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A Multi-SNP Locus-Association Method Reveals
a Substantial Fraction of the Missing Heritability

Georg B. Ehret,1,2,8 David Lamparter,3,4,8 Clive J. Hoggart,5,8 Genetic Investigation of Anthropometric
Traits Consortium, John C. Whittaker,6 Jacques S. Beckmann,3,7 and Zoltán Kutalik3,4,*

There are many known examples of multiple semi-independent associations at individual loci; such associations might arise either

because of true allelic heterogeneity or because of imperfect tagging of an unobserved causal variant. This phenomenon is of great impor-

tance in monogenic traits but has not yet been systematically investigated and quantified in complex-trait genome-wide association

studies (GWASs). Here, we describe a multi-SNP association method that estimates the effect of loci harboring multiple association

signals by usingGWAS summary statistics. Applying themethod to a large anthropometric GWASmeta-analysis (from theGenetic Inves-

tigation of Anthropometric Traits consortium study), we show that for height, bodymass index (BMI), andwaist-to-hip ratio (WHR), 3%,

2%, and 1%, respectively, of additional phenotypic variance can be explained on top of the previously reported 10% (height), 1.5%

(BMI), and 1% (WHR). The method also permitted a substantial increase (by up to 50%) in the number of loci that replicate in

a discovery-validation design. Specifically, we identified 74 loci at which the multi-SNP, a linear combination of SNPs, explains signif-

icantly more variance than does the best individual SNP. A detailed analysis of multi-SNPs shows that most of the additional variability

explained is derived from SNPs that are not in linkage disequilibriumwith the lead SNP, suggesting amajor contribution of allelic hetero-

geneity to the missing heritability.
Introduction

Hundreds of genome-wide association studies (GWASs)

have been performed for the identification of common

genetic polymorphisms influencing human traits or pre-

disposing to common diseases.1 It has become clear that

a large number of genetic variants contribute to these

phenotypes and that each individual SNP has a small over-

all effect. In classical GWASs, a list of the most promising

loci is established in a set of discovery studies by the selec-

tion of variants with an association p value below a certain

threshold. For each locus, only one variant (the one with

the strongest association) is kept and tested in an indepen-

dent set of studies for association. When the combined

discovery and validation association p value of a SNP is

below a predefined multiple-testing-controlled threshold

(typically 53 10�8), the variant is declared to be replicated

and—so that the winner’s curse phenomenon can be

avoided—the explained variance (EV) is estimated on the

basis of the validation effect size.

These EVs can be summed for all replicated markers

for obtaining the total explained variance (TEV), i.e., the

heritability explained by all GWAS hits. The TEV for

almost all traits is markedly smaller than the heritability

estimated by twin or family studies, and this discrepancy

has been termed missing heritability.2,3 Several studies

have examined possible causes of this phenomenon, and

these include (1) many more existing markers with smaller
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effects,4 (2) the effect of (unmeasured) rare variants,5

(3) poor tagging of causal variants,6 and (4) allelic hetero-

geneity.7

In this paper, we address the problem of allelic hetero-

geneity and imperfect tagging with a multi-SNP associa-

tion methodology. This method assumes that a given

phenotype is influenced at each quantitative-trait locus

(QTL) by one or more causal variant(s), whose effect(s)

can be approximated (or tagged) by a linear combination

of multiple semi-independent observed variants at the

locus. This linear combination of SNPs is termed a multi-

SNP. Throughout the manuscript we will use the term

multivariate regression when a single response variable is

(jointly) regressed on multiple explanatory variables (mul-

tiple regression). Note that our approach is blind to the

difference between true allelic heterogeneity and multiple

independent signals tagging a unique unobserved causal

variant. Thus, for simplicity, we use the term allelic hetero-

geneity to describe both scenarios.

