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Smooth Operator: Avoidance of Subharmonic Bifurcations
through Mechanical Mechanisms Simplifies Song Motor
Control in Adult Zebra Finches
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Like human infants, songbirds acquire their song by imitation and eventually generate sounds that result from complicated neural
networks and intrinsically nonlinear physical processes. Signatures of low-dimensional chaos such as subharmonic bifurcations have
been reported in adult and developing zebra finch song. Here, we use methods from nonlinear dynamics to test whether adult male zebra
finches (Taenopygia guttata) use the intrinsic nonlinear properties of their vocal organ, the syrinx, to insert subharmonic transitions in
their song. In contrast to previous data on the basis of spectrographic evidence, we show that subharmonic transitions do not occur in adult song.
Subharmonic transitions also do not arise in artificially induced sound in the intact syrinx, but are commonly generated in the excised syrinx.
These findings suggest that subharmonic transitions are not used to increase song complexity, and that the brain controls song in a surprisingly
smooth control regimen. Fast, smooth changes in acoustic elements can be produced by direct motor control in a stereotyped fashion, which is
a more reliable indicator of male fitness than abrupt acoustic changes that do not require similarly precise control. Consistent with this view is the
presence of high fidelity at every level of motor control, from telencephalic premotor areas to superfast syringeal muscles.

Introduction
Natural behavior involves strong interactions among nervous
system, morphology, and environment that can constrain neural
control but also provides opportunities for rich complexity in
behavior (Chiel and Beer, 1997). The central control of learned
vocal behavior is an excellent system in which to study this inter-
action because vocal organs are highly nonlinear devices whose
intrinsic properties can give rise to complex acoustic features (Fee
et al., 1998).

Many songbirds learn their song from adult conspecifics and
practice through sensorimotor error correction to refine their
own song into a highly stereotyped, so-called crystallized song
(Konishi, 1965; Tchernichovski et al., 2001). Any attempt to un-
derstand the neural basis of song and relate neural instruction to
song characteristics depends crucially on understanding the transla-
tion of neural patterns into song, but it remains unclear as to how
neural patterns of firing are decoded into sound in the peripheral
sound producing system. To generate stereotyped song, the avian
vocal organ, the syrinx, must translate neural patterns into sound

reliably and predictably, even in an internal environment where me-
chanical perturbations may occur. This translation involves many
biophysical processes, such as muscle contraction (Elemans et al.,
2008a), flow induced oscillation of vibrating structures (Goller and
Larsen, 1997; Fee et al., 1998, Larsen and Goller, 1999), filtering
(Nowicki, 1987; Riede et al., 2006) and, possibly, acoustic feedback
(Laje et al., 2001; Laje and Mindlin, 2005; Hatzikirou et al., 2006),
which themselves or in their interactions are intrinsically nonlinear
(Wilden et al., 1998; Fitch et al., 2002; Mindlin and Laje, 2005).

In zebra finch song, the occurrence of various phenomena
related to low-dimensional chaos (LDC) has been reported to
arise from oscillatory dynamics in the syrinx and has been sug-
gested as a mechanism for enhancing acoustic complexity with-
out complex neural control (Fee et al., 1998). However, it
remains unclear how to control nonlinear phenomena reliably to
produce stereotyped song. Specifically period doubling, a type of
subharmonic transition where the frequency of the uttered sound
abruptly changes to half its previous value, has been suggested to
enable rapid pitch changes in song syllables in adults (Fee et al.,
1998) and during vocal learning in juveniles (Tchernichovski et
al., 2001). In a regimen where subharmonic transitions occur,
small variations in neural control signals could result in abrupt,
large pitch changes. However, this abrupt nature might be ex-
pected to compromise the stereotyped repeatability of the song. It
also contrasts with gradual pitch adjustments (Andalman and
Fee, 2009; Sober and Brainard, 2009) that require a control regi-
men where pitch changes smoothly with its control parameters.
To evaluate these divergent mechanisms of central motor con-
trol, understanding the origin of nonlinear transitions in bird-
song is necessary.
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In this study, we test whether zebra finches make use of non-
linear characteristics of their vocal organ to insert subharmonic
transitions into song. To separate neural contribution from the
intrinsic properties of the syrinx, we also investigate the occur-
rence of complex spectral features in artificially induced sounds
in in situ, denervated, and excised syrinx preparations.

