.NÞ ¼ 1

Na

 YG
j¼1

1� 1

Nðj; qÞ

!

3
XN

g¼Gþ1

�
1� 1

Na

�g�G�1Zv
u

Erl2
�
l;

g

50

�
dl:

Continuous time allows a closed-form expression for f2 (see

Appendix A), whereas f1 adds up to a finite number of summands.

The function Nðg; qÞ can thus be arbitrarily defined to describe

different demographic scenarios. Consider, for instance, the case

of an ancestral population of size Na: it exponentially expands

during G generations to reach the current size Nc, parameterized

by qEXP ¼ hNa; Nc; Gi as discussed above. The population size

can be modeled (under the assumption of continuous time) as

Nðt; qEXPhNa; Nc; TiÞ ¼
�
Nce

�rt if t%T
Na if t > T

; (Equation 7)

where r ¼ ðlogðNcÞ � logðNaÞÞ=T is the population expansion rate.

Note that Nðg; qÞ can assume additional, more complex forms

and still allow a closed-form evaluation for Equation 6.

Sharing Distribution
In the following section, we present explicit expressions for the

case of Wright-Fisher populations (i.e., q ¼ hNei). Note, however,

that these results are general, and analogous calculations can be

performed for other demographic models.

Consider a specific site 2 and a length range R ¼ ½u; v�. We are

interested in IBD segments whose length lies within that interval,

spanning the site 2. We consider the event of such a segment being

shared between a randomly chosen pair of individuals from a

studied population, and we define an indicator random variable

for such an event as

Ið2;R ¼ ½u; v�Þ

¼
�
1 if 2 is traversed by a segment of length u%l%v
0 otherwise

;

(Equation 8)
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where we omit the dependence on the demographic model q to

simplify the notation. We now use these indicator variables to

derive the expected fraction of genome spanned by IBD segments

whose length is in this interval. Consider a dense set of sites G

along the genome. Assume all sites are at equal genetic distance

from adjacent sites. We have that

ER½f j q� ¼ E

"
1

jG j
X
2˛G

Ið2;RÞ
#

¼ 1

jG j
X
2˛G

E½Ið2;RÞ�

¼ 1

jG j
X
2˛G

Zv
u

pðl j qÞdl ¼
Zv
u

pðl j qÞdl:
(Equation 9)

For given values of the demographic parameters q, this predicts

the fraction f of the genome shared through segments of length

within specific intervals. To obtain the proportion of segments

of a given length l, we divide pðljqÞ by l and multiply by a normal-

izing constant:

pðs ¼ l j qÞ ¼ pðl j qÞ
l

3
1ZN

0

pðl j qÞ=ldl
¼ 23502Ne

ð50þ lNeÞ3
: (Equation 10)

The probability of finding a segment within the length range

R ¼ ½u; v� is thus

pðs˛R j qÞ ¼
Zv
u

pðs ¼ l j qÞdl ¼ 502
h
ð50þ NeuÞ�2�ð50þ NevÞ�2

i
:

(Equation 11)

Equations 10 and 11 allow computing the length distribution of

a segment in the range R,

pRðs ¼ l j qÞ ¼

8><>:
pðs ¼ l j qÞ
pðs˛R j qÞ if s˛R

0 otherwise
; (Equation 12)

and the expected length of such a segment,

ER½s j q� ¼

Zv
u

l3 pðs ¼ l j qÞdl

pðs˛R j qÞ ¼ 50v þ 2uð25þNevÞ
100þNeðuþ vÞ : (Equation 13)

We note that for a typical pair of sharing individuals, the number

and length of IBD segments are approximately independent.36

This allows us to express the expected genome-wide sharing

between two individuals as the product of the expected number

of IBD segments, lR; and the expected length of a shared segment

in the considered length range, ER½sjq�. For a genome of size g cM,

g3ER½f jq�zER½sjq�3lR. We can thus compute the expected number

of segments found in the considered length range as

lRzg3
ER½f j q�
ER½s j q� ¼ g3

50N2
e ðv � uÞ½100þNeðuþ vÞ�

ð50þ uNeÞ2ð50þ vNeÞ2
:

(Equation 14)

We model the number of shared segments as a Poisson random

variable, pRðs ¼ njqÞzPoissðn; lRÞ; thus, the standard deviation for

the segment distribution is sR½sjq� ¼
ffiffiffiffiffi
lR

p
. If the considered length

range is not too wide, the variance of the segment lengths can be

neglected, and we can obtain a simple approximation for the stan-

dard deviation of the fraction of genome shared through segments
812 The American Journal of Human Genetics 91, 809–822, Novemb
in the length range R by scaling sR½sjq� by the expected length of

a segment and by dividing it by the genome size:

sR½f j q�zER½s j q�
ffiffiffiffiffi
lR

p
g

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ER½f j q�ER½s j q�

g

s

¼ 10Ne½25v þ uð25þNevÞ�
ð50þ NeuÞð50þNevÞ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðv � uÞ

g½100þNeðuþ vÞ�

s
:

(Equation 15)

