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ABSTRACT

An important step in ‘metagenomics’ analysis is the
assembly of multiple genomes from mixed
sequence reads of multiple species in a microbial
community. Most conventional pipelines use a
single-genome assembler with carefully optimized
parameters. A limitation of a single-genome assem-
bler for de novo metagenome assembly is that se-
quences of highly abundant species are likely
misidentified as repeats in a single genome, result-
ing in a number of small fragmented scaffolds. We
extended a single-genome assembler for short
reads, known as ‘Velvet’, to metagenome
assembly, which we called ‘MetaVelvet’, for mixed
short reads of multiple species. Our fundamental
concept was to first decompose a de Bruijn graph
constructed from mixed short reads into individual
sub-graphs, and second, to build scaffolds based
on each decomposed de Bruijn sub-graph as an
isolate species genome. We made use of two
features, the coverage (abundance) difference
and graph connectivity, for the decomposition of
the de Bruijn graph. For simulated datasets,
MetaVelvet succeeded in generating significantly
higher N50 scores than any single-genome assem-
blers. MetaVelvet also reconstructed relatively low-
coverage genome sequences as scaffolds. On real
datasets of human gut microbial read data,
MetaVelvet produced longer scaffolds and
increased the number of predicted genes.

INTRODUCTION

The pioneering work in metagenomics analysis was done
by Venter et al. (1) for the Sargasso Sea environmental

genome analysis. The bulk extraction of diverse microbial
genomes from the environment without prior laboratory
cultivation is one of the most fascinating features of
metagenomics. There have been several analyses of
various kinds of environmental genomes, such as (2).
Recent progress in next-generation sequencing technology
offers more opportunities for metagenome analyses and
permits deep sequencing (especially the Illumina
Genome Analyzer) for highly diverse microbial popula-
tions. However, while a number of metagenomes have
been sequenced using next-generation sequencers and de-
posited into public genome databases, only a few studies
have reported their assembly results (3,4). This is mainly
because of the short length of sequence reads from
next-generation sequencers. Furthermore, there is also a
fundamental difficulty of metagenomics analysis
compared with isolated genome analysis. In a microbial
community, the number of strains is initially unknown,
and their relative abundance is also unknown and poten-
tially skewed (5).
There are currently a few ‘de novo’ assemblers specific-

ally devoted to metagenome assembly from mixed
sequence reads of multiple species (6,7). In contrast,
there are two alternative approaches to ‘de novo’
analysis for mixtures of sequence reads from environmen-
tal genomes: (i) applying a single-genome assembler to
metagenome sequence reads (3,4,8,9) and (ii) binning
(clustering) a set of sequence reads into different clusters
(10,11,12). However, single-genome assemblers were not
designed to assemble multiple genomes from a mixture of
sequence reads with nonuniform sequence coverages. On
the other hand, the unsupervised binning of sequence
reads also has the limitation of clustering the input reads
based only on k-mer frequencies in the ‘short’ reads
without assembly. A third approach (not de novo) is com-
parative genome analysis mapping reads or aligning
contigs to reference genomes (5,13,14). Unfortunately,
the comparative approach cannot cover any microbial
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species whose reference genomes or closely related
genomes have not been assembled.
In spite of such difficulties, our primary goal was ‘to

reconstruct the whole genomes of multiple species in a
microbial community, particularly from very short
sequence reads generated by a next-generation sequencer’.
To accomplish such de novo metagenome assembly, we
extended a single-genome assembly program (assembler),
named ‘Velvet’, using a de Bruijn graph (15,16), to a
metagenome assembly program for mixed short reads of
multiple species. A de Bruijn graph is a data structure for
genome assembly programs that compactly represents an
overlap between short reads. The de Bruijn graph-based
assembly program identifies the overlaps between reads
using a de Bruijn graph and merges the reads to recon-
struct longer sequences. Note that the de Bruijn graph
representation was first used for sequencing by hybridiza-
tion by (17).
Our fundamental strategy for metagenome assembly

was to consider that a de Bruijn graph constructed from
mixed sequence reads of multiple species is equivalent to
the mixture of multiple de Bruijn subgraphs, each of which
is constructed from sequence reads of individual species
and to decompose the mixed de Bruijn graph into individ-
ual subgraphs and build scaffolds based on each
decomposed subgraph (Figure 1).
From the ‘monotonic increasing’ property of de Bruijn

graph construction, it is obvious that the de Bruijn graph,
denoted dBg(X1+X2+���Xm), constructed from the
mixture, denoted X1+X2+���Xm, of sequence reads of
multiple species contains each de Bruijn graph dBg(Xi)
constructed from sequence reads Xi of individual species
(1� i�m) as subgraphs. Therefore, it clearly holds that

dBgðX1 þ X2 þ � � �XmÞ � dBgðX1Þ þ � � � þ dBgðXmÞ;

and the strategy of decomposing the de Bruijn graph is
proven to be reasonable.