Materials and Methods
Identification of subharmonic transitions using topology analysis
The theory of nonlinear dynamics established that the long-term behav-
ior of a dynamical system depends on the geometry of the underlying
attractor (Strogatz, 1994). In voiced sound production by vertebrates,
the most common low-dimensional attractors are the fixed point (a con-
stant value), limit cycle (any periodic oscillation, such as pure tones and
harmonic stacks), torus (e.g., amplitude modulated sounds), and chaotic at-
tractor (“noisy” sounds) (Wilden et al., 1998; Fitch et al., 2002). The attrac-
tors underlying voiced sound leave characteristic signatures in

spectrograms and therefore spectrographic ev-
idence has been used to identify phenomena of
LDC in the vocalizations of the zebra finch (Fee
et al., 1998) and several other bird species
(Nowicki and Capranica, 1986; Fletcher, 2000;
Baker and Logue, 2003; Beckers and ten Cate,
2006; Zollinger et al., 2008), as well as frogs
(Suthers et al., 2006), humans, and other mam-
mals (Fachini et al., 2003; Herzel et al., 1995;
Mann et al., 2006; Riede et al., 2000; Svec et al.,
1996; Titze et al., 1993; Tokuda et al., 2008;
Tyson et al., 2007), and one insect (Benko and
Perc, 2007). Although spectrographic repre-
sentation of sound is indeed helpful in identi-
fying potential candidates, only more detailed
analysis, such as close-return (CR) plots and
phase-space embedding, allow unambiguous
identification (Titze et al., 1993; Herzel et al.,
1995; Svec et al., 1996; Fletcher, 2000; Riede et
al., 2000; Fachini et al., 2003; Mann et al., 2006;
Tyson et al., 2007; Tokuda et al., 2008).

By changing the system’s driving parame-
ters, the stability of one attractor can be trans-
ferred to a qualitatively different one: for
instance, in a period doubling bifurcation the
system abandons a limit cycle for a related limit
cycle with twice the period. In the context of
vocalizations, this bifurcation would abruptly
change the frequency of the uttered sound to
half its previous value. A more detailed de-
scription of period doubling bifurcations and
their phase-space relations is included as
supplemental material (available at www.
jneurosci.org as supplemental material).

Candidates for subharmonic transitions (e.g.,
period doubling or tripling) were identified by
visually screening spectrograms of crystallized
song from 130 adult male zebra finches
(Taenopygia guttata) from different laboratories
and gene pools. We screened 5–10 full motifs of
each individual and recorded the number of syl-
lables per motif (excluding introductory notes).
Syllables were defined as continuous sounds, sep-
arated by a silent period (Tchernichovski et al.,
2001). The song syllables contained two types of
fast frequency transitions: abrupt frequency
jumps within periods of relative constant fre-
quency and transitions within fast frequency
sweeps �50 ms in duration. Therefore, we scored
all syllables for these features. Syllables were fur-
ther classified according to whether the fre-
quencies before or after the jump or near the

beginning or end of the frequency sweep were harmonically related.
Thus, we scored the syllables for content of (1) frequency modulation
(FM) sweeps �50 ms, (2) FM sweeps �50 ms connecting harmonically
related frequencies, (3) instantaneous jumps between harmonically re-
lated frequencies, and (4) instantaneous jumps between non-
harmonically related frequencies. An FM sweep was defined as a
continuous frequency modulated energy band in the spectrogram, the
duration of which was measured from the time signal (Elemans et al.,
2008c). We took extra care to omit recordings that contained multiple
animals by listening and comparing multiple motifs. The identified syl-
lables that contained FM sweeps �50 ms connecting harmonically re-
lated frequencies or instantaneous jumps between harmonically related
frequencies were subjected to further analysis.