Finally, the obtained quantities can be used for expressing the

full distribution of the portion t of the genome shared through

segments of a desired length again under the assumption of inde-

pendence between number and length of shared segments. Define

ln to be the sum of n segments of length in the range R:

pRðln ¼ x j qÞ ¼
�

dðxÞ if n ¼ 0
conv½pRðs ¼ l j qÞ;n� otherwise

; (Equation 16)

where dð,Þ is the Dirac delta function and conv½pRðs ¼ ljqÞ;n� is the
nth convolution of pRðs ¼ ljqÞ (e.g., conv½pRðs ¼ ljqÞ;3� ¼ pRðs ¼
ljqÞ � pRðs ¼ ljqÞ � pRðs ¼ ljqÞ). The probability of sharing a total of

x cM through segments of the desired length is then

pRðt ¼ x j qÞ ¼
XN
n¼0

pRðs ¼ n; ln ¼ x j qÞ

¼
X

n j pRðs¼n j qÞs0

½pRðs ¼ n j qÞpRðln ¼ x j qÞ�:
(Equation 17)

Note that although we have considered the general length

range R ¼ ½u; v�, the interval R ¼ ½u;NÞ represents a particular

and useful case in which all segments longer than a detectable

threshold u are considered. We report explicit expressions for

v/N in Appendix B.

Inference
In the case of Wright-Fisher populations, we can obtain an esti-

mate of the population size Ne by comparing the sharing observed

in a specific length range to Equation 4 and by solving for Ne. The

observed sharing in the length range R ¼ ½u; v� can be computed

from the analyzed data as

bpR ¼

P
i j u%li%v

li�
g

�
n
2

�	; (Equation 18)

where l is the length of a detected IBD segment and n represents

the number of haploid individuals (see above for discussion of

the diploid case). A closed-form solution for Ne can be computed

for a given observed value of bpR. In the particular case of v/N,

where we consider all segments longer than a detectable threshold

u, such a solution assumes a simpler form. Equation 4 becomesZN
u

pðl j qWFÞdl ¼
100ð25þNeuÞ
ð50þNeuÞ2

; (Equation 19)

and an estimate of Ne can be computed as

bNe ¼
50
�
1� bpR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bpR

q �
ubpR

: (Equation 20)

In the general case of more complex demographicmodels, a like-

lihood function can be computed with the distributions of the

number and length of IBD segments described in the previous

section and can be used for obtaining the demographic parameters

that result in the maximum-likelihood score. This procedure is

feasible, but the evaluation of such likelihood for one set of
er 2, 2012



demographic parameters requires processing the length and the

number of segments for a large number of individual pairs. For

much of the analysis reported in this paper, we used an alternative

approach—we minimized the squared deviation between the

observed IBD sharing (Equation 18) and the theoretical expecta-

tion (Equation 9) for a tested demographic model. The evaluation

of this distance is significantly faster than the computation of

a likelihood score on the basis of the above formulation, and we

observed it to attain comparable performance during our evalua-

tions. To compute a distance between observed and predicted

sharing, we thus evaluate

dR ¼ ½logðbpRÞ � logðER½f j q�Þ�2 (Equation 21)

and average this quantity across a collection of intervals P ¼
fRjg1%j%jPj:

dP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jP j
XjP j

j¼1

dRj

vuut : (Equation 22)

The transformation to log space in Equation 21 has the effect of

making the error contributions along the dynamic range of length

intervals more uniform than in linear space. Grid-search minimi-

zation of Equation 22 can therefore be employed for exploring a

large portion of the parameter space. Upon convergence to a

grid point of least deviation from the theoretical expectation,

a full likelihood-based approach can be used for retrieving the

most likely values for the demographic-model parameters in a

smaller portion of the parameter space and can thus allow substan-

tial computational savings.
Evaluation of Synthetic Data
Toevaluate the accuracyof theproposedmodel andof the inference

procedure,we simulateda largenumberof syntheticpopulationsby

using the GENOME coalescent simulator.40 We extracted ground-

truth information on shared segments to eliminate the noise intro-

duced bymethods for IBD discovery. To this extent, the coalescent

simulator was modified to output shared nonrecombinant

segments directly observed in the synthetic genealogy. For all the

simulations, we generated a total of 500 diploid samples for a single

chromosome made of 27,800 nonrecombining blocks with an in-

terblock recombination rate of 10�4, mimicking the genetic length

of chromosome 1 (~278 cM).We verified that the use of nonrecom-

bining blocks of 0.01 cM did not introduce significant biases in our

analysis (Figure S1, available online). We simulated 900 synthetic

populations that underwent exponential contraction and expan-

sion (see Table S1 for the range of demographic parameters). We

applied a gradient-driven local-minimization procedure to retrieve

the parameter values that minimize Equation 22. In order to avoid

local minima, we initially performed a grid search in a predefined

box volume of the parameter space (see Table S1 for the parameters

list).We then refined the least-squares solution by using a gradient-

based optimization from the best point on the grid.

The accuracy of our inferenceproceduredependson the lengthof

the analyzed genomic region and on the number of samples for

which IBD segments are observed. In particular, it follows from

Equation 18 that upon fixing bpR and
P

ði ju%li%vÞli, the result is

unchanged for several values of g and n. In terms of accuracy of

the proposed evaluation, an equivalent configuration would have

beentheuseof~140diploid individuals for theentiregenetic length

of the autosomal genome (~3,500 cM for the HapMap 3 genetic

map; see Figure S2). The choice of length intervals Rj ¼ ½uj; vj� also
The American
affects the inference results: segments of length between 1 and 2

cM, for instance, might have originated from a wide span of gener-

ations in the past, whereas segments of length 10–11 cM tend to

have a more deterministic (and more recent) origin. Frequency

bins of different sizes can be used for focusing on specific time

periods. For all the analyses reported in this paper, we adopted

acombinationofbinsofuniformlengthandbinsof length intervals

corresponding to specificpercentiles of the Erlang-2 distribution. In

particular, we used length values between the 21.4th and the 31.4th

percentiles of the Erlang-2 distributions with parameter l ¼ k/50

(the maximum likelihood estimate occurs at the 26.4th percentile)

for several consecutive integral values of k (i.e., k ¼ 2, 3,. 43).
Real Data Sets
Weapplied theproposed inferenceprocedure togenotype samplesof