In the decomposition step of the de Bruijn graph of
multiple species, the coverage (abundance) difference
and graph connectivity are used to distinguish a
subgraph composed of a single species from the other
subgraphs, where the ‘coverage’ is defined to be k-mer
frequency in the input sequence reads. When two
subgraphs, say dBg(X1) and dBg(X2), contained in the
main de Bruijn graph have distinguishable read coverages,
we disconnect the two subgraphs based on the coverage
difference, such that metagenome assembly problem
would be reduced to a set of easier problems of single-
genome assemblies based on the decomposed subgraphs
dBg(X1) and dBg(X2). For the graph disconnection task,
an algorithm to identify shared nodes was developed,
called the ‘chimeric node’, between two subgraphs
dBg(X1) and dBg(X2). On the other hand, when two
species are sufficiently evolutionarily distant, two
genomes cannot share any k-mers, and therefore the
main de Bruijn graph constructed from mixed reads of
two species must be already separated and consist of
two separated subgraphs.

For simulated datasets, the MetaVelvet metagenome
assembler succeeded in generating higher N50 scores
than any comparable assemblers and produced high-
quality scaffolds, as well as separate genome assemblies
from isolated species sequence reads, where the N50
score is a standard statistical measure that evaluates the
assembly quality and indicates the scaffold length such
that 50% of the assembled sequences lie in scaffolds of
this size or larger. The scaffolds with longer N50 scores
especially benefit the identification of protein-coding
genes. In fact, the number of predicted complete protein-
coding genes from MetaVelvet scaffolds is significantly
larger than that produced by any of the other assemblers.
Furthermore, MetaVelvet could reconstruct relatively
low-coverage genome sequences as scaffolds. On real
datasets of human gut microbial short read data
sequenced as part of the MetaHIT project (3), our
MetaVelvet produced longer scaffolds, and significantly
increased the number of predicted genes. The source
code of MetaVelvet is freely available at http://
metavelvet.dna.bio.keio.ac.jp under the GNU General
Public License and is distributed as a bundle with ‘Velvet’.

MATERIALS AND METHODS

Information obtained from the DNA sequencer is a set of
sequence fragments, called reads, rather than the entire
genomic DNA sequence. Therefore, genome assembly is
required to reconstruct the original genome sequence from
sequence reads. Although each read is short, it is possible
to reconstruct longer sequences, called contigs, by identify-
ing an overlap between reads and merging the reads.
Genome assembly is generally performed in the following
steps:

(1) The input is a set of the nucleotide sequences of
DNA fragments.

Figure 1. The MetaVelvet strategy to decompose a mixed de Bruijn
graph.
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(2) The overlap between every pair of sequences is
calculated by pairwise alignment.

(3) A pair of sequences with significant overlap is
merged to obtain a longer sequence.

(4) The above Steps 2 and 3 are repeated.

If a large amount of reads sufficient to ‘cover’ the genome
are given to the assembly program, overlaps exist between
the reads and the contigs are obtained by merging the
reads. The term ‘coverage’ for a position in a contig is
defined as the number of reads that overlap at that
position. The ‘coverage’ of a ‘contig’ is defined to be the
average of coverages for all positions in the contig.

First, we briefly review the de Bruijn graph-based
assembly method for single genomes and the Velvet
assembler upon which our method is based. Second,
we describe our extension of Velvet to metagenome
assembly.

De Bruijn graph-based assembly

The previous conventional assembly method is based
on the so-called ‘overlap graph’, where each read is
assigned to a node and an edge connects two nodes if
the corresponding reads overlap. The assembly prob-
lem is reduced to finding a path visiting every
node exactly once in the overlap graph, that is, a
Hamiltonian path problem. However, the Hamiltonian
path problem is nondeterministic polynomial time-
complete (NP-complete). Furthermore, the overlap-
graph-based assembly method cannot work effectively
when applied to very short reads generated from a
next-generation sequencer, because there are so many
short overlaps between short reads and most of these
overlaps are false. Therefore, several de novo assembly
methods based on de Bruijn graphs have been proposed
for short reads generated from next-generation sequencers
(15,18,19,20). A de Bruijn graph is a data structure that
compactly represents an overlap between short reads. A
notable difference between a de Bruijn graph and an
overlap graph is that each k-mer (word of length k)
instead of a read is assigned to a node, and thus, the
size of a de Bruijn graph becomes independent of the
size of the input of reads. The detailed definition of de
Bruijn graph is shown below.

Given a set of sequence reads, the de Bruijn graph-
based assemblers first break each read according to a pre-
defined k-mer length. It is clear that two adjacent k-mers
in the read overlap at k� 1 nucleotides. Second, a directed
graph (de Bruijn graph) is constructed from the given
sequence reads as follows: each overlapping (k� 1)-mer
is encoded into a node in the directed graph so that each
k-mer is represented by a directed edge in the graph. Each
k-mer is encoded into a directed edge that connects a node
labeled the first (k� 1)-mer of the k-mer and a node
labeled the second (k� 1)-mer. On the constructed de
Bruijn graph, each read is mapped to a path traversing
the graph. Therefore, the assembly (reconstruction) of the
target genome from the de Bruijn graph can be reduced to
finding a Eulerian path (Figure 2).