To get a first indication whether the segment contained a real subhar-
monic transition, we calculated a CR plot of the entire segment. From
such plots, it is easy to identify the location and the period of a potential
periodic orbit, which here would be a periodic oscillation in the recorded
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Figure 1. Zebra finch song contains many features that superficially resemble subharmonic transitions. A, Spectral derivative
plot and oscillogram of typical zebra finch song demonstrating candidate period doublings at asterisk. These candidates tested
negative with topological tools (for the tools, see Fig. 2). The song also contains several fast frequency sweeps of 60 – 80 ms
duration. B, C, Spectrogram (B) and CR plot (C) of song syllable with an apparent period halving at asterisk. Arrowheads show
frequencies that disappear suggesting a period halving candidate. It is evident in the CR plot that, although the period on the left
(bounded by red lines) changes to around half its value, the upper line is clearly not continuous. Alternative explanations could be
the two independently acting sources, or a nonlinear phenomenon more complex than a period doubling. For the construction of
the CR plot, �� 0.0005, which is 4.3% of the root mean square value. D, E, Spectrogram (D) and CR plot (E) of a very fast frequency
modulation in �10 ms. Although the frequency ratio before and after (dashed vertical lines) the modulation is �2, the CR plot
shows a smooth change in periodicity (red lines). For the construction of the CR plot, � � 0.0005, which is 8.8% of the root mean
square value.
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time series, related to a voiced sound. For a
time series x(t), the CR plot is based on the
observation that the difference �x(t) � x(t�T )�
remains smaller than a given threshold � when
x(t) is near a periodic orbit of period T
(Gilmore, 1998). The CR plot contains a mesh
plot as a function of time t and period T (Fig.
1c), where the pixel (t,T ) is plotted black when
�x(t) � x(t�T )� � � (for an example, see Fig.
1C,E). Close-return segments appear as hori-
zontal line segments in this plot and represent
segments in the time series with a definite pe-
riod. If the CR plot shows an abrupt start or end
of a line segment as a harmonically related seg-
ment continues, then we have a potential subhar-
monic transition. If the lines in the CR plot are
modulated, we do not have a potential subhar-
monic transition. The cutoff value � was deter-
mined by eye and individually for each plot. The
chosen value was the result of a trade-off between
increasing visibility of fainter strokes (higher cut-
off) and avoiding noise (lower cutoff).

The doubling of the period in a nonlinear
system yields waveforms before and after the
bifurcation that are topologically related to
each other (Gilmore, 1998). Therefore, we ex-
tracted segments of the time series before and
after the presumed bifurcation and checked
whether the topological organization of the
corresponding orbits was compatible with a
period doubling bifurcation (see supplemental
material, available at www.jneurosci.org as sup-
plemental material). Only the candidates that
passed the CR plot criteria were subjected to
this analysis. The orbits were reconstructed
from the time series x(t) by time-delayed em-
bedding in a three-dimensional phase-space, as
follows: [x(t), x(t � �), x(t � 2�)], with � typi-
cally in the order of one-tenth of the period T.

In three dimensions, the topological organi-
zation is represented by a set of integers and
rational fractions, which provide information
about the topological organization of periodic
orbits. These indices are independent of coor-
dinate system changes and also remain invariant
under control parameter variation (Gilmore,
1998). The orbits in a specific bifurcation are
constrained to have a specific set of topological
indices. Any departure from these values
should cast serious doubt on the identity of the
bifurcation. The topological organization of
the orbits in the specific bifurcation we study in this work (period dou-
bling between period 1 and period 2) is completely described by the
linking number (LN). The LN is half the sum of the signed crossings
between the two orbits. The period-1 and period-2 orbits in a period
doubling bifurcation should rotate the same odd number of half turns
around each other, which result in an odd LN between the orbits. For
a more detailed explanation, see the supplemental material (available
at www.jneurosci.org as supplemental material).

Induced vocalizations
Subjects. For induced vocalization experiments, six male zebra finches
were used. All zebra finches were housed in 45 � 45 � 52 cm group cages on
a 12 h light/dark cycle and provided with food and water ad libitum. Exper-
iments were performed at the University of Utah (Salt Lake City, UT). All
experiments were conducted in accordance with the Institutional Animal
Care and Use Committee of the University of Utah.

Surgical procedures. We quantified nonlinear phenomena and oscilla-
tion onset conditions during gas-induced vocalizations in four prepara-

tions: syrinx in situ (P1), syrinx in situ immediately after syringeal
denervation (P2), 1–2 d after denervation (P3), and on an in vitro prep-
aration of the excised syrinx (P4). Six male zebra finches were anesthe-
tized with an intramuscular injection of chloropent (3.4 �l/g). Two
cannulae (silastic tube; total length, 10 cm; outer diameter, 2.16 mm;
inner diameter, 1.02 mm) (Dow-Corning) were inserted bilaterally in the
anterior thoracic air sac to control flow through the syrinx. Phonation
was induced by forcing moisturized air through these air sac cannulae
with a mass-flow/pressure controller (type MC, Alicat Scientific). Pressure
was slowly ramped up from 0–2 kPa (relative to atmospheric pressure) and
back down again over a period of 20 s (preparation P1). To avoid neuromus-
cular control of the vocal organ, we denervated the syringeal muscles by
cutting the tracheosyringeal nerves bilaterally. Phonation was again induced
in our experimental setup (preparation P2). The cannulae were then plugged
and connected on the back so that the bird could recover from anesthesia
and to allow it to move about unhindered in its cage.