500 AJ individuals from Jerusalem (Israel) and 143MKK individuals

from Kinyawa (Kenya). The AJ individuals were typed on the Illu-

mina 1M platform and are self-reported unrelated individuals. After

quality control, a total of 745,811 autosomal SNPs were used for the

analysis. Thecohort consistedofvolunteers recruited fromthe Israeli

bloodbank. Each subject self-reported all four grandparents to beAJ,

and all subjects provided written, informed consent. After genomic

DNA was extracted from blood samples through the use of the

Nucleon kit (Pharmacia, Piscataway, NJ, USA), all samples were fully

anonymized prior to genotyping and analysis under protocols

approved by the National Genetic Committee of the Ministry of

Health (Israel) and the institutional review board of the North

Shore-Long Island Jewish Health System. The MKK samples

comprise56unrelated trio-phased individualsand87unrelated indi-

viduals fromtheHapMap3data set.41As a resultof the availability of

haplotypephase information,we focusedour analysis on the56 trio-

phased samples and used 1,387,466 markers for the analysis.

The AJ samples were phased with the Beagle software package,27

whereas trio-phased MKK individuals were downloaded from the

HapMap website (see Web Resources). IBD sharing was estimated

with the GERMLINE software package.29 We tweaked the parame-

ters of the GERMLINE algorithm to improve the quality of IBD

detection for the specific data set by using the following procedure.

Using GERMLINE’s default ‘‘haplotype extension’’ parameters, we

extracted IBDsegments fromthe real data and thenused the analyt-

ical inference procedure to retrieve demographic parameters. We

simulated a synthetic population by using the inferred demog-

raphy and extracted ground-truth IBD segments. We ran GERM-

LINEon the synthetic genotypes several times and changed the ‘‘er-

r_hom, err_het, bits’’ to find a set of parameters thatminimized the

deviation of the genotype-inferred IBD sharing density from that

obtained from ground-truth data. We then used these parameters

to extract IBD segments from the real data again and iterated the

procedure until convergence. TheGERMLINEparameters towhich

we converged were ‘‘-min_m 1 -err_hom 0 -err_het 2 -bits 25

-h_extend’’ for the Beagle-phased AJ data and ‘‘-min_m 1 -err_hom

2 -err_het 2 -bits 60 -h_extend’’ for the trio-phased MKK data.
Demographic Model Selection in the AJ Population
We tested increasingly flexible models to infer the demographic

history of the AJ population. In order to control for potential

over fitting, we evaluated the parameters obtained for different

models by using a likelihood approach. To this extent, after opti-

mizing the model parameters by using the least-squares approach,

we used rejection sampling to retrieve parameters corresponding

to a local maximum likelihood for each model. We then used
Journal of Human Genetics 91, 809–822, November 2, 2012 813



Figure 1. Demographic Models
(A) Population of constant size.
(B) Exponential expansion (contraction
for Na > Nc).
(C) A founder event followed by exponen-
tial expansion.
(D) Two subsequent exponential expan-
sions divided by a founder event.
the Akaike information criterion42 (AIC) to compare models while

controlling for their different degrees of freedom (see the algo-

rithm reported in Table S2).

Three models were used for the inference in the AJ population

(see Figure 1 and an additional description in the Results): (1)

a model of exponential expansion ðMEÞ, (2) a model including

a founder event followed by exponential expansion ðMFEÞ, and
(3) a model of two exponential-expansion periods separated by

a founder event ðMEFEÞ. The ME model did not provide enough

flexibility to fit the IBD-sharing summary extracted for the AJ pop-

ulation, resulting in a poor fit (particularly for shorter segments)

and unrealistically large values for the recent population size.

We therefore excluded this model from further analysis. For

models MFE and MEFE, we used the following rejection-sampling

approach to maximize the model likelihood around the least-

squares solution obtained in the previous step. (1) For eachmodel,

for each model parameter, we generated a list of neighboring

points by allowing each parameter to vary by 5 3% of its current

value. (2) For each point on such a local grid, we sampled several

random data sets of sharing individuals by using the correspond-

ing demographic parameters (details in Table S3). We created

each data set by sampling random sharing values for independent

individual pairs from the distribution of Equation 17. (3) For each

analyzed set of parameter values, we computed a likelihood as

the fraction of data points for which the deviation between AJ

and sampled sharing was smaller than a tolerance threshold

d (dx0:089 for MFE and dx0:037 for MEFE). (4) We updated the

current point to the most likely point in the analyzed neighbor-

hood, if any, and iterated steps 1–3 until no point with a higher

likelihood was found. (5) We applied the AIC to compare models.

For bothmodels, only one iteration of the above localmaximiza-

tion was required. The most likely parameter values in the grid

matched those obtained with the least-squares approach, except

for the current population size, which increased by 3% for model

MFE and decreased by 3% for model MEFE. When comparing the
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two models, we used a tolerance threshold

of dx0:037 and obtained an AIC value of

19.21 for the MEFE model, which allows

five parameters to vary (such d results in

a likelihood of 0.01 for the MEFE model).