By applying our method to the association summary

statistics of height, body mass index (BMI), and waist-to-

hip ratio (WHR) from the GIANT (Genetic Investigation

of Anthropometric Traits) consortium study,8–10 we show

that (1) for many loci, the multi-SNP EV is significantly

larger than the EV of the single best associated marker

and that (2) as a result, the TEV is substantially underesti-

mated by the currently conducted single-marker associa-

tion studies.
; 2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins Univer-

f Lausanne, Lausanne 1005, Switzerland; 4Swiss Institute of Bioinformatics,

on, LondonW2 1PG, UK; 6Quantitative Sciences, GlaxoSmithKline, Steven-

re Vaudois, Lausanne 1011, Switzerland

y of Human Genetics. All rights reserved.

Journal of Human Genetics 91, 863–871, November 2, 2012 863

mailto:zoltan.kutalik@unil.ch
http://dx.doi.org/10.1016/j.ajhg.2012.09.013


Material and Methods

Assume that at a given locus, a truly causal variant is associated

with a particular phenotype. As mentioned before, the term causal

variant is used in a general sense and can represent a single

SNP, a haplotype, a copy-number variant, or the combination of

multiple semi-independent variants at one locus, etc. Let g˛Rn

denote the genotype values of this variant in a population sample

of size n, and let y be the observed phenotype values. The effect

size of the variant is bg , i.e., y ¼ bgg þ ε, where ε � Nð0; s2Þ. The ex-
plained variance can simply be calculated as

r2g ¼ b2
gVarðgÞ

b2
gVarðgÞ þ s2

:

This variant might neither be observed directly nor be in

the imputation reference panel. However, several measured or

imputed variants at the same locus might show association with

the phenotype as a result of linkage disequilibrium (LD) with

the causal variant. Let F˛Rn3m denote the available genotype

data at this locus, i.e., allele dosages for m SNPs. For simplicity,

assume that the phenotype and all genotype vectors are normal-

ized to have a mean of zero and unit variance across individuals.

The explained variance of the m SNPs at the locus can be approx-

imated by

br2 locus ¼ 1� bs2 ¼ 1� RSS

n�m
;

where bs2 is the unbiased estimate of the residual variance and RSS

is the residual sum of squares, which can be expressed as

¼ 1� 1

n�m
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First, note that the subtraction of the term m/n guarantees that

the estimate is unbiased; hence, Eð br2 locusÞ ¼ 0 if the locus is not

associated with the phenotype. Second, this partitioning permits

a simple estimation of the explained variance of a locus: with nor-

malized genotype and phenotype data, 1=n FTy ¼ bb is the vector

of estimated marginal effects of the m SNPs at the locus (infor-

mation that will be readily available from meta-analyses) and

1=n ðFuFÞ ¼ C is the SNP correlation matrix, which can be esti-

mated from external data. This partitioning of the formula for

approximating multivariate effect sizes has also been proposed

by Yang et al.11

We show in Supplemental Data section 1 (available online) thatbr2 locus is a lower bound on the EV of the causal variant g, i.e.,

r2gR
br2 locus ¼ n

n�m

�bbu
C�1bb �m

n

�
: (Equation 1)

This estimate does not require any information on the causal

variant. To declare a locus association as significant, we have to

consider not only br2 locus but also its variance, which can be shown

to be

Var

 br2 locus
!

¼
� n

n�m

�2
$
1� r2locus

n
$

�
4$buC�1bþ 2m$

1� r2locus
n

�
(Equation 2)

(see Supplemental Data section 2).
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Finally, we use br2 locus to (1) test the significance of the multi-