After 24 – 48 h, the birds were anesthetized again with an intramuscu-
lar injection of chloropent (3.4 �l/g) and phonation was induced in our
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Figure 2. False candidate for period doubling in zebra finch song. A, Sound spectrogram of song syllable (detail from Fig. 1 A,
first asterisk) shows new spectral components (arrowheads) starting at �130 ms (dashed vertical line) at half the frequency
spacing. B, The CR plot shows that the signal periodicity suddenly jumps from �0.4 to 0.8 ms, which is a strong indication for a
period doubling. Upward arrows indicate the location of the extracted segments seg1 and seg2 for the topological analysis. � �
0.007, which is 8.3% of the RMS value. C, E, Time series of the extracted segments: period-1 segment (seg1) (C) and period-2
segment (seg2) (E). The change in face color of the markers from white to black indicates time progression. D, F, The corresponding
embedded orbits with time-delay �� 0.07 ms. The calculated topological index needs to be an odd integer to support true period
doubling. The linking number between the two orbits is an even integer (LN � �2). Therefore, the topological index does not
support a real period doubling.
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experimental setup (preparation P3). Then birds were killed by an over-
dose of Isoflurane (Abbott), and the syrinx was removed. The syrinx was
placed in a Sylgard covered Petri dish. Silastic tubing was prepositioned
with insect pins to ensure a natural position for the syrinx. The bronchi
and trachea were connected to silastic tubing with the smallest amount of
fast-curing dental impression medium possible. The trachea and non-
vibrating parts of the bronchi with attached cannulae were embedded
in 3% agarose in avian saline buffer. Extra care was taken to prevent any
fluid from loading the vibrating structures. The relative humidity or air
was increased locally by placing moist Kim-wipes close to the syrinx
preparation. A mass-flow/pressure controller was connected to the bron-
chial cannulae (type MC, Alicat Scientific) and tracheal cannula (type
MC altered for vacuum, Alicat Scientific). Bronchial pressure was set to
�0.5 kPa and tracheal pressure slowly ramped from 0 to �2 kPa (re
atmospheric pressure) and then back down over a 20 s period (prepara-
tion P4), following the protocol of Fee et al. (1998).

Experimental setup and data analysis. Sound was recorded in the near-
field, 2– 4 cm from the beak opening with a microphone (type 40AG,
preamplifier type 26AK, power module 12AD, G.R.A.S., Denmark). The

mass-flow/pressure controllers measured
pressure and flow. In addition, supplied air
pressure was measured before the cannula
connection, 10 cm from the air sac, with a
3.5F Mikro-Tip catheter pressure transducer
(SPR524, Millar Instruments) connected to a
preamplifier and pressure control unit (PCU-
2000, Millar Instruments). Sound pressure,
pressure, and flow signals were low-pass fil-
tered at 10 kHz (Instrumentation Amplifier
410, Brownlee Precision) and digitized at 30
kHz with an A/D board (PCI-6251, National
Instruments). The set-up was controlled with
custom written software in Labview (National
Instruments).

To extract the phonation onset parameters,
sound was high-pass filtered at 300 Hz and the
onset threshold level of sound amplitude was
set at the mean plus 4 – 6 times the SD of a 1 s
silent segment before the pressure ramp. Pres-
sure and flow signals were divided into 100 ms
bins with 20 ms shifts. Bronchial pressure ( pB),
tracheal pressure ( pT), bronchial flow (UB)
and tracheal flow (UT) were evaluated at the
time of phonation onset and presented as
gauge pressures, i.e., relative to atmospheric
pressure. The onset pressures presented in Fig-
ure 5 are defined as the bronchial-tracheal
pressure gradient ( pB–pT), where pT is as-
sumed to be zero (atmospheric pressure) for
P1, P2, and P3. To determine flow, we used the
bronchial flow measurement for P1, P2, and
P3, and the tracheal flow measurement for P4.

Calculation of spectral complexity. We chose the
harmonic-to-noise ratio (HNR) as a proxy for
spectrum complexity (Tokuda et al., 2002). The
HNR is a measure of the relative amplitude of
peaks in the spectrum (usually due to harmonic
components) relative to the background noise
level, where the background noise level is ob-
tained by smoothing the spectrum. The HNR is
then the largest difference between the original
spectrum and the background noise spectrum, in
decibels. A spectrum with high peaks against a
low-level background noise (for instance a very
clear harmonic spectrum) has a very high HNR,
while a signal with a very dense spectrum (either
with very close peaks, very low peaks, or noisy)
has a very low HNR.