Using the same acceptance threshold, we

thus required a log likelihood of at least

�5.6 (a likelihoodof~3.7310�3) formodel

MFE, which has four parameters, to be

selected. None of the 105 sampled points

were accepted with such a threshold,

leading us to choose the MEFE model. The

likelihoods of additional parameter values

estimated for the MEFE model with the

use of a wider grid are reported in Table S4.

Note that when sampling from Equa-

tion 17, we assumed independence of the
analyzed sharing length intervals Ri and of the pairs within

a data set, potentially underestimating the variance of randomly

sampled summaries of IBD. To account for the presence of small

correlations, we thus performed full coalescent simulations ac-

cording to the most likely set of parameters of each model by

only sampling a synthetic chromosome 1 for 500 diploid individ-

uals. We repeated the rejection-based comparison by using 104

such points for each model and obtained an equivalent result.

Accounting for Phase Errors
The inference procedure described in the previous sections

assumes that high-quality IBD information is available. When

real data sets are analyzed, several sources of noise, such as compu-

tational phasing errors, might distort summary statistics of haplo-

type sharing. In the absence of reliable probabilistic measures for

the quality of shared segments, modeling this potential bias is

complicated. To account for this additional noise, we refined the

inferred AJ demographic model by using simulations that mimic

SNP ascertainment, inaccurate phasing, and IBD discovery in the

analyzed data sets. We expected the distortion of IBD summary

statistics in the AJ data set to not be substantial (Figure S3). The

preliminary inference based on the assumption of high-quality

IBD information therefore provides an efficient means for ex-

ploring large portions of the parameter space and for performing

model comparison. This can be followed by such simulation-based

refinement, which requires considerable computation.

After finding the most likely parameters and selecting model

MEFE for the AJ data as previously described, we refined the ob-

tained solution by using a local-search approach. We iteratively

varied one demographic parameter at a time and kept a tested

value if it resulted in a decreased deviation from the AJ data

summary. Note that in order to account for the stochastic varia-

tion observed across multiple independent simulations of the

same demographic history, we would need to generate several

synthetic data sets for each tested set of demographic parameters.



Figure 2. Distribution of Total Sharing
However, we did not repeat such simulations multiple times as

a result of computational constraints.

For all coalescent simulations in real-data inference, we used the

GENOME software package.40 The simulated chromosomes have

the samegenetic lengthas their real-dataequivalent andamutation

rate of 1.1 3 10�8 per site per generation.43 To reduce the compu-

tational burden, we used nonrecombining block units of 10 kb

for MKK simulations and 20 kb units for AJ simulations, resulting

in an IBD length resolution of 0.01 and 0.02 cM, respectively.

Synthetic markers were randomly ascertained to match the same

density of the real data. We matched the spectrum of the real

data sets by randomly selecting the same proportion of variants

for each frequency bin and used a bin size of 2%. Nomissing geno-

types were allowed in simulated data because occasional missing

genotypes in the real data were imputed during Beagle phasing or

excluded from the analysis if not reliably imputed. All simulations

were carried out for the entire autosomal genome.
The theoretically predicted distribution of total IBD (dots) is
compared to the one observed in simulations (dashed lines)
for two demographic scenarios: a constant population of 2,000
diploid individuals (red) and an exponentially contracting popula-
tion in which 50,000 ancestral individuals are reduced to 500
current individuals over 20 generations (blue). For the constant-
population model, the distribution was computed for IBD seg-
ments in the length interval R ¼ ½1;4�, whereas all segments of
at least 1 cM were considered for the exponential contraction.
The empirical distribution was estimated from the comparison
of 124,750 haploid pairs (250 synthetic diploid individuals),
whereas the theoretical distribution was predicted with Equation
17. The analyzed genomic region has a length of ~278 cM, and
the distributions were discretized with intervals of 0.1 cM.
Results

Evaluation of the Model on Synthetic Data

Thedescribedmethodswere implemented inDoRIS, a freely

available software tool (see Web Resources). We tested the

accuracy of the proposed model through extensive simula-

tion of synthetic populations with known demographic

history. For each simulated population, we analyzed

a region of length equivalent to chromosome 1 for 500

diploid samples (seeMaterial andMethods). All the derived

theoretical quantities were found in good agreement with

the values obtained from simulation (see Figure S4 for an

evaluation summary and Figure 2 for examples of total

haplotype-sharingdistributions).Wenoted that for popula-

tions of constant size, as expected, a smaller population size

causes a larger fraction of the genome to be shared through

IBD segments for the average pair in the population

(Figure 3). Furthermore, the frequency of segments at

different length intervals is informative of population size

at different time scales. Consider the case of an exponential

expansion (Figure 1B) with the following parameterization:

Na is the size of the ancestral population when exponential

expansion began, Nc denotes the population size at the

current generation, and G represents the number of gener-

ations during which the exponential expansion took place.

A small ancestral population size Na causes a higher rate of

remote coalescent events anda consequently larger fraction

of the genome to be spanned by short segments of IBD.

Similarly, a small value ofNc increases the chance of coales-

cence in the more recent generations, causing a larger frac-

tion of the genome to be spanned by long segments. For

fixed Na and Nc, variations of the duration of expansion G

affect the expansion rate and have a noticeable effect on

the slope of the sharing distribution, i.e., the genome frac-

tion spanned by midlength segments.