SNP association and (2) compare the TEV of the multi-SNP with

the TEV of the lead SNP only (see Supplemental Data section 3

for details). Once we calculate nominal p values for each locus,

we use a false-discovery-rate (FDR) control to adjust for multiple

testing.12
Calculation of the Multi-SNP in Practice
We identify several reasons why we do not include all SNPs at the

given locus in the multi-SNP. (1) Depending on the number of

SNPs at a given locus, C can be rather large, and this results in

a high condition number13 and subsequently introduces signifi-

cant inaccuracy in the calculation of Equation 1. (2) Clearly, it is

not worth including too many nonassociated SNPs in F given

that adding them does little to increase the expectation of br2 locus
but increases its variance (see Equation 2), which increases with

m and hence decreases the power of the multi-SNP method. Simu-

lation results presented in Figure S1C further support this

phenomenon. This problem is akin to the bias-variance tradeoff

and has been extensively studied.14 (3) SNPs in high LD tend to

carry redundant information. (4) The greater the number of

SNPs included at a given locus, the greater the sensitivity of the

EV estimate to the correlation matrix C.

These considerations motivated the removal of SNPs that

showed nonsignificant univariate associations (p > 0.01) and

SNPs in LD (r2 > 0:1) with another marker (with a lower p value).

We demonstrated that the proposed SNP-filtering procedure

results in increased power (Figure S1) and provides EV estimates

robust to the source of the correlation data (see Results).

However, the SNP-selection process introduces a bias in the esti-

mation of the lower-bound value. This bias can be avoided if the

samples are split into discovery and validation subsets. Such parti-

tioning of the data set is analogous to the ‘‘training-test’’ set divi-

sion in cross-validation. However, we emphasize the fact that

our methodology is a natural extension of the classical GWAS

routine, and we therefore keep the discovery-validation termi-

nology. The first set is used for obtaining a relevant subset of

SNPs (i.e., SNPs with a p value < 0.01 and pairwise LD r2 < 0:1)

constituting the multi-SNP, whereas the other data set is then

used for providing unbiased estimates of the effect sizes for the

chosen multi-SNP. As opposed to replicating only the lead SNP,

we carry forward a set of SNPs for each locus into the validation

phase, where we test the multi-SNP by approximating the joint

effect of a locus. The two-step procedure is outlined in Figure 1.
In Silico Analysis
To demonstrate the utility of our method in a controlled setting,

we simulated phenotype data by mimicking the imperfect-tagging

scenario. To this end, we fixed a genomic region and randomly

selected an additively coded SNP g and created a phenotype that

was additively associated with this SNP. In formula y ¼ g þ ε,

ε � N ð0;s2Þ with s2 ¼ VarðgÞ$ð1=r2g � 1Þ. This ensures that the ex-
plained variance is r2g .

In this region (5500 kb), we then masked all SNPs whose LD

with the causal locus was higher than a certain threshold (r).

The data (n ¼ 5,000 from the CoLaus study; see Supplemental

Data section 9 for further details) were then equally split into

discovery and validation parts. We used the discovery data to

select those unmasked SNPs whose p value was below a predefined

threshold a. We then used the validation data for these SNPs to

estimate the EVof the multi-SNP approximating the causal marker
er 2, 2012
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Figure 1. Brief Summary of the Multi-
SNP Locus-Association Method
First, SNPs at the locus were prioritized (on
the basis of their discovery p values) and
were LD pruned (on the basis of their
pairwise LD). The emerging SNPs were
taken to validation, where the multi-SNP
was created as their optimal linear com-
bination and was tested against the chi-
square distribution for obtaining the
multi-SNP association p value.
according to Equation 1. This estimate was then contrasted with

the EV estimate of the top associated observed SNP. This exercise

was carried out for various genomic regions, masking thresholds

(r), strengths of causal association (r2g ), and SNP-selection thresh-

olds (a). For each parameter setup, the phenotype was simulated

1,000 times, and the results were averaged over these repeats.
Application to Meta-analysis Summary Statistics
To apply our multi-SNP association method to the association

summary statistics of the GIANT consortium (for height,8 BMI,9
The American Journal of Human Gen
and WHR10), we split the studies into

two groups of cohorts (total sample

size ¼ 81,000 and 47,000) and meta-

analyzed each group of studies separately.