We calculated a windowed version of the
HNR, since the peak-broadening in the spec-

trum due to the quite common frequency modulations in our signals
could bias the regular HNR calculation toward spuriously low values.
Sound signals were bandpass filtered (100 � 9000 Hz) and then win-
dowed into 350 ms non-overlapping segments. The HNR was calculated
for every segment in a signal and then averaged across segments. The
background noise level was estimated by a 100-point-moving average
from the original spectrum of the segment. All calculations were per-
formed with custom written software in C.

Statistics. Data means were compared using two-tailed paired t tests in
JMP software (SAS).

Results
Adult song
We studied the crystallized song motifs of 130 adult male zebra
finches from different laboratories and searched for subharmonic
transitions, such as period doubling (Fig. 1A) and halving. Visual
screening of spectrograms revealed other acoustic features that
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Figure 3. The only real period doubling found in the contact call of an adult male zebra finch. A, Spectrogram of sound signal.
Visual inspection shows new spectral components (arrowheads) starting at �12 ms (dashed vertical line) at half the frequency
spacing. B, The CR plot shows that the periodicity of the signal suddenly jumps from �1 to �2 ms, which is a strong indication for
a period doubling. Upward arrows indicate the location of the extracted segments seg1 and seg2 for the topological analysis. � �
0.001, which is 7.8% of the RMS value. C, E, Time series of the extracted segments: period-1 segment (seg1) (C) and period-2
segment (seg2) (E). The change in face color of the markers from white to black indicates time progression. D, F The corresponding
orbits with time-delay � � 0.09 ms. The linking number between period-1 and period-2 orbits is an odd integer LN � �7. This
value is indicative of a real period doubling.
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superficially resemble subharmonic tran-
sitions, such as two-voice phenomena
(Fig. 1B,C) or fast frequency modulations
(Fig. 1D,E). The motifs of the 130 animals
contained 5.3 � 1.6 syllables per motif
and a total of 693 syllables. Of all syllables,
154 (22.2% of total) contained a fast fre-
quency sweep (�50 ms), an average of
1.2 � 1.3 per motif. Of the syllables con-
taining a fast frequency sweep (�50 ms),
only 17 (2.5% of total) contained a fast
frequency sweep connecting two har-
monically related frequencies. These
latter frequency modulations could re-
semble period doublings when the fre-
quency ratio before and after the
modulation is around two (Fig. 1D). In-
stantaneous jumps between nonharmoni-
cally related frequencies were found in 52
syllables (7.5% of total). Instantaneous
jumps between harmonically related fre-
quencies were found in only 14 syllables
(2.0% of total) in 11 birds. These latter
syllables and the syllables with a fast fre-
quency sweep connecting two harmoni-
cally related frequencies contained our
prime candidates for subharmonic transi-
tions and these 31 syllables (4.5% of total)
were subjected to further investigation.

For the 31 syllables containing a candi-
date, we calculated a CR plot to identify
the location and the period of the poten-
tial periodic orbit (Gilmore, 1998). Close-
return segments appeared as horizontal
line segments and represent segments in
the time series with definite period. A po-
tential subharmonic could be recognized
by the abrupt start or end of a line seg-
ment, while a harmonically related seg-
ment continued. Figure 1B shows a
period halving candidate, where it is evi-
dent from the CR plot (Fig. 1C) that, although the period on
the left changes to around half its value, the upper line is not
continuous. Alternatively, this sound feature could arise from
contributions of the two bilateral sound sources. For all 17
syllables that contained a fast frequency sweep (�50 ms) con-
necting two harmonically related frequencies, the correspond-
ing CR plot (Fig. 1 E) showed smooth changes in periodicity,
which clearly indicates that the modulation does not arise
from a period doubling.

For the remaining 14 syllables, where the CR plot supported a
subharmonic transition, we extracted the time series that con-
tained the candidate and quantified support for a transition by
determining topological parameters of the embedded signals
(Fig. 2). We calculated a topological index, the LN, which pro-
vides information about the topological organization of peri-
odic orbits that is independent of coordinate system changes
and, importantly, remains invariant under control parameter
variation (Gilmore, 1998). Orbits in a specific bifurcation are
constrained to have a specific set of topological indices. For a real
period doubling bifurcation, the period-1 and period-2 orbits
should rotate an odd number of half turns around each other,
resulting in an odd LN between the orbits (either positive or

negative). Any departure from these values should cast serious
doubt on the identity of the bifurcation. For a period doubling
bifurcation between period 1 and period 2, the topological orga-
nization is completely described by the LN. Therefore, the bifur-
cation is strongly supported by an odd LN and can be
discarded by an even LN. See Material and Methods and sup-
plemental material (available at www.jneurosci.org as supple-
mental material) for a more detailed description of the
topological program.

