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ABSTRACT

Genomic experiments (e.g. differential gene expres-
sion, single-nucleotide polymorphism association)
typically produce ranked list of genes. We present
a simple but powerful approach which uses protein—
protein interaction data to detect sub-networks
within such ranked lists of genes or proteins. We
performed an exhaustive study of network param-
eters that allowed us concluding that the average
number of components and the average number of
nodes per component are the parameters that best
discriminate between real and random networks. A
novel aspect that increases the efficiency of this
strategy in finding sub-networks is that, in addition
to direct connections, also connections mediated by
intermediate nodes are considered to build up the
sub-networks. The possibility of using of such inter-
mediate nodes makes this approach more robust
to noise. It also overcomes some limitations intrin-
sic to experimental designs based on differential
expression, in which some nodes are invariant
across conditions. The proposed approach can
also be used for candidate disease-gene prioritiza-
tion. Here, we demonstrate the usefulness of the
approach by means of several case examples that
include a differential expression analysis in Fanconi
Anemia, a genome-wide association study of bipolar
disorder and a genome-scale study of essentiality in
cancer genes. An efficient and easy-to-use web
interface (available at http://www.babelomics.org)
based on HTML5 technologies is also provided to
run the algorithm and represent the network.

INTRODUCTION

There is now a wide consensus on the fact that most of the
biological functionality of the cell arises from complex
interactions between their molecular components (1).
Such interacting components define operational entities
or modules to which different elementary functions can
be attributed. Understanding the organization and the
dynamics of the complex intracellular network of inter-
actions that contribute to the structure and function of a
living cell is one of the main challenges in functional
genomics (2) and constitutes the objective of systems
biology (3).

Simple, unstructured module definitions, such as Gene
Ontology (GO) (4), account only for the common
functionality of their components. Despite its simplicity,
they have been extensively used for the development of
functional enrichment methods (5-11). Such methods
have proven its usefulness in helping researchers to under-
stand the relationships between the genes activated (or
deactivated), mutated or affected in some way, found in
a genomic experiment and the corresponding functional
consequences. Functional enrichment methods aim at
finding overrepresentations of genes belonging to some
of these modules among a predefined list of genes.
However, this approach was soon criticized because of
its dependence on the initial selection of the set of genes
to be analyzed (12). Then, a family of methods known
under the generic name of Gene-Set Enrichment
Analysis (GSEA) emerged that studied the distribution
of modules across a list of genes ranked according to a
parameter representative of the experiment, such as differ-
ential expression (13), association to a disease (14) and
others (15-17).

Despite the success of methods based on GO (or other
unstructured) modules for the biological interpretation of
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different types of genomic experiments (gene expression
microarrays, large-scale genotyping), conceptualizing a
function simply as a label shared by a set of genes
resulted in a poor description of the cellular complexity.
Actually, information on relationships among gene
products is available and can be used to define other
types of modules. In particular, protein—protein inter-
actions (PPIs) provide a useful and extensively used rep-
resentation of such relationships beyond categorical
definitions such as GO (18). The use of the interactome
as a theoretical scaffold that relates proteins among them
allows depicting sub-networks of interacting proteins
associated to features in genomic experiments (19),
which can be considered functional modules (20). It is
known that disease gene products exhibit an increased
tendency to interact among them, tend to co-express and
display coherent functions according to GO annotations
(19). Actually, the relationship between common function-
ality, co-expression and interaction has also been reported
in numerous studies (21-23). In fact, these properties are
so tightly related that protein function has been success-
fully predicted from gene co-expression (24,25) and PPI
(26,27) data. This relationship has also been observed for
genotyping data, where gene interactions (28) or even
single-nucleotide polymorphism (SNP) associations can
be related to PPI networks (29,30). An additional advan-
tage of PPI networks is that their topology and properties
(e.g. connectivity, betweenness) provide a deal of informa-
tion on the modules besides the own functional annota-
tions of the components. Therefore, sub-networks, (sub
sets of the interactome comprising proteins that directly
interact among them) can be considered a higher level,
structured description of functional modules operating
in the cell.

Since it is increasingly clear that phenotypes and, more
specifically, diseases are the consequence of the inter-
actions between gene products, different methods have
been proposed for finding disease-related sub-networks
(31,32) or to predict disease-causing genes (33-36). Most
of these methods have been designed to deal with gene
expression data and use a scoring function based on the
values of differential expression (20,37,38) (node-based
methods) or co-expression (39—41) (edge-based methods).
Such scoring function is applied within different search
strategies to evaluate the highest scored sub-network
(the largest possible number of proteins connected
among them according to the interactome map) compat-
ible with the gene expression experiment. However, the
complexity of the interactome generates a search space
of an enormous size, which makes of the task of finding
sub-networks a NP-hard problem (37). This fact implies
large runtimes and constitutes a drawback for the appli-
cation of these methods. Other simpler methods rely on
the pre-selection of gene sets (42—46), which constitutes a
drawback, as mentioned above for the case of functional
enrichment methods.