Note that for further validation purposes,

we did not include the CoLaus15 cohort

in this meta-analysis. The first group of

studies served as discovery samples, and

the second group served as validation

samples. Loci were defined as the 50.5

cM region around each lead SNP. Lead

SNPs were selected on the basis of their

discovery p values (p < 10�2) and were

subsequently pruned such that neigh-

boring lead SNPs were forced to be at least

1 cM apart. Note that by definition, the

loci do not overlap, which ensured count-

ing each signal only once. Subsequently, at

each locus, SNPs below a certain p value

threshold (p < 10�2) were pruned such

that if two SNPs were in LD (r2 > 0:1),

the one with a less significant p value (in

the discovery cohort) was thrown away.

For each locus, we estimated the effect

size in the validation sample for the

selected set of semi-independent SNPs.

Finally, we again used the estimate of

the correlation matrix (external genotype

data) to obtain a lower bound on the EV

at each locus.

Results

In Silico Results

First, we simulated a scenario in

which a causal variant is imperfectly

tagged by masking all SNPs whose
LD with the causal marker was higher than a certain

threshold. Second, we applied both the standard single-

SNP method and our multi-SNP method to estimate the

EV of the underlying causal marker.

Figure 2A illustrates how the EV of the multi-SNP

increases as a function of increasing discovery p value

threshold a (without LD pruning). For completeness, we

also explored a wide range of p-value- and pruning-

threshold combinations for a fixed simulation scenario

(see Supplemental Data section 8) and observed large
etics 91, 863–871, November 2, 2012 865
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Figure 2. Properties of the Variance Ex-
plained by Multi-SNPs
(A) The multi-SNP was generated for
various EV values and SNP-selection
thresholds (a), whereas all SNPs with an
LD r2R0:5 with the casual variant were
set unobserved.
(B) The multi-SNP was computed for
various EV values (r2g ) and for maximal
LD (r2) between the observed SNPs and
the causal variant. Here and for the rest
of the experiment, we fixed a at 2 3 10�2.
(C) The EV of the multi-SNP is plotted
against that of the best associated observed
SNP. The estimates were again generated
for various EV values (r2g ) and for maximal
LD (r2) between the tagged SNPs and the
causal variant. The dotted black line indi-
cates a ten-fold increase.
(D) LD (squared correlation) between the
causal SNP and the derived multi-SNP
(dashed line) and top associated SNP (solid
line). The color coding for (C) and (D)
agrees with that of (B).
variations in statistical power. Because the optimal combi-

nation is, in reality, not known, we deliberately chose

a nonoptimal strategy of a ¼ 2 3 10�2 combined with

no LD pruning for the rest of the simulation experi-

ment. Second, we noticed that the EV of the true causal

marker was remarkably well estimated even when many

LD friends (r2 > 0:2) of the causal SNP were masked

(Figure 2B). Third, in such poor tagging scenarios, single

(lead)-SNP associations yielded ten times smaller EVs

than did multi-SNPs (Figure 2C). Finally, associated

multi-SNPs were much more closely linked to the causal

variant than were top associated single SNPs. In Fig-

ure 2D, we plotted the LD (squared correlation) between

the causal variant and the multi-SNP, as well as the LD

between the causal variant and the best associated SNP

(in the discovery sample). These results demonstrate that

our multi-SNP-association method offers a substantial

benefit over single-SNP associations in the case of imper-

fect tagging.

Application to GIANT Association Summary Statistics

We then tested the multi-SNP method by using the associ-

ation summary statistics of the GIANT consortium for

height,8 BMI,9 and WHR adjusted for BMI.10 In order to

have both discovery and validation summary statistics

for every SNP genome-wide, we partitioned the discovery

studies into two groups before meta-analyzing them sepa-

rately. These two groups represent the discovery and vali-

dation samples for the purpose of this paper. We then

selected SNPs on the basis of discovery univariate p values

and pairwise LD. Then, we combined these SNPs together
866 The American Journal of Human Genetics 91, 863–871, November 2, 2012
into a multi-SNP via a multivariate

linear regression in the validation

sample. Finally, we tested how much

phenotypic variance was explained
by the multi-SNP and compared this EV to the one ex-

plained by single-SNP analysis.