The 14 candidates that were supported by the CR plot failed to
conform with the topological requirements. Figure 2 shows the
analysis of an example candidate where both the spectrogram
(Fig. 2A) and CR plot (Fig. 2B) support a period doubling. First,
the waveforms are isolated (Fig. 2C) and embedded (Fig. 2D).
From the embedded time series of the period-1 and period-2
orbits, we calculated the topological index LN. The linking num-
ber for these orbits was LN � �2, which is not an odd integer.
The waveforms of this identified transition did, therefore, not
relate to each other in the correct manner and the identified
transition was not an actual period doubling. None of the 14
candidates found in adult male song of 11 birds tested positive as
an actual period doubling or halving bifurcation. Therefore our
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Figure 4. The spectrum complexity increases from in situ to an excised preparation. Typical run of each preparation, with sound
spectrogram, sound amplitude, pressure and flow traces. A–D, Preparation P1, in situ phonation (A); preparation P2, in situ
phonation after lesion of the bilateral tracheosyringeal branches of the hypoglossal nerve (B); preparation P3, in situ phonation
24 – 48 h after lesion (C); and preparation P4, excised in vitro preparation (D). A pressure ramp of 2 kPa gauge pressure was
imposed in each case except for P4 where suction was applied on the trachea (compare with Fee et al., 1998). The dashed vertical
line indicates the phonation onset for P1 with corresponding onset pressure and onset flow (arrows).
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data show that subharmonic bifurcations are absent or very rare
in zebra finch song.

We could only confirm one identified candidate for a subhar-
monic transition, though not in song but in the contact call of one
male. This single instance was the only call observed in screened
files that contained a potential subharmonic bifurcation and pre-
sented a strong case for an actual period doubling (Fig. 3). From
the embedded time series (Fig. 3D) of the period-1 and period-2
orbits, we calculated the linking number: LN � �7, which is consis-
tent with the hypothesis that the identified transition is an actual
period doubling.

Induced sound production
Gas-induced sound production in an in vitro preparation has con-
firmed many phenomena associated with low-dimensional chaos
previously observed in zebra finch song (Fee et al., 1998). However,
we did not find positive cases of period doubling in zebra finch song,
which raises the possibility that the nonlinear phenomena caused by
nonlinear intrinsic properties of the syrinx may be restrained by
either neural or mechanical constraints. Also, the oscillatory
behavior of in vitro preparations may deviate from the in vivo
situation, and therefore, it is necessary to know whether sound
production in the isolated syrinx has a larger tendency to dem-
onstrate complex phenomena.

We performed a series of experiments where we recorded in-
duced sound production by the syrinx. To separate the contribu-
tions of neuromuscular control, the suspension of the syrinx in
vivo and the intrinsic properties of the syrinx, we quantified com-
plex phenomena and oscillation onset conditions during gas-
induced vocalizations by controlling airflow and pressure in the
syrinx in the following four preparations: in situ (Fig. 4A, prepa-
ration P1); in situ immediately after syringeal denervation
(Fig. 4 B, preparation P2); 24 – 48 h after denervation (Fig. 4C,

preparation P3); and on an in vitro
preparation of the excised syrinx (Fig.
4 D, preparation P4).

Sound could be induced readily in
each preparation (Fig. 4). The measured
oscillation onset conditions for sound
production by the labia, such as phona-
tion onset values for bronchial pressure
(Fig. 5A) and flow (Fig. 5B), did not
change significantly within the four prep-
arations P1 to P4. This suggests that the in
vitro preparation is representative for the
in situ situation in respect to these dynam-
ical conditions. Any apparent change in
muscle tension caused by denervation
does not alter onset pressure and flow ap-
preciably, even after 24 – 48 h (Figs. 4B,C,
5A,B).

Visual inspection of the spectrograms
showed an apparent increase in signal
complexity with reduced neuromuscular
control (Fig. 4B,C) and in the excised
preparation (Fig. 4D), as exemplified by
the sudden appearance and/or disappear-
ance of new spectral components, more
dense regions, periodic windows within
noisy regions, peak broadening and fre-
quency jumps. In the spectrogram of in-
duced sound production in the in vitro
preparation (Fig. 4D), we see many bifur-

cation candidates and as such confirm the data by Fee et al. (1998)
that the excised syrinx exhibits rich nonlinear behavior. Initial
analyses of subharmonic phenomena in the sound signals using
low-dimensional topological tools (Linking Number) showed
that some apparent period doublings tested negative. This could
be either due to the occurrence for instance of more complex
phenomena, two-source interaction, or the vocal tract filtering
effects obscuring the topological fingerprint. Thus, to quantify
complexity in the spectrum we abandoned the low-dimensional
topological tools and changed to a more generic measure, the
HNR (Tokuda et al., 2002). The HNR values were significantly
lower in the in vitro preparation (P4) compared with both in situ
situations, before (P1) and after the nerve cut (P2) (Fig. 5C). This
means that the amount of complex acoustic phenomena is signif-
icantly higher in the in vitro preparation.