Brief outline of Velvet and its de Bruijn graph
representation

In Velvet, the de Bruijn graph is implemented slightly dif-
ferently, such that each node represents a series of
overlapping k-mers where adjacent k-mers overlap by
k� 1 nucleotides. Each node is labeled by the sequence
of the last nucleotides of the k-mers (Figure 1).
Furthermore, each node is attached to a twin node that
represents the reverse series of reverse complement k-mers
for reads from opposite strands.
For each input read, the ordered set of overlapping

k-mers is defined. Next, the ordered set is cut whenever
an overlap with another read begins or ends. For each
uninterrupted ordered subset of original k-mers, a node
is created. Two nodes can be connected by a directed edge.
If two nodes are connected, the last k-mer of an origin
node overlaps by k� 1 nucleotides with the first of its
destination node. New directed edges are created by
tracing the read through the constructed graph.
Second, Velvet executes three functions, ‘simplification’

for node merging, and ‘removing tips’ and ‘removing
bubbles’ for error removal. Simplification merges two
nodes where one node has only one outgoing edge and
the other has only one incoming edge. A ‘tip’, which is
defined as a chain of nodes disconnected on one end, is
removed. A ‘bubble’, which is defined as two redundant
paths that start and end at the same nodes and contain
similar sequences, is merged. Those tips and bubbles are
created by sequencing errors or biological variants, such
as single nuleotide polymorphisms (SNPs). Then, the
‘coverage of a node’ is defined as the coverage of the
contig assigned to the node.
Finally, two functions, ‘Pebble’ and ‘Rock Band’, are

called for constructing the scaffold and for repeat reso-
lution using paired-end information and long read infor-
mation. In these functions, Velvet distinguishes the unique
nodes from the repeat nodes based on node coverage. A
repeat node represents a sequence that occurs several
times in the genome. Simply put, a repeat node is at a
crossing point between two paths with multiple
incoming and outgoing edges. Note that in multiple
genome assembly, the nodes at a crossing point between

Figure 2. Illustration of de Bruijn graph-based assembly.
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two paths are not necessarily repeats. Such nodes are
sometimes shared between the genomes of two closely
related species and represent orthologous sequences,
conserved sequences (such as rRNA sequences) and hori-
zontal transfer sequences.

Extension to metagenome assembly

The MetaVelvet assembler consists of four major steps:
[1] Construction of a de Bruijn graph from the input
reads. [2] Detection of multiple peaks on k-mer frequency
distribution. [3] Decomposition of the constructed de
Bruijn graph into individual subgraphs. [4] Assembly of
contigs and scaffolds based on the decomposed subgraphs.
The flowchart of MetaVelvet is shown in Figure 3.
In Step [1], for a given set of mixed sequence reads

generated from multiple species, MetaVelvet constructs
the main de Bruijn graph using Velvet functions. In Step
[2], MetaVelvet calculates the histogram of k-mer
frequencies and detects multiple peaks on the histogram,
each of which would correspond to the genome of one
species in a microbial community. The expected
frequencies of k-mer occurrences were shown to follow a
Poisson distribution in a single-genome assembly (21) and
the expected k-mer frequencies in metagenome assembly
were shown to follow a mixture of Poisson distributions
(12). Hence, MetaVelvet approximates the empirical histo-
gram of k-mer frequencies by a mixture of Poisson distri-
butions and detects multiple peaks in the Poisson mixture.

Furthermore, MetaVelvet classifies every node into one
peak of the Poisson mixture. In Step [3], MetaVelvet
distinguishes a subgraph composed of nodes belonging
to a same peak from the other subgraphs in the main de
Bruijn graph. MetaVelvet identifies shared nodes
(chimeric nodes) between two subgraphs and disconnects
two subgraphs by separating the shared nodes. In step [4],
MetaVelvet builds contigs and scaffolds based on the
decomposed subgraphs using Velvet functions.

The essential part of Step [3] is to design and develop an
algorithm to identify and separate ‘chimeric nodes’ in the
main de Bruijn graph. If two species contain a common or
similar subsequence in their genomes, the main de Bruijn
graph contains a node assigned to the subsequence with
two incoming edges and two outgoing edges, one of which
comes from one species and the other comes from the
other species. On the other hand, if the genome of one
species contains a repeat subsequence (that is, a subse-
quence with multiple occurrences in the genome), the de
Bruijn graph also contains a node assigned to the repeat
subsequence with two incoming edges and two outgoing
edges. All other nodes in the main de Bruijn graph must
have only one incoming edge and one outgoing edge. To
distinguish the chimeric node from the repeat node, the
method uses coverage difference. Although the origin
nodes of two incoming edges for the repeat node have
the same k-mer frequencies, the origin nodes of two
incoming edges for the chimeric node belong to two dif-
ferent species and hence have different k-mer frequencies.
The formal definition of ‘chimeric node’ is given as a
crossing node satisfying the following three conditions:
(i) (necessary condition) the number of incoming edges
is 2 and the number of outgoing edges is 2; (ii) (sufficient
condition) the origin nodes of two incoming edges (a and
b) belong to two different peaks and the destination nodes
of outgoing edges (c and d) also belong to the same two
peaks as the origin nodes and (iii) (sufficient condition) the
chimeric node has a confluent node coverage of the two
origin nodes. More precisely, the node coverage of the
candidate chimeric node should be between (a.cov+
b.cov+c.cov+d.cov)/2� (1� y) and (a.cov+b.cov+
c.cov+d.cov)/2� (1+y), where a.cov represents the
node coverage of a node a and y is a parameter in
MetaVelvet called ‘allowable coverage difference’. An
example of the determination of a chimeric node is given
in Figure 4.

Once a candidate for chimeric node is identified, the
candidate node is checked for ‘consistency’ with paired-
end information. If a significant amount of paired-end
reads connect an origin node of an incoming edge of the
chimeric node with a destination node labeled differently
from the origin node (that is, the paired-end reads connect
an origin node labeled ON and a destination node labeled
OFF or vice versa, as shown in Figure 4), the candidate
node is discarded.