Evaluation of the Inference in Populations of

Constant Size

We used the relationship of Equation 4 to infer the size of

a Wright-Fisher population by using a realistic chromo-
The American
some 1 simulated for several populations, each with its

own constant size Ne ranging from 500–40,000 individ-

uals. In the analysis of IBD information for 500 diploid

samples in each such synthetic population, the predicted

value was highly correlated with the true size of the

synthetic populations (r ¼ 0.9994; Figure 4A). Across all

tested values of Ne, the ratio between true and estimated

population size had a median of 1.00 and a 95% confi-

dence interval (CI) of 0.97–1.03.
IBD and Heterozygosity in an Expanding Population

Tooutline IBD’s particular sensitivity to recentdemographic

variation, we examined the effects of variable population

size on demographic inference conducted either through

theproposed approach based on IBDhaplotypes or through

a classical approach based onheterozygosity.We focused on

the scenario in which a population of 3,000 ancestral indi-

viduals suddenly expands to a size of 25,000 individuals G

generations before the present (Figure 4C). We varied G

from 10–400 generations and simulated the ascertainment

of IBD haplotypes by extracting information on shared

haplotypes along a realistic chromosome 1 for 500 diploid

samples. For both IBD-based and heterozygosity-based

reconstructions, we assumed and inferred a constant popu-

lation sizeNe.Weused the relationship of Equation 4 for the

IBDmodel and the relationshipNe ¼ bq=ð4mÞ for the hetero-
zygosity-based approach (the heterozygosity q was esti-

mated from the synthetic sequences, and m matched the
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Figure 3. Effects of Demographic Parameters on IBD Sharing
When a population of constant size Ne is considered (A), a larger
number of individuals in the population results in a decreased
chance of sharing IBD segments across all length intervals. A
similar behavior is observed for the case of an exponential popula-
tion expansion (B) parameterized by Na ancestral individuals
exponentially expanding toNc current individuals duringG gener-
ations. Larger values of Na and Nc correspond to a smaller chance
of IBD sharing for short and long segments, respectively. For fixed
Na and Nc, changes in G (affecting the expansion rate) have an
impact on segments of medium length, i.e., the slope of the distri-
bution between short and long segments.
simulatedmutation rate).AnestimateofNewasobtained for

each data set across all simulated times of expansion (Fig-

ure 4D). As expected, the obtained estimate of Ne tended

to lie in the range between the ancestral and the current

size of the population. Long, recently originated segments

provide a better prediction of the current population size,

especially for remote expansions. In contrast, the high fre-

quency of shorter segments of more remote origins biases

the inference toward a smaller population size when these

segments are taken into account. For example, the effects

of a small ancestral population size can be observed on

segments between 4 and5 cM in length only for expansions

that occurred fewer than 120 generations ago; in contrast,

when segments between 1 and 2 cM in length are analyzed,

traces of a smaller ancestral population are still notable,

even for expansions that occurred as far back as 400 genera-

tions ago.When comparing these results to population-size

estimates obtained with heterozygosity from full synthetic

genomic sequence, we observed the heterozygosity-based

estimates of Ne to be strongly biased toward the small size

of the ancestral population. Although they present less

instability than do the IBD-based estimates, the inferred
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values approached the ancestral population size, even for

expansions that occurred 400 generations before the

present. This analysis outlines the unique sensitivity of

long-range IBD sharing to recent demographic variation.

Evaluation of the Inference in Populations of Varying

Size

We tested the accuracy of our inference procedure for

the cases of either an exponential increase or decrease in

population size (expansion or contraction, respectively;

Figure 1B). We simulated 450 synthetic populations that

underwent an exponential expansion and 450 that under-

went exponential contraction (see Table S1 for a list of

parameters). We analyzed the IBD sharing of 500 diploid

samples from each simulated population along a 278 cM

chromosome. We evaluated the accuracy of the inferred

demography by using the ratio between true and predicted

sizes of each analyzed population (Figure 4B) for all gener-

ations between 1 and 100. We found our inferred popula-

tion size to be within 10% of the true value 95% of the

time. The population size of recent generations was harder

to infer because of the scarcity of long IBD segments in

very large populations (this scarcity is due to a low chance

of recent coalescent events).

Note that the reconstruction accuracy is influenced by

sample size and length of the analyzed region (see Material

andMethods). The rates of expansion and contraction also

substantially affect the ability to recover the correct popula-

tion size; faster expansion and contraction rates incurmore

noisy estimates (the testing reported in Figure 4 included

extreme and possibly unrealistically large rates of expan-

sion and contraction). This was evident when we classified

the synthetic populations as either strong or mild contrac-

tion or expansion events and separately assessed the infer-

ence accuracy for each of these classes (Figure S5).

Expansionþ Founder Eventþ ExpansionModel of the

AJ Population

We analyzed the demographic history of the AJ population

by applying ourmethod to a real data set of 500 individuals

(Material and Methods; segment-length distributions in

Figure 5). We initially tested several models by using the

proposed procedure. After inferring the most likely param-

eters for the chosen model, we used simulations to refine

the analytical solution and account for potential errors in

IBD detection (see Material and Methods and Table S2 for

an algorithmic summary of the analysis).