Discussion
We show that true subharmonic transitions are either absent or
very rare in adult zebra finch song. This result, based on songs
from 130 individual birds and through the use of topological
tools, contradicts previous suggestions based on spectrographic
evidence in 12 individuals (Fee et al., 1998). Although subhar-
monic transitions do not occur during spontaneous song, com-
plex acoustic phenomena are clearly present in the excised syrinx
(supporting data in Fee et al., 1998) and significantly more fre-
quent than in the in vivo situation. These findings indicate that
although phenomena of LDC can arise from the intrinsically
nonlinear dynamics of isolated sound producing structures, LDC
is not used to enhance vocal complexity in zebra finch song.

Neuronal control does not prevent nonlinear phenomena, but
apparently the in situ conditions counteract their presence. We
propose two mechanisms that may explain why nonlinear acous-
tic phenomena do occur in vitro, but do not in situ. First, the

A B C

Figure 5. Spectrum complexity and sound onset parameters of induced sound production in four experimental preparations. A,
B, Both pressure (A) and flow (B) at the onset of sound production do not differ significantly across experimental preparations. C,
Two-tailed paired t tests show that the HNR is significantly decreased in the excised preparation (P4) compared with in situ (P1,
*p � 0.05) and to the 24 – 48 h denervated syrinx (P3, **p � 0.01), which means that the amount of spectrum complexity
increases significantly in the excised syrinx. N � 6, except for P4, where N � 4. Preparation P1, in situ phonation; preparation P2,
in situ phonation after lesion of the bilateral tracheosyringeal branches of the hypoglossal nerve; preparation P3, in situ phonation
24 – 48 h after lesion; and preparation P4, excised in vitro preparation.
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syrinx is held in place by the bronchi and trachea as well as
through connective tissue attachments to the interclavicular air
sac and esophagus, which add structural stability (King, 1989).
These stabilizing attachments are no longer present in the excised
syrinx. When mounting the syrinx, its in situ length along the
bronchiotracheal axis cannot be recreated precisely, but this
length must influence tension in the syrinx. A departure from the
in situ tension might increase the occurrence of LDC, but would
also likely alter onset air pressure and airflow of phonation, which
we did not observe (Fig. 5), suggesting an alternative explanation
is required. Second, in contrast with excised larynx preparations
in humans (Svec et al., 1999, Tokuda et al., 2008), and dogs (Jiang
et al., 2003), where subglottal and supraglottal pressures are com-
parable to the in vivo situation, in excised syrinx experiments the
suprasyringeal pressure conditions are changed. Labial oscilla-
tions are induced by a bronchiotracheal pressure gradient, which
during normal phonation is defined by elevated pressure in the
bronchi and air sacs relative to that in the trachea. A similar
gradient is presented by suction at the tracheal end to induce
phonation in the excised syrinx preparation (this study and Fee et
al., 1998). Applying only positive pressure on the bronchial side
does not induce labial oscillations in vitro, probably because the
surrounding air sac is not present. However application of suc-
tion changes the suprasyringeal forces acting on the labia (Lous et
al., 1998; Elemans et al., 2008b) and may alter the flow separation
point on the labia (Pelorson et al., 1994; Lous et al., 1998) and
suprasyringeal acoustic feedback (Laje et al., 2001; Laje and
Mindlin, 2005; Hatzikirou et al., 2006). Therefore, this difference
possibly contributes to the more frequent occurrence of complex
acoustic phenomena in the artificially induced sounds of the ex-
cised syrinx.