The detailed procedure of MetaVelvet is as follows:

[1] Construction of the de Bruijn graph:
1. For a given set of sequence reads generated from

mixed species, construct a de Bruijn graph by
calling Velvet first stage functions.

End

Start

Hash input reads by k-mer length

Construct de Bruijn graph using Velvet from
mixed sequence reads of multiple species

Detect the multiple peaks in the empirical
distribution of node coverages

For every unmasked subgraph,
apply “Pebble” and “RockBand” functions

Label all nodes of coverage values beloging to 
the primary expected coverage 

(highest peak) by “ON”

Label all other nodes by “OFF”

Find “chimeric node” and separate the node 
into two nodes with only one incoming edge 

and one outgoing edge 

Decompose the graph into connected subgraphs

Mask every connected subgraph consisting of 
more than x % of OFF nodes

Build scaffolds and 
remove the unmasked graphs

Step [1]
Velvet 
function

Step [2]
MetaVelvet
function

Step [3]
MetaVelvet
function

Step [4]
Velvet 
function

Figure 3. Flowchart of the main procedure of MetaVelvet.
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[2] Detection of multiple peaks on k-mer frequencies:
2. Calculate the empirical distribution of

‘length-weighted frequencies’ of node coverages,
where a node coverage is assigned to each node
by Velvet on the construction of the de Bruijn
graph (Figure 5).

3. Approximate the empirical distribution by a
mixture of Poisson distributions and detect
multiple peaks in the Poisson mixture. Then, the
highest peak of expected coverage is chosen as
the ‘primary expected coverage’, and the next
highest is chosen as the ‘secondary expected
coverage’.

4. Classify every node into one distribution of the
Poisson mixture by calculating its posterior prob-
ability for the node coverage value.

[3] Decomposition of the de Bruijn graph:
5. (Decomposition by connectivity) Decompose the

initial de Bruijn graph into connected subgraphs.
6. (Decomposition by coverage value) If the coverage

of a node belongs to the primary expected
coverage, the node is classified as a ‘primary
node’. Subsequently, the primary nodes are
labeled as ‘ON’ and the other nodes are labeled
as ‘OFF’. Then, a chimeric node is detected as

having two incoming edges whose origin nodes
are labeled ON and OFF, and two outgoing
edges whose destination nodes are labeled ON
and OFF, and having a coverage value mostly
equal (within 5% difference by default) to the
average between the sum of the coverage values
of the two origin nodes and the sum of the two
destination nodes. Second, check the consistency
of the ON and OFF labeling for the two origin
nodes and two destination nodes using paired-end
information. If the consistency is satisfied, resolve
every chimeric node by separating the node
into two nodes with only one incoming edge
and one outgoing edge, whose origin and destin-
ation nodes have the same label, as shown in
Figure 4. After separating the chimeric nodes,
further decompose the resulting graph into con-
nected subgraphs.

7. If a connected subgraph consists of more than
x% (a predefined parameter, the default is set to
100%) of nodes labeled ‘ON’, the subgraph is
unmasked. All other subgraphs are masked.

[4] Assembly of contigs and scaffolds:
8. Apply the Velvet functions to the unmasked

subgraphs to build contigs and then apply
Pebble and Rock Band functions to build
scaffolds.

9. Remove the unmasked subgraphs and recursively
apply Step 2–8 to the remaining de Bruijn graph
until no node remains.

It might be thought that in Substep 3 above, a chimeric
node could have the highest expected coverage. However,
the contigs of chimeric nodes are very short compared
with the unique nodes; therefore, the length-weighted
frequencies of coverage values for the chimeric nodes do
not form any significant peaks.

EXPERIMENTAL RESULTS

The performance of the MetaVelvet assembler was tested
on simulated datasets and on real metagenome datasets
obtained from human gut microbiome. The method was
compared with the naive use of two single-genome as-
semblers, Velvet (15) and SOAPdenovo (22), and the
recently proposed metagenome assembler Meta-IDBA
(6). Furthermore, for the simulated datasets, we
compared our results with those of a single-genome
assembly from pure sequence reads of each single-isolate
genome. We compared the following standard statistical
measures to evaluate the performance of the assemblers
for short read assembly and metagenome assembly: the
number of scaffolds, the total length of scaffolds and
N50, where N50 indicates the scaffold length such that
50% of the de novo assembled sequences lie in scaffolds
of this size or larger. The precise definition of N50 is as
follows. Let jAj denote the length of a sequence (contig,
scaffold or genome) A. Let S1, S2, . . . , Sn denote the list of
scaffolds in descending order of length as output by an
assembler. Let L denote the total length of all scaffolds,
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that is, L ¼
Pn

j¼1 jSjj. Then, N50 is defined by the follow-
ing equation:

N50 ¼ jSij such that
Xi
j¼1

jSjj �
L

2
and

Xi�1
j¼1

jSjj5
L

2
: ð1Þ

Furthermore, from the assembled scaffolds, protein-
coding genes (that is, open reading frames (ORFs)) were
predicted using the MetaGene (23) software, and the
number of predicted genes was compared.
For the simulated datasets, the following genome cover

rate was calculated per species: the ‘cover rate’ of genome
A is defined by the ratio of the sum of all scaffold lengths
that are best aligned to genome A divided by the length of
genome A. More precisely, the cover rate is defined by the
following equation:

cover rate of A ¼

P
scaffold S aligned to A

jSj

 !

jAj:

Furthermore, we counted the total length of chimeric
scaffolds. We determined whether a scaffold was
chimeric by the following procedure. First, we calculated
the best hit alignments between a scaffold and the set of
input reference genomes using BLAST. Second, if a
scaffold has more than two subsequences that are
aligned to different genomes, and those subsequences are
longer than 1% of the scaffold length, the scaffold was
determined as chimeric.