For height, we detected 2,073 loci with a lead-SNP

p value < 0.01 in the discovery panel. Because the EV

estimates were unbiased and independent (Figures S5

and S6), we could simply sum up the estimates for all

2,073 selected height loci and determine the total fraction

of EV. We also calculated the EV by only using the lead

SNP from each locus (‘‘single-SNP’’ analysis). A striking

difference was observed between the two estimates (see

Table 1): for height, single-SNP associations explained

6.9% of phenotypic variance, whereas the multi-SNPs at

the same loci explained 13.5%. Differences for BMI and

WHR were slightly less pronounced: single-SNP associa-

tions explained 2% and 0.1% of the variance for BMI and

WHR, respectively, whereas multi-SNP associations ex-

plained 3.6% and 2.2% of the variance for BMI and

WHR, respectively, at a locus-selection p value < 0.01.

These findings suggest that a non-negligible fraction of

the missing heritability—at least for the traits examined

in this paper—might be due to multiple independent

effects per locus. Note that even if only half of the sample

size is used for confirming associations, the multi-SNP

method explains more variance than does using the entire

sample with just a single-SNP analysis.

To further demonstrate that our methodology is not

biased and also that EV estimates from different loci can

be simply summed up, we calculated how much pheno-

typic variance was explained by all the derived multi-

SNPs in the independent CoLaus study,15 which was not

used in either the discovery or the replication samples.



Table 1. TEV of Single SNPs and Multi-SNPs for Each Anthropometric-Trait Phenotype

Trait p Value Number of Loci (FDR)

TEV Number of Replicated Loci

Single SNP Multi-SNP Single SNP Multi-SNP

Height p < 5 3 10�8 106 (0.0%) 4.10% 6.93% 93 96

p < 1 3 10�2 2,073 (80.0%) 6.88% 13.52% 142 186

BMI p < 5 3 10�8 18 (7.0%) 0.92% 1.02% 15 16

p < 1 3 10�2 2,031 (95.0%) 1.96% 3.61% 15 25

WHR p < 5 3 10�8 2 (0.0%) 0.09% 0.09% 2 2

p < 1 3 10�2 1,985 (100.0%) 0.12% 2.22% 0 2

These estimates account for the number of SNPs constituting the multi-SNP association. FDR was estimated with the Bayes’ theorem (for details, see Supplemental
Data section 4). The following abbreviations are used: FDR, false discovery rate; TEV, total explained variance; BMI, body mass index; and WHR, waist-to-hip ratio.
Each multi-SNP is a linear combination of its constituting

SNPs, and the coefficients are determined on the basis of

the replication summary statistics and the SNP correlation

matrix (obtained from external cohorts). Knowing these

coefficients, we constructed all the multi-SNPs in the

CoLaus sample. We then regressed height simultaneously

on the 2,073 height-related multi-SNPs and calculated

the EV adjusted for the number of variables.16 We repeated

the same exercise for BMI and WHR. The estimates for

height and BMI agreed well with those obtained by our

method, although the 95% confidence intervals (CIs)

were wide because of the relatively small size of the CoLaus

sample: 13.2% (CI 10.1%–16.3%) versus 13.5 for height,

2.3% (CI �0.9%–5.6%) versus 3.6 for BMI, and �0.2%

(CI �3.4%–3.0%) versus 2.2% for WHR.

For BMI, only loci with small lead-SNP effects harbored

allelic heterogeneity, whereas for height, these loci were

distributed evenly across the whole spectrum of discovery

lead-SNP p values (5 3 10�8 to 5 3 10�2) (Figure 3).

Next, we applied a Benjamini-Hochberg FDR control

for the validation p values. For the 2,073 loci, 142 lead

SNPs replicated at 5% FDR, whereas 186 multi-SNPs were

confirmed at the same FDR. BMI and WHR showed a

similar advantage with the use of multi-SNP association

(see Table 1).