In songbirds, rapid acoustic transitions or spectral signatures
that resemble subharmonics can result from switching between
one and two-voiced sounds (Suthers, 1990; Goller and Cooper,
2004), or from a 180° out-of-phase to a synchronous oscillation
regimen of the two sound sources, or from interaction between
the left and right sides (Nowicki and Capranica, 1986; Laje and
Mindlin, 2005) in the bipartite songbird syrinx. However, cou-
pling between the left and right sound generators in the zebra
finch syrinx is an unlikely source of LDC because LDC is present
when phonation is induced in vitro on one side (Fee et al., 1998)
and both sides (this study). Although suggested that period dou-
blings are a component of song learning (Tchernichovski et al.,
2001), our data indicate that such bifurcations are rare in zebra
finch song. The provided example for a period doubling in this
earlier study (zebra finch B6, training day 14 in Tchernichovski et
al., 2001) shows a spectrum with well defined peaks that are in
fact not harmonically related (peaks at 646, 1421, 2067, 2864,
3488, 4306, 4952, 5727, 6373, and 7019 Hz). This vocalization can
therefore not be a subharmonic transition of the previously ut-
tered sound and may result from switching from one to two voice-
sound production (Suthers, 1990; Goller and Cooper, 2004). From
this we conclude that the role, if any, of subharmonic transitions in
vocal learning trajectories needs to be reconsidered.

Zebra finch song is characterized by a high degree of acoustic
and temporal stereotypy (Chi and Margoliash, 2001; Tchernicho-
vski et al., 2001; Hahnloser et al., 2002; Glaze and Troyer, 2007).
Such stereotypy requires accurate and precise control, which we
expect is an important indicator of adult male fitness. Because
simply crossing a period doubling bifurcation does not require
accurate control, it is more difficult to infer demanding control
from this kind of acoustic phenomena. To our knowledge, it is
also unknown whether LDC is a salient acoustic feature of song.

We, therefore, do not know whether these acoustic features are
selected against or favored by female choice, which could be
tested by exploring responses to manipulated songs in females.

We suggest that rapid acoustic transitions in zebra finch song,
such as the unverified candidates for subharmonic transitions,
are produced by direct muscular control. Recent evidence on the
very rapid contraction kinetics (twitch halftimes of 3.7 ms) of
syringeal muscles in zebra finches provides strong support that
acoustic transitions in the order of milliseconds can be effected
via direct central motor control of the vocal organ (Elemans et al.,
2008a). Many of the subharmonic candidates or rapid transitions
we observed in song were very fast, but smooth modulations (Fig.
1D), which is consistent with expected movements effected by
superfast muscle contractions. Neuromuscular control does not
seem to play a major role in avoiding unwanted bifurcations
during song, because the HNR did not decrease significantly after
neuromuscular control was eliminated (Fig. 5C).

Throughout life, adult songbirds are thought to be capable of
small pitch-shifts for specific syllables reducing error during song
(Tumer and Brainard, 2007; Sober and Brainard, 2009), using the
anterior forebrain pathway (Andalman and Fee, 2009). These
frequency shifts are small [a maximum of �3% for Bengalese
finch in Sober and Brainard (2009) and 15% for zebra finch in
Andalman and Fee (2009)] and, most importantly, continuous
(Tumer and Brainard, 2007; Andalman and Fee, 2009; Sober and
Brainard, 2009). Were period doublings to occur, the possibility
for small continuous changes in pitch would require an alterna-
tive mechanism of syringeal control. Furthermore, error signals
are only useful to the extent that they can be converted to an
appropriate motor action (articulatory gesture) that addresses
the error (Derégnaucourt et al., 2004). Therefore to provide a
useful error signal, the translation of motor output to produced
sound (motor pathway) must be reflected in the translation of
auditory feedback to error with the sensory target (auditory path-
way). This implies that when the syrinx is operated in a regimen
where period doublings occur, a useful error signal must mirror
their presence.

Understanding the neural basis of song requires a more de-
tailed knowledge of how neural patterns of firing are decoded
into sound in the peripheral sound producing system (Suthers
and Margoliash, 2002; Suthers and Zollinger, 2004). On the basis
of the results of this study, we conclude that the song motor
system in zebra finches does not have to account for nonlineari-
ties found in the excised syrinx and can operate the syrinx in a
regimen where abrupt changes in fundamental frequency and
dense spectra are avoided. This implies that the brain controls
song in a smooth regimen, which further implies that it is justified
to link neural patterns to song characteristics using linear corre-
lation methods. In the case of the zebra finch, motor proficiency
to avoid and thus identify instances of nonlinearities does not
appear to be required because nonlinearities do not occur in the
physiological parameter space in vivo. We suggest that most rapid
acoustic transitions in zebra finch song are effected by direct
superfast muscular control. Consistent with this view is the pres-
ence of high temporal precision at every level of motor control,
from telencephalic premotor areas (Chi and Margoliash, 2001;
Hahnloser et al., 2002; Glaze and Troyer, 2007) to extremely fast
syringeal muscles (Elemans et al., 2008a).
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