Performances on simulated datasets

We used the ‘DWGSIM package’ in the DNAA package
(available at http://sourceforge.net/projects/dnaa/) to
artificially generate metagenome sequence reads. The
read length was set at 80 bp, ‘very short’. The average
and standard deviation of insert size for paired-end
reads were set at 500 and 50 bp, respectively. Sequencing
error rate was set at 1%. For species abundance settings,
we applied the ‘log-normal distribution’, because the log-
normal distribution has been generally used to model
microbial abundance distributions (24). Thus, the
simulated metagenomic datasets were generated to yield
a k-mer coverage histogram following log-normal
distribution.
To test the performances on various taxonomic levels of

diversity, we constructed four datasets with different
taxonomic levels of diversity, that is, ‘order level’,
‘family level’, ‘genus level’, and ‘species level’. In general,
at lower taxonomic levels, the genomes of two different
species become more similar and share more k-mer
subsequences. Therefore, the separation of the input
sequence reads and the decomposition of the de Bruijn
graph become harder and the metagenome assembly
problem from mixed sequence reads of multiple species
becomes harder at lower taxonomic levels. We selected
the four datasets to range from distant taxonomic level
(that is, order level) to closer taxonomic level (species
level). For each dataset, 20 species genomes were
selected, and short read datasets were generated from

the 20 genomes. (The lists of the 20 selected genomes for
each taxonomic level are provided in Supplementary
Tables S1–S4.)

Artificially generated short reads were assembled by two
short read single-genome assemblers, Velvet (15) and
SOAPdenovo (22), and two metagenome assemblers,
Meta-IDBA (6), MetaVelvet, with default parameters
except for SOAPdenovo, which used the ‘-M 3’ option,
a parameter considered suitable for metagenomics
assembly (3). The versions of these software packages
used were Velvet 1.1.06, SOAPdenovo 1.05, Meta-IDBA
0.19 and MetaVelvet 1.3.1. Since Meta-IDBA does not
have the scaffolding function, contigs instead of scaffolds
were used to evaluate Meta-IDBA.

Order-level metagenomic dataset
Six orders from the ‘Alphaproteobacteria’ class and 14
orders from the ‘Gammaproteobacteria’ class were
selected. Short read datasets were generated from the
selected reference genomes belonging to the 20 orders,
including Escherichia coli, Vibrio cholerae and
Pseudomonas putida.

Family-level metagenomic dataset
Nine families from the Rhizobiales order, seven families
from the Alteromonadales order and four families from
the Bacillales order were selected. Short read datasets were
generated from the selected reference genomes belonging
to the 20 families including Bacillus subtilis and Listeria
monocytogenes.

Genus-level metagenomic dataset
Twenty genera from the Enterobacteriaceae family
were selected. Short read datasets were generated
from the selected reference genomes belonging the 20
genera including E. coli, Salmonella bongori and Yersinia
pestis.

Species-level metagenomic dataset
Eighteen species from the Bacillus genus and two species
from the Bacillales genus were selected. Short read
datasets were generated from the selected reference
genomes belonging to the 20 species including Bacillus
subtilis, Bacillus cereus and Bacillus anthracis.

Experimental results
Statistics of the assembly results are summarized in
Table 1. Scaffolds of lengths < 1000 bp were discarded.
The percentage of chimeric scaffold length is shown
compared with the total scaffold length. Every individual
single genome was assembled by Velvet from each single
species dataset, and those results are shown as ‘Separate
assembly’ in Table 1.

Figure 6 shows that MetaVelvet assembled the
metagenomic read data with significantly longer N50
sizes than the other assemblers, and MetaVelvet
achieved almost the same N50 sizes as the separate
assemblies at the order, family and genus levels.

Figure 7 shows that the cover rates of all assemblers
were decreased at the lower taxonomic levels. This is
because the genomes of different species became more
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Table 1. Performance comparison of assembly software packages

Metagenome dataset Separate assembly MetaGenomic assembly

Velvet MetaVelvet Velvet SOAPdenovo Meta-IDBA

Order level (total genome size = 71 929 175 bp; 93 423 332 reads)
Num. scaffolds 685 813 924 5 998 2 678
Total scaffold length 71 009 045 71 053 228 48 450 203 70 296 665 70 312 381
N50 size (bp) 288 838 268 350 142 471 43 796 55 575
Chimeric scaffold length (%) 0.00 0.00 0.46 0.00 0.00
Cover rate (%) 98.38 98.25 67.48 95.67 96.98
Number of predicted genes 66 268 66 241 43 729 60 319 62 833
Required CPU time (s) 4 994 8 685 7 076 11 564 7 375
Required memory (GB) 7.04 56.61 54.07 62.42 15.15