To establish an inventory of loci with significant evi-

dence of potential allelic heterogeneity, we formally tested

whether themulti-SNP explains more phenotypic variance

than the best individual SNP in the region. The chi-square

test we applied here takes into account the number of

SNPs that the multi-SNP was created from. For height,

BMI, and WHR, 65, 7, and 2 loci, respectively, were clas-

sified as exhibiting significant allelic heterogeneity. A

detailed list of such loci can be found in Table S4. Here,

we only show one example for height association at the

15q26.1 locus (Figure 4).

Given that we were able to estimate the weights assigned

to the SNPs that constitute the multi-SNP, we could con-

struct the multi-SNP genotype by using the genotype

data of its scaffold SNPs and thus calculate the LD

between the multi-SNP and the surrounding SNPs in the

region. Figure 4 shows the LD in the region and enables
The American
the composite signal of the multi-SNP to be visualized.

As can be observed, the association signal is rather broad

(top panel); however, not all the signals are due to LD

with the lead SNP (middle panel). The multi-SNP encom-

passes these independent associations and explains most

of the observed association in the region (bottom panel).

Interestingly, the multi-SNP, unlike the lead SNP, is in

strong LD with several missense variants in ACAN (MIM

155760). Not surprisingly, the SNPs picked up by the

multi-SNP are predicted to be benign by PolyPhen.17 Also,

a recent Korean exome-sequencing study found a height-

associated, nonsynonymous SNP in ACAN.18 These obser-

vations suggest that we are indeed observing the effect of

multiple causal variants.

Application to Lipid Association Summary Statistics

In addition to the anthropometric trait associations, we

also tested our method on triglyceride, high-density-lipid,

low-density-lipid, and total-cholesterol association sum-

mary statistics of the largest-to-date lipid meta-analysis

study.19 Given that we had no access to separate discovery

and validation summary statistics in the lipid meta-anal-

ysis, we had to adapt our method in order to obtain

unbiased estimates for the difference in TEV between

single and multi-SNP associations. We chose an approach

that is conservative (see Material and Methods). Neverthe-

less, we were still able to detect a 10%–25% relative in-

crease in TEV for these traits when we usedmulti-SNP asso-

ciation. Additional results are provided in Supplemental

Data section 10.

Robustness

Because themeta-analyses report only univariate SNP asso-

ciations, we derived multivariate effects by using external

data to estimate the LD structure of the selected SNPs at

each locus. Given that the LD structure can have a great

impact on our results, we compared the EV across six

different external studies. These cohorts are of individuals

from a diverse spectrum of European ancestry and were

genotyped on various platforms (Figure S3). For each locus,

the different EV estimates, obtained from the six different

LD estimates used in our method, were compared to each
Journal of Human Genetics 91, 863–871, November 2, 2012 867
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Figure 3. Gain in the TEV for Height
and BMI
The TEV of single SNPs and multi-SNPs is
plotted as a function of the discovery-p-
value cutoff. Although pronounced allelic
heterogeneity can be observed throughout
the whole p value spectrum for height (A),
only SNPs with a smaller effect tend to
harbor significant multi-SNPs for BMI (B).
other. This comparison showed only a 5% median coeffi-

cient of variation (CV) in the EV estimates across the six

LD patterns, which demonstrates that our methodology

is robust to moderate deviations in the LD structure. Sensi-

tivity analyses showed that less stringent LD pruning

thresholds (r2 > 0:3 and r2 > 0:5) increased the CV (8%

and 10%, respectively).
Discussion

We have developed a methodology that is able to estimate

the lower bound of the TEV at a locus, and we show that

this is significantly larger than the variance explained by

the best SNP at the locus. The method exploits imperfect

tagging and allelic heterogeneity. The estimate relies on

the univariate effect-size estimates and sample sizes for

each available SNP and the correlation structure of the

SNPs at the given locus. The estimate can also be interpreted

as the EV of the association between a multi-SNP and the

particular phenotype. The multi-SNP is a specific linear

combination of some measured SNPs at the given locus

and enables us to better resolve the association signal.