As a first step, we fitted a simple model of exponential

growth (Figure 1B). If only long (R5 cM) segments are

considered, the parameters of this model can be optimized

to provide a good match for the observed sharing. This

supports the occurrence of an expansion event in the recent

history of this population, as reported in our previous anal-

ysis using a simpler simulation-based approach.33 However,

exponential growth alone is unable to provide a good fit for

the observed frequency of shorter segments, suggesting

additional demographic dynamics during more ancient AJ
er 2, 2012



Figure 4. Performance of the Inference Procedure
Performance for constant-size populations (A), expanding and contracting populations (B), and a suddenly expanding population (C)
studied with a constant-size model (D).
(A) We generated synthetic populations of size ranging from 500–40,000 individuals. The ratio between true (x axis) and estimated
(y axis) population size has a median of 1.00 and a 95% CI of 0.97–1.03.
(B) When expanding and contracting populations were simulated across a wide range of demographic parameters (see Table S1), the re-
constructed population size at any of the recent generations (blue dots) was within 10% of the true size 95% of the time. Higher uncer-
tainty was observed in the most recent generations (black lines indicate generation-specific 95% CIs).
(C) Demographic model for instantaneous expansion. Na ancestral individuals suddenly expand to Nc individuals G generations before
the present.
(D) We simulated several populations by using the model in (C); we set Na ¼ 1;500 and Nc ¼ 25;000 and used different values for G. We
analyzed the demography of this population by assuming a constant-sized population model and used IBD segments in several length
intervals to infer the population size. When inference is performed on the basis of longer IBD segments, the prediction is quicker to
converge to the current population size when the time from expansion is increased. For example, expansions that occurred more
than 100 generations ago leave a negligible signature when IBD segments between 4 and 5 cM in length are considered (purple). An
inference procedure based on average levels of heterozygosity, which is strongly biased by population size at ancient times, provides little
insight into recent demography even for extremely old expansion events (dark green). In all cases, we simulated a realistic chromosome
1 for 500 diploid samples, equivalent to ~140 diploid individuals analyzed genome wide.
history. The decay in the frequency of medium-length

segments, between 2 and 5 cM, was weaker than that

observed for longer ones, suggesting a founder event—

a reduction of the ancestral population size and subsequent

rapid expansion. Indeed, a refinedmodel that allows suchan

event topredate exponential expansion (Figure1C)provides

a goodfit for the frequencyof all segments of lengthR 2 cM.

We note that such a severe founder event was also reported

in a previous analysis based on lower throughput data44,45
The American
and is consistent with historical reports of this popula-

tion.46 However, this model does not adequately explain

why a further change in the slope of the sharing spectrum

was observed for short segments between 1 and 2 cM of

length. Such a steep increase in the frequency of short

segments can again support the occurrence of an exponen-

tial growthpreceding the observed founder event.We there-

foreoptimizedparameters for amodel that allows two subse-

quent exponential-expansion periods separated by
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Figure 5. Reconstruction for the AJ Demographic History
We applied several demographicmodels to study the demographic history of 500 self-reported AJ individuals on the basis of the observed
distribution of haplotype sharing (green line). The parameters of exponential expansion can be optimized to provide a good fit when
only long (R5 cM) segments are considered (red line, Figure 1B; best fit:Nc � 97;700;000,G¼ 26, andNa � 1;300). However, thismodel
is not flexible enough to accommodate abundant short segments found in this population. Themilder slope observed between segments
of 2–5 cM in length suggests a larger ancestral population size that rapidly recovered from a severe founder event by expanding to reach
a large modern population size (purple line, Figure 1C; best-fit: Nc � 12;800;000; G ¼ 35; Na1 � 230; and Na2 � 70;600Þ: Still, this
model cannot provide a good fit for additional slope variation (observed for segments between 1–2 cM) that is well explained by an addi-
tional exponential expansion that precedes the founder event but that is distinct from the other, more recent expansion (orange line;
Figure 1D; best-fit:Nc � 42;000;000; G1 ¼ 33; Na1 � 23; Na2 � 37;800; Na3 � 1;800; and G2 ¼ 167). All population sizes are expressed
as diploid individuals. G2 was not optimized because it was assumed that G1 þ G2 ¼ 200.
a founder event (Figure 1D). We focused our analysis on

generations 1–200 (i.e., setting G1 þ G2 ¼ 200 in

Figure 1D). The considered model allows Na3 founders to

exponentially expand to a population of Na2 individuals

duringG2 generations.After a founder event,Na1 individuals

are randomly selected and exponentially expand to reach

a current population ofNc individuals during the remaining

G1 generations. Using this model, we were able to obtain

a goodfit for the entire IBD frequency spectrum, correspond-

ing to the parameter values Na3 � 1;800; Na2 � 37;800;

Na1 � 230; and G1 ¼ 33 (therefore, G2 ¼ 167) and

Nc � 42;000;000: Model comparison based on the AIC

supports this model over simpler demographic scenarios

(see Material and Methods). We note that the most recent

expansion period was inferred to have a considerably high

rate (r ~ 0.37, defined in Equation 7). More complexmodels

(e.g., inferring the value of G2 and allowing for a founder

event predating the remote expansion) did not significantly

improve on the reported demography.

When real data is analyzed, the quality of computational

phasing and IBD detection might affect the reconstruction

accuracy. Inaccuracies in the recovery of long-range

IBD haplotypes are reflected in the inferred current size of

the AJ population, which is extremely large. This is most

likely due to long IBD segments being shortened to smaller

segments because of switch errors during computational

phasing, in addition to greater uncertainty associated with

the inference of recent large population sizes (Figure 3 and

Figure S5). We therefore refined inferred parameters to

take into account such potential bias by using realistic coa-
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lescent simulations that also reproducenoisedue to compu-

tationalphasingand IBDdiscovery (Material andMethods).