Family level (total genome size = 84 552 832 bp; 113 680 114 reads)
Num. scaffolds 784 1 019 2 889 9 039 4 421
Total scaffold length 83 275 357 83 322 440 65 789 192 81 739 588 81 990 799
N50 size (bp) 313 454 257 853 76 239 27 510 39 961
Chimeric scaffold length (%) 0.00 0.45 0.02 0.03 0.00
Cover rate (%) 98.12 97.81 77.60 94.09 96.03
Number of predicted genes 77 634 77 655 58 744 68 832 72 746
Required CPU time (s) 9585 11 409 9 813 14 803 12 664
Required memory (GB) 13.15 72.06 68.98 62.48 23.11

Genus level (total genome size = 88 595 850 bp; 103 990 387 reads)
Num. scaffolds 1288 2 325 3 633 10 282 10 643
Total scaffold length 86 489 808 84 342 495 53 450 902 79 334 848 74 808 521
N50 size (bp) 279 359 239 061 74 182 16 194 12 773
Chimeric scaffold length (%) 0.00 1.56 0.00 0.08 0.00
Cover rate (%) 98.17 97.13 73.31 91.73 90.93
Number of predicted genes 80 812 79 301 46 688 67 267 61 135
Required CPU time (s) 7275 10 395 8 712 12 889 15 071
Required memory (GB) 11.12 63.22 60.43 62.45 16.75

Species level (total genome size = 85 450 435 bp; 98 817 303 reads)
Num. scaffolds 818 3 447 2 403 9 317 6 657
Total scaffold length 83 865 679 80 628 784 40 619 181 70 762 160 64 880 992
N50 size (bp) 339 109 152 531 100 819 14 471 26 571
Chimeric scaffold length (%) 0.00 0.93 0.00 0.01 0.00
Cover rate (%) 97.79 94.56 60.29 84.62 82.50
Number of predicted genes 83 952 81 842 38 445 65 176 58 367
Required CPU time (s) 7618 12 001 8 775 12 858 20 755
Required memory (GB) 7.68 64.06 61.23 62.46 17.32

All computations were executed with Intel(R) Xeon(R) E5540 processors (2.53 GHz), with 48 GB physical memory, except for a few cases.
The figures in ‘separate assembly’ show the results of single-genome assembly from pure sequence reads of each single-isolate genome, which
were not available in real-data analysis. MetaVelvet, Velvet and SOAPdenovo were run with default parameters, except for setting k-mer size at
51. Meta-IDBA was run with default parameters, except for setting the maximum k-mer size at 50.

Scaffold N50 [bp]

Order level Family level Genus level Species level 

100,000

200,000

300,000

400,000

0

MetaVelvet

Velvet
SOAP

Meta-IDBA

Sep. Velvet

Figure 6. Experimental results on four simulated datasets. N50 scores of scaffolds for each assembler are shown.
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similar and share more k-mer subsequences, and hence the
metagenome assembly became harder, at lower taxonomic
levels. Nevertheless, MetaVelvet achieved the highest
cover rates at every taxonomic level among all the assem-
blers. This is because MetaVelvet succeeded in covering
even the genomes of low-coverage species by detecting
multiple peaks on coverages and assembling scaffolds
step by step at each coverage, while Velvet tended to
miss low-coverage sequences. The other assemblers
missed middle or low-coverage sequences, as shown in
Figure 8.
Figure 8 shows the cover rates for 20 genomes with

different abundances at the genus level. MetaVelvet

achieved uniformly higher cover rates on all abundances.
On the other hand, Velvet completely failed to reconstruct
low-abundance species, and SOAPdenovo and Meta-
IDBA showed low cover rates for certain species.

To verify that the MetaVelvet algorithm for identifying
and separating the chimeric node actually works on a
metagenome assembly, we concretely analyzed one of
our experiments using the genus-level metagenomic
dataset. On this dataset, MetaVelvet first detected nine
peaks, that is, peaks 54, 41, 37, 21, 18, 16, 14, 12 and 6,
in the node coverage distribution. Second, MetaVelvet
identified 770 nodes as chimeric and separated them; 750
of those identified nodes were truly chimeric and the rest
were incorrect. Two examples of chimeric nodes correctly
identified by MetaVelvet are shown in Figure 9. The first
example node was shared between the most dominant
species of node coverage 54 and the third dominant
species of node coverage 37. In contrast, an incorrect
node misidentified by MetaVelvet is shown in the right
example of Figure 9. This node was actually a repeat
node. This misidentification of the chimeric node
resulted from the statistical variance of k-mer frequencies
that caused misassignment of peaks to the nodes. In con-
clusion, MetaVelvet produced longer N50 scores by suc-
cessfully identifying and separating chimeric nodes.

The percentages of chimeric scaffolds of all assemblers
were very small (at most 1.56%). MetaVelvet showed
slightly higher chimera rates compared with
SOAPdenovo and Meta-IDBA. These higher chimeric
rates can be considered as a tradeoff against the longer
scaffold sizes.

Detailed Analysis of Cover Rates in Genus Level

abundance HighLow

25.00

50.00

75.00

100.00

0.00

MetaVelvet

Velvet

SOAP

Meta-IDBA

Figure 8. Detailed analysis of cover rates for 20 genomes in the genus level. Cover rates for each genome are listed in the order of species abundance.