In silico simulations showed that this approach can

better detect causal markers in imperfect-tagging scenarios.

Furthermore, we have demonstrated that additional prun-

ing facilitates its application to large meta-analytic studies.

We also applied this tool to the meta-analysis summary

statistics obtained from the GIANT consortium. The anal-

ysis yielded many associated loci and significantly in-

creased the TEV.

A recent paper identified substantial allelic heteroge-

neity at expression QTLs.20 Also, for autoimmune diseases,

the major-histocompatibility-complex region has revealed

multiple independent effects.21–23 The GIANT height

paper8 looked at secondary associations and distinguished

19 loci in which more than one SNP seemed to influence

the phenotype. Remarkably, 11 out of these 19 loci were

also among our list of 65 height loci. The nonreplicating

loci could be due to insufficient power (because of the

halved sample size) or to having too many SNPs included

in the multi-SNP in cases where the signal was mainly

driven by just two or three SNPs.
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A region-based meta-analysis was

proposed for the study of individuals

deriving from different ethnic groups,

and the authors of this study high-
lighted the need to consider more than just individual

SNP associations.24 Their method also encompassed asso-

ciation information across multiple SNPs at a given locus,

and significance was assessed by a binomial test. Their

method has a different focus of application, and hence is

not designed to estimate EV, cannot use meta-analysis

summary statistics, does not estimate exact signal localiza-

tion, and is indifferent to the actual SNPs’ contribution to

the combined association signal.

While our work was under review, an independent study

also proposed a methodology for addressing conditional

and joint SNP analysis in the GWAS framework.11 They

also used an external reference sample to derive the LD

structure in order to approximate multivariate regression

when only univariate summary statistics are given. The

authors also used the GIANT summary statistics to demon-

strate the utility of their method. There are important

differences between their method and ours: (1) We used

discovery and validation samples to derive unbiased esti-

mates for the EV of the multi-SNP. Their proposed method

used the complete sample and applied a very stringent

(genome-wide significant) p value threshold for SNP selec-

tion to avoid the winner’s curse phenomenon. (2)Whereas

we filtered SNPs on the basis of their marginal association p

values and pairwise LD, Yang et al. used an elegant stepwise

procedure for SNP selection, but without replication, they

could not fully exclude any bias in their estimates. (3)

Because we used an independent replication sample, we

could apply a less stringent p value threshold and could

thus examine many more loci without being restrained

by a winner’s curse. The use of an independent replication

sample enabled us to calculate an unbiased estimate of the

TEV of the model proposed in the discovery stage regard-

less of the number of false-positive SNPs included in the

multi-SNP. We chose to select SNPs on the basis of LD-

pruned marginal association p values and accepted that

some of them might turn out to be false at the validation

stage. Therefore, these two methods are complementary:

our method is more suited to detect weaker associations

with many possible close-to-optimal model configurations

and thus allows for more constituting SNPs, but it is less

tailored to detect scenarios in which the phenotype is

driven by only a few distinct associated SNPs and not by
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Figure 4. Example of a Height-Associated Locus with Strong Allelic Heterogeneity
The top associated variant is in weak LD with all nonsynonymous markers in ACAN. However, the multi-SNP captures these SNPs.
many other variants at the locus. When applying our

method to the anthropometric GWASs of the GIANT con-

sortium, we found more significant multi-SNP associations

(n ¼ 65 loci for height) than did the method of Yang et al.

(n ¼ 36 loci for height); these loci explain more pheno-

typic variance (5.3% for our method versus 4.1% for the

Yang et al. method). Importantly, 24 out of their 36 loci

were also found by our method (hypergeometric test, p ¼
1.1 3 10�29).