We obtained an improved fit for a population composed of

~2,300 ancestors 200 generations before the present; this

population exponentially expanded to reach ~45,000 indi-

viduals 34 generations ago. After a severe founder event, the

population was reduced to ~270 individuals, which then

expanded rapidly during 33 generations (rate r ~ 0.29) and

reached a modern population of ~4,300,000 individuals.

Exponential Contraction in the MKK Individuals: The

Village Model

We additionally investigated the demographic profile of 56

samples of self-reported unrelated MKK individuals from

the HapMap 3 data set (Material and Methods). We de-

tected high levels of segmental sharing across individuals,

consistent with recent analysis of hidden relatedness in

this sample.32,33 Genome-wide IBD sharing was elevated

among all individual pairs, suggesting high rates of recent

common ancestry across the entire group rather than

the presence of occasional cryptic relatives due to errors

during sample collection (Figure S6). Optimizing a model

of exponential expansion and contraction (Figure 1A),

we obtained a good fit to the observed IBD frequency spec-

trum (Figure 6), suggesting that an ancestral population of

~23,500 individuals decreased to ~500 current individuals

during the course of 23 generations (r ~ �0.17). We note

that this result might not be driven by an actual gradual

population contraction in the MKK individuals, but it

most likely reflects the societal structure of this
er 2, 2012



1.2 x 10–3

1.0 x 10–3

8.0 x 10–4

6.0 x 10–4

4.0 x 10–4

2.0 x 10–4

0.0 x 100

Figure 6. MKK Demography
IBD sharing is high across MKK samples,
particularly for long haplotypes. Our anal-
ysis of the observed distribution of haplo-
type sharing (red) with the use of a
single-population model (blue) suggests
occurrence of a severe population contrac-
tion in recent generations (~23,500 ances-
tral individuals decreasing to ~500 current
individuals during 23 generations at a high
exponential rate r ~ �0.17). An alternative
demographic model containing several
small demes that interact through high
migration rates creates the same effect as
a recent severe population bottleneck and
provides and alternative justification to the
abundance and distribution of IBD sharing.
In particular, we reconstructed a plausible
scenario (dashed CI obtained through
random resampling of 200 synthetic data
sets) in which 44 villages of 485 individuals
each intermix with a migration rate of
0.13 per individual per generation.
seminomadic population. Although little demographic

evidence has been reported, the MKK population is in

fact believed to have a slow but steady annual population

growth.47 We hypothesized that a high level of migration

across small-sized MKK villages (Manyatta) provides

a potential explanation for the observed IBD patterns in

this population. In such a model, a small genetic pool for

recent generations gradually becomes larger as a result of

migration across villages as one moves back into the past.

To validate the plausibility of this hypothesis, we simulated

a demographic scenario in which multiple small villages

interact throughhighmigration rates. This setting is similar

to Wright’s island model,48 and we shall refer to it as the

village model in this case (Figure S7).We extracted IBD infor-

mation for one of the simulated villages and attempted to

infer its demographic history by using a single-population

model of exponential expansionandcontraction (Figure1).

Indeed, the single-populationmodel provides a good fit for

this synthetic sample, and the severity of the gradual

contraction of the population was observed to be propor-

tional to the simulated migration rate. We thus used the

village model to analyze the MKK demography and relied

on coalescent simulations to retrieve its parameters: migra-

tion rate, size, andnumber of villages that provide a goodfit

for the empirical distributionof IBD segments.Weobserved

a compatible fit for this model, in which 44 villages of 485

individuals each intermix with a migration rate of 0.13

individuals per generation (Figure 6).

Note that, although our simulations involved several

villages of constant size, adequate choices of migration

rates would result in the signature of a drastic contraction

even among expanding villages (and, therefore, overall

expanding population). From a methodological point of

view, we further note that LD might also provide informa-

tion for inferring such a ‘‘village effect.’’ However, although

current strategies for IBD detection allow finding shared

haplotypes in the presence of computational phasing
The American
errors, LD analysis over long genomic intervals is sub-

stantially affected by noisy phase information (Figure S8).
Discussion

Recent availability of high-density genetic data has enabled

the investigation of human diversity at increasingly high

levels of detail. Although the vast majority of human

genetic variation arose in the panhuman ancestral popula-

tion and is therefore shared across continents, substantial

local differentiation between populations occurred as a

consequence of fine-scale demographic events of more

recent history.49 The intricate structure of these events is

most visible through population-specific allele frequencies

that models of panmictic admixture fail to adequately

explain.18 As sequencing technologies provide new in-

sights into recent genetic variation, our ability to under-

stand these demographic patterns becomes essential.

In this paper, we developed a formal relationshipbetween

demographic history and the distribution of IBD-shared

haplotypes between purportedly unrelated individuals.

This allowed us to provide an inference procedure for

demographic events that occurred in recent millennia. The

proposed approach can take into account subtle correlation

structures induced by long-range haplotypes, a distinguish-

ing advantage compared to existing methods. Specifically,

methods that assume independence of markers (e.g., allele

frequency spectrum) ignore this correlation, whereas

methods that focus on stronger forms of local correlation

(e.g., LD) fail to capture this source of information. It is the

ability of our approach to account for long-range correla-

tions across individual pairs that translates into higher

resolution when reconstructing recent historical events.