Cover rate (average) [%]

Order
level
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level

Genus
level

Species
level

70.00

80.00

90.00

100.00

60.00

MetaVelvet

Velvet

SOAP

Meta-IDBA

Figure 7. Cover rates for every taxonomic level are shown. The cover
rate for each taxonomic level is the average of the cover rates for the 20
genomes in the taxonomic level.
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34.14
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90.50 22.22

17.18
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82.08
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38.05
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Figure 9. (A and B) Two examples of chimeric nodes correctly identified by MetaVelvet. (C) Example of a repeat node misidentified by MetaVelvet
as chimeric.
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The longer N50 scores of the scaffolds particularly
benefit the identification of protein-coding genes.
Figure 10 clearly demonstrates this advantage: the
number of predicted complete protein-coding genes from
MetaVelvet scaffolds is significantly larger than any of the
other assemblers at all taxonomic levels, where a complete
protein-coding gene (complete ORF) denotes a gene
(ORF) for which both of the 50- and 30-ends are
included in a scaffold, and a partial genes (partial ORF)
denotes a gene (ORF) whose 50- and/or 30-end is not
included in a scaffold. In particular, the number of pre-
dicted genes from MetaVelvet scaffolds is more than twice
that from Velvet scaffolds at the species level and is almost
same as that from the separate assembly.

In conclusion, the improvements gained by the
MetaVelvet method strongly suggest that single-genome
assemblers are not appropriate for metagenomic short
read data. The MetaVelvet assembler can assemble
metagenomic short read data with longer N50 sizes and
can reconstruct scaffold sequences, even for low-
abundance species.

Metagenomics analysis of human gut microbial data

To assess the assembly accuracy of the MetaVelvet assem-
bler on real metagenomic datasets, we assembled three
human gut microbial datasets, which were sequenced as
a part of the MetaHIT project (3). Qin et al. (3) performed
deep sequencing of fecal DNA samples obtained from 124
European adults. Assembly of the 124 human gut
metagenomic datasets established a human gut microbial
gene catalog. The work of Qin et al. (3) is an important
milestone, which showed the potential effectiveness of
metagenomic assembly of short reads. Here, human gut
metagenomic datasets from three adults were selected
(sample IDs are MH0006, MH0012 and MH0047) from
the MetaHIT project and used to validate whether the
MetaVelvet assembler could increase the number of
protein-coding genes compared with a single-genome as-
sembler, Velvet. Two datasets (MH0006 and MH0012)
were the deepest and second-deepest datasets; the other

dataset (MH0047) is one of the low-coverage datasets.
The three metagenomic datasets were downloaded from
the NCBI Sequence Read Archive (http://www.ncbi.nlm.
nih.gov/sra; ERR011101–ERR011104 for the MH0006
dataset; ERR011117–ERR011123 for the MH0012
dataset; ERR011192–ERR011193 for the MH0047
dataset).
MetaVelvet was applied to the three datasets with a

k-mer size set at 51. Figure 11 is the histogram of
node coverages in the de Bruijn graph constructed
from the MH0047 dataset, which clearly shows that
multiple peaks were also observed in a real
metagenomic dataset. Multiple peaks were observed in
the MH0006 and MH0012 datasets (Supplementary
Figures S1 and S2).

Number of predicted complete genes

Order level Family level Genus level Species level 

25,000

50,000

75,000

100,000

0

MetaVelvet

Velvet
SOAP

Meta-IDBA

Sep. Velvet

Figure 10. The number of predicted complete protein-coding genes from scaffolds for each assembler.

Figure 11. Detection of multiple peaks on the node coverage histogram
from the MH0047 human gut microbial dataset.
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The assembly statistics of the three metagenomic
datasets are summarized in Table 2. For comparison,
Velvet was also applied to the three datasets with the k-
mer size set at 51. MetaVelvet yielded significantly longer
total scaffold lengths compared with Velvet. For the
MH0006 dataset, MetaVelvet showed a 25% increase in
total scaffold length, a 44% increase for MH0012 and a
51% increase for MH0047. From the scaffolds, the
protein-coding genes were predicted using the MetaGene
(23) software. 421 448 and 284 552 genes were predicted
from MH0006 scaffolds assembled by MetaVelvet and
Velvet, respectively, showing that MetaVelvet increased
the number of predicted genes by 48.1%. Similarly,
MetaVelvet increased the number of predicted genes by
106.5% for the MH0012 dataset and by 129.5% for the
MH0047 dataset. More importantly, 90 617 and 84 811
complete genes were predicted from MH0006 scaffolds
assembled by MetaVelvet and Velvet, respectively. This
result showed that MetaVelvet increased the number of
complete genes by 6.9% compared with a single-genome
assembler Velvet. Similarly, MetaVelvet increased the
number of complete genes by 10.1% for the MH0012
dataset and by 22.8% for the MH0047 dataset. These
results evidently demonstrated that MetaVelvet substan-
tially increased both the number of predicted genes and
the number of complete genes.
To investigate how MetaVelvet yielded a larger number

of genes, we analyzed the following generalized score of
N50:

N-lenðxÞ ¼ jSij such that
Xi
j¼1

jSjj � x and
Xi�1
j¼1

jSjj5 x;

ð2Þ

where S1, S2, . . . , Sn denote the list of scaffolds in descend-
ing order of length as output by an assembler. Note that
the N50 score (Eq. (1)) corresponds to the N-len(x) score
for x=L/2, where L denotes the total scaffold length.
When the total scaffold lengths of two assemblies are
quite different in the human gut microbial datasets, the
naive use of N50 score is inadequate, because even for the
same lists of scaffolds in descending order, the longer L
decreases the N50 score at L/2. This generalized score