Note that even in large studies, we do not have suffi-

cient statistical power to distinguish between the best

competing multivariate models. The top model emerging

from Yang et al.’s analysis for a given locus is not signifi-

cantly better than many other models containing slightly

different SNPs. Predictors (deterministically) selected from

a set of correlated variables (like SNP data for a locus)

are highly interchangeable. There is little importance of

the actual SNPs selected for the optimal model because

many different models can fit the data similarly well.

This can be easily demonstrated by MCMC sampling of

the model space for any locus with allelic heterogeneity.

For this reason, we put more emphasis on the EV of

the model than on the actual SNPs constituting the

multi-SNP.
The American
Our methodology cannot distinguish between true alle-

lic heterogeneity andmultiple independent signals tagging

an unobserved variant. We asked, nevertheless, whether

any discovered multi-SNP (composed of HapMap SNPs)

could be tagging a single SNP present only in the 1000

Genomes catalog. This comparison did not identify such

a multi-SNP, indicating that imperfect tagging might be

less of an issue for common-variant associations (Fig-

ure S7). Note, however, that the LD-pruning step in our

procedure slightly reduces the chance of detecting an

imperfect-tagging scenario in set-ups where only associa-

tion summary statistics are available. A similar conclusion

was reached by Yang et al.11

We found that loci with higher marker density are

slightly more prone to harbor allelic heterogeneity (p ¼
0.002; see Table S2). A possible reason for this is that better

coverage enables our methodology to pick up stronger

secondary signals. We also found evidence that more

conserved loci exhibit more allelic heterogeneity (p ¼
2.5 3 10�4; see Table S3). Although high allelic heteroge-

neity has been linked to low mutation frequency,25 we

did not find a significant difference in minor allele fre-

quency (MAF) between loci with strong versus weak evi-

dence of multiple signals (Student’s t test, p ¼ 0.67). We
Journal of Human Genetics 91, 863–871, November 2, 2012 869



observed, however, that SNPs constituting the confirmed

multi-SNPs (p ¼ 4.66 3 10�41) tended to have a lower

MAF (0.17) than expected (0.22).

In some cases, the lead SNP alone might not replicate

because of fluctuations in the p values, but our multi-

SNP approach can be more robust to such variations.

Moreover, using multi-SNP associations could potentially

improve the detection of pleiotropy in case multi-SNPs

associated with different traits at the same locus at least

partially overlap. These instances of pleiotropy would be

missed by a standard single-SNP association framework.

An important application of our methodology can be

to assess the total contribution of variants in specific candi-

date genes (or pathways) in order to prioritize them. This

would be simply done through the restriction of multi-

SNP association to particular genes (or pathways) of in-

terest. A gene-centered GWAS approach was proposed for

the assessment of deviations from the local quantile-quan-

tile plot.26 However, this method does not attempt to

compute cumulative EV and is not applicable to summary

statistics.

Our method is implemented in a MATLAB-package

multi-SNP, and we added a multivariate association option

to our standalone software QUICKTEST.

In summary, our proposed method of investigating

allelic heterogeneity revealed that a substantial fraction

of the missing heritability can be explained by this

phenomenon.
Supplemental Data

Supplemental Data include nine figures and eight tables and can

be found with this article online at http://www.cell.com/AJHG.
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(2004). Genomic rearrangements in the CFTR gene: Extensive

allelic heterogeneity and diverse mutational mechanisms.

Hum. Mutat. 23, 343–357.

8. Lango Allen, H., Estrada, K., Lettre, G., Berndt, S.I., Weedon,

M.N., Rivadeneira, F., Willer, C.J., Jackson, A.U., Vedantam,

S., Raychaudhuri, S., et al. (2010). Hundreds of variants clus-

tered in genomic loci and biological pathways affect human

height. Nature 467, 832–838.

9. Speliotes, E.K., Willer, C.J., Berndt, S.I., Monda, K.L., Thor-

leifsson, G., Jackson, A.U., Lango Allen, H., Lindgren, C.M.,
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