With thematurationofpopulation-scale sequencing tech-

nologies, direct observation of rare variants will pave new

ways for investigating recent demography. Accounting for
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the low end of the frequency spectrumof alleles in a popula-

tion will provide additional power for reconstructing recent

historical events, complementing the proposed procedure

that is based on recombination. The presence of mutations

on coinherited haplotypes will provide additional knowl-

edge for the timing of common ancestors and will, at the

same time, increase the accuracy of IBD detection, thus

exposing shorter and more reliable shared haplotypes and

extending this analysis further into the past. We project

that improved data quality and density, combined with

increasingly accurate methods for detecting shared IBD

segments in large cohorts,will alleviatemanycomputational

requirements of the proposed demographic analysis. Rather

than relyingonextensive simulations to reproduce thenoise

due to computational phasing, future enhancements of this

framework might explicitly use available information on

phase uncertaintywhenanalyzing the sharingdistributions.

We note that the proposed framework can be applied

for inferring recent demography in several existing SNP

data sets and can thus offer a new design for large-scale

sequencing studies. Time-specific population size can in

fact be inferred from a small sample of individuals geno-

typed at common polymorphic sites, providing insight

into the number of sequenced samples required for ob-

serving rare variants in a larger cohort. Our analysis of AJ in-

dividuals outlines how the sequencing of a small number of

samples would be sufficient for capturing a relatively large

proportion of rare genetic variation in this group as a result

of the severity of a recent founder event in this population.

The model that we proposed in this paper assumes selec-

tive neutrality. Although the distribution of haplotype

sharing is likely to be affected by localized natural selec-

tion,1 the extent to which the human genome has been

shaped by selective forces has yet to be quantified.50 The

proposed model of IBD sharing can be locally used for

testing for deviations from neutrality and can be improved

to explicitly handle the presence of selective forces. Further

enhancements of the proposed methodology include ex-

tending this framework to handle cross-migrating popula-

tions. This will enable analysis of heterogeneous samples

and provide a principled approach to comparing models

that include both single and multiple populations.

The proposedmethodology facilitates tackling questions

beyond demographic inference from genotype data; such

questions include those that arise when phenotype data

are also considered. A problem that has recently received

much attention is that of estimating heritability with

the use of large samples of unrelated individuals. Haplo-

type sharing across purportedly unrelated individuals has

been used in this context,51,52 and the proposed model

for IBD sharing across unrelated samples can be used for

improving such analysis.

On the applied side, genome-wide association studies

have taught us the lesson of needing to know the demo-

graphic makeup of a study population. Although linear-

trend analysis has been shown to capture population strat-

ificationwhen commongenomic variants are considered,53
820 The American Journal of Human Genetics 91, 809–822, Novemb
methods for association of rare variants are an active field of

investigation54 in which recent stratification poses new

challenges.55 The reconstruction of a fine-grained picture

of population stratification thus gains importance in the

context of full sequence data. Stratification might in fact

occur at different historical timescales, and statistical indi-

cators designed to account for ancient diversification trends

might not reveal signatures of recent demographic events.

The reported analysis of HapMap’s MKK samples

provides an example of this phenomenon. This sample

exhibits high levels of endogamy through ubiquitous

shared long-range haplotypes, suggesting a small popula-

tion size, but it appears to have an outbred profile when

the decay of LD is analyzed.56 As discussed in the Results,

a plausible reason for the observed data might in this case

be found in the societal structure of the MKK people. We

hypothesize that this ‘‘village effect’’ will be established in

other modern populations that are commonly considered

outbred on the basis of their ancient-timescale characteris-

tics. Several genetic surveys have in fact outlined surpris-

ingly high levels of runs of homozygosity in a number of

outbred populations worldwide.34,35,57,58 When migration

events are included in themodel, long runs of homozygous

haplotypes in otherwise outbred populations are plausibly

interpreted as reflecting a genetic pool of several small

demes that slowly but constantly intermix. The ability to

reconstruct recent demographic events will enable the

analysis of these phenomena. Combined with prior knowl-

edge of a population’s history, this analysis will provide

a useful tool for describing the fine-grained evolutionary

context in which recent genetic variation arose.
Appendix A

A closed-form solution for the infinite summation of

Equation 7:

XN
g¼Gþ1

�
1� 1

Na

�g�G�1 Zv
u

Erl2
�
l;

g

50

�
dlye�CðGþ1Þ

3 ½f ðu;G;CÞ � f ðv;G;CÞ�;

where C ¼ logð1� 1=NaÞ and

f ðx;G;CÞ¼ eðGþ1ÞðC�x=50Þ½xð100þxþGxÞ�50Cð50þxþGxÞ�
ðx� 50CÞ2 :

Appendix B

We report explicit expressions for the special case of

Wright-Fisher populations for R ¼ ½u;NÞ, where all seg-

ments longer than a detectable threshold u are considered

(see also Equations 19 and 20). When v/N, the length

distribution simplifies to

pRðs ¼ l j qÞ ¼ 2Neð50þNeuÞ2
ð50þ lNeÞ3

for l˛R
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and the expected length becomes

E½s j q� ¼ 50

Ne

þ 2u:

The expected number of segments is therefore

lRz
g350Ne

ð50þNeuÞ2
:

The approximation for the standard deviation of the

genome fraction shared through segments in a specified

length range provided in Equation 15 becomes inaccurate

when long length intervals are considered. When v/N,

we obtain an improved approximation by multiplying by

a numerically computed factor of 75=ð50þ uÞ:

sR½f j q�z 75

50þ u
3
25þNeu

50þNeu
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200

g3Ne

s
:

Supplemental Data

Supplemental Data include eight figures and four tables and can be

found with this article online at http://www.cell.com/AJHG.
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