N-len(x) is more appropriate to compare scaffold integrity
than the raw N50 score. Figure 12 shows the N-len(x) plot
for the MH0012 scaffolds assembled by MetaVelvet and
Velvet, showing that MetaVelvet greatly improved the
scaffold integrity compared with Velvet. For example,
when x=1000 000, the N-len(x) score of MetaVelvet
was 345 388, while the N-len(x) of Velvet was 84 683.
Further, we calculated the area under the curve (AUC)
of N-len(x) for 0<x�L in units of 1 000 000 bp, that is,
the cumulative sum of N-len(x) scores (0<x�L),
where L denotes the total scaffold length. To eliminate
the effect of L on calculating the AUC (that is, the
longer L could likely increase the AUC), we also define
the AUCmin of N-len(x) to be the AUC of N-len(x) for
0< x�min{L, L0}, where L is the total scaffold length of
the one assembler and L0 is that of the other assembler.
The AUC and AUCmin of N-len(x) of MetaVelvet were
5 049 858 and 5 027 177, respectively, for the MH0012
dataset, although the AUC and AUCmin of Velvet were
both 1 897 179. These results imply that MetaVelvet
achieved much longer scaffolds by factor of three
compared with Velvet. Similarly, MetaVelvet showed
greater scaffold integrity than Velvet for the MH0006
and MH0047 datasets (Supplementary Figures S3 and
S4). This improvement in scaffold integrity represents
the main reason why MetaVelvet yields a larger number
of genes from metagenomic short read assemblies.

SUMMARY AND DISCUSSION

This study described an extension of the single-genome
assembler Velvet to a metagenome assembler,
MetaVelvet, and showed its effectiveness in several experi-
ments using simulated datasets and human gut microbial
sequence datasets. This work is the first step in the con-
struction of a de novo metagenome assembler for the
assembly of metagenomes from mixed ‘short’ sequence
reads of multiple species.

Meta-IDBA (6) is a currently available and practically
executable de novo metagenome assembler. From the
results using the simulated datasets, it can be seen that
MetaVelvet outperformed Meta-IDBA. In fact, the
Meta-IDBA project (6) pointed out that one of their

Table 2. Assembly and gene prediction statistics for human gut microbial metagenomic datasets

MH0006 MH0012 MH0047

MetaVelvet Velvet MetaVelvet Velvet MetaVelvet Velvet

Scaffolds
Num. scaffolds 293 805 174 794 368 879 125 387 69 380 21 833
Total scaffold length (bp) 176534 240 141 464 165 239 717742 166 824 609 39 488 884 26 190 998
AUC of N-len(x) 1 740 532 764 099 5 049 858 1 897 179 280 526 181 960
AUCmin of N-len(x) 1 732 914 764 099 5 027 177 1 897 179 277 057 181 960

Protein-coding genes
Num. genes 421 448 284 552 531 824 257 502 92 411 40 267
Num. complete genes 90 617 84 811 129 670 117 792 18 032 14 680

AUC of N-len(x) denotes the area under the curve of the generalized score N-len(x), which is defined by Eq. (2), for 0< x�L. AUCmin of N-len(x)
denotes the area under the curve of N-len(x) for 0< x�min{L, L0}.
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future works is to make use of uneven abundance ratios
in metagenomic datasets. On the other hand, Meta-IDBA
is designed to solve the metagenome assembly problem
caused by polymorphisms in similar species in
metagenomic environments. In this aspect, Meta-IDBA
might be more useful for analyzing slight variants in the
genomes of subspecies within a same species. Figure 13
shows the comparisons of the N50 scores of contigs
between MetaVelvet assemblies and Meta-IDBA
assemblies. Since Meta-IDBA does not have the scaffold-
ing function, this result shows a fair comparison on
assembly performances between both assemblers.
Nevertheless, MetaVelvet achieved higher N50 scores
than Meta-IDBA at the order, family and genus levels.
On the other hand, Meta-IDBA produced higher N50
score for contigs at the species level, which confirms the
specific feature of Meta-IDBA mentioned above.

Although we have designed the primary procedure for
MetaVelvet, a key issue is how to identify and deal with

ambiguous nodes, termed chimeric nodes in this article,
with multiple incoming and outgoing edges in the de
Bruijn graph. Most nodes in the de Bruijn graph are
unique nodes with only one incoming edge and one
outgoing edge, and as such, are reliable for building
contigs. The single-genome assemblers recognize the am-
biguous nodes as repeat nodes, where a repeat node rep-
resents a sequence that occurs several times in the genome,
which is correct in single-genome assembly. MetaVelvet
explicitly identifies chimeric nodes as causing
misassemblies that combine reads from distinct species
to generate chimeric scaffolds. MetaVelvet then identifies
and separates the chimeric node into two unique nodes
using node coverage differences. The results showed that
this simple strategy worked well for metagenome
assembly. The results demonstrate that MetaVelvet is a
potentially valuable tool that can be widely used in
metagenomic analyses. In particular, a significant
increase of the number of predicted complete
protein-coding genes is valuable in the search for novel
enzymes in metagenome research.
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Figure 12. N-len(x) plot of Eq. (2).
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