Here, we propose a simpler but powerful approach
able to find the sub-network component associated to
extreme values of a list of genes (or proteins) ranked by
any criterion (differential gene expression, disease associ-
ation in a genome-wide association study (GWAS), etc.).
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Contrarily to other methods, which need to optimize a
number of parameters in a way that is sensitive to initial
conditions, our proposal has only one parameter which is
the rank. Moreover, in the proposed method not only
direct connections among the genes (or proteins) studied
are considered but also intermediate nodes not present in
the dataset studied that link highly-ranked nodes of the
dataset are considered. These intermediate links increase
enormously the sensitivity of the search procedure, being
thus more robust against false negatives (still abundant in
genome-wide experiments).

The method is implemented in a publicly available and
free web tool, Network Miner, designed to find, within a
list of ranked genes, the largest network components
among the best scored genes along with the corresponding
statistical significance (i.e. the probability of finding such
structured sub-networks just by chance) and represent the
network found in an advanced visualization system.
Network Miner can be found within the Babelomics
package (47).

MATERIALS AND METHODS
Datasets used and data preprocessing

Gene expression data in Fanconi Anemia

Gene expression datasets for Fanconi Anemia (FA) were
obtained from GEO (GSE16334) (Affymetrix Human
Genome U133A Array). The original GEO normalization
of each dataset was used. Differential gene expression
control versus case samples were carried out using the
Limma package (48) from Bioconductor (49), imple-
mented into Babelomics web platform (47). Probes were
ranked according to decreasing values of the statistic.
When several probes mapped onto to the same Ensembl
gene, the highest ranked probe was selected. Finally,
probe identifiers were converted to the corresponding
Ensembl Gene identifiers. Genes for which protein inter-
actions have not yet been described in the literature were
also discarded. The same process was repeated using the
Robust Multichip Average (RMA) (50) normalization
method to discard the influence of the normalization
method in the results obtained.

Bipolar disorder genotyping

Anonymous genotypic data from the Wellcome Trust
Case Control Consortium (WTCCC) (51) were down-
loaded in plink transposed format (52). A total of 2000
Caucasian UK patients of bipolar disorders and 1500
controls genotyped on the Affymetrix 500 K mapping
array were studied. GWAS was performed using the
basic association test of Plink toolset based on comparing
allele frequencies between cases and control. Following a
similar strategy than in pathway-based analysis (PBA)
(14,29), we filter this list to retain the subset of SNPs
mapping within genes or in the neighborhood (up to
500 bp up- and downstream of the gene limits). Then, we
filter the list again leaving only one SNP per gene. The
SNP retained is the one with the smaller P value, which is
finally converted to the ID of the corresponding gene.
Thus, we have a list of genes ranked by the P value of
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their most associated marker. Genes previously associated
with bipolar disorder obtained from Uniprot database
(53) were used as seed genes.

Essential genes in cancer cell lines datasets

In a recent study, gene essentiality for growth in different
cancer cells was tested using a powerful genome-scale
pooled short hairpin RNAs (shRNAs) screen (54).
Cancer cell lines evaluated represented different cancer
types: small-cell lung cancer (H187 and H82), non-small-
cell lung cancer (A549, H1650, H1975 and HCCS827),
lymphocytic leukemia (Jurkat, REH and SUPTI),
chronic myelogenous leukemia (K562) and glioblastoma
(LN229 and U251). A statistic test called shRNA gene
enrichment ranking (RIGER), which outputs a gene
essentiality score, was used in the study. Genes were
ranked according to the RIGER score (gene essentiality)
for network analysis.

PPI data and curation

So far, there is not a common source for PPI data. In
contrast, there are several primary interaction databases
that vary in the way they store the interactions, their
scope, annotation quality and public availability. Given
the low overlap observed among the main general inter-
action databases (55), we collected and merged the data
from the following databases: IntAct (2011-01-19 version)
(56), MINT (2011-01-19 version) (57) and BioGRID
(version 3.1.72) (58).

In order to integrate and unify PPIs coming from dif-
ferent databases, three steps of curation were applied.
First, only proteins whose identifier could unequivocally
be mapped to a reference protein in UniProt Swiss-Prot
(59) were used. Next, only interactions whose type was
‘physical association” were taken. This filtering step
prevents from including other interactions types that do
not necessarily imply physical contact between gene
products, such as genetic interactions and other. Finally,
potential artifactual PPIs, frequent in interactions data,
especially those derived from high-throughput technolo-
gies, were also filtered out by considering only those PPIs
detected with at least two different detection methods (60).
To avoid selecting PPIs determined through experiments
with a similar basis (e.g. ‘two hybrid array’ and ‘two
hybrid gal4 vpl6 complementation’), the six lower levels
of depth in the Molecular Interaction (MI) ontology
‘interaction  detection method’ (61) were used.
Interactions reached at this step constitute the called
curated interactome. The categories ‘physical association’
and ‘detection method’ are components of the xml format
PSI-MI 2.5 (62) offered by the PPI databases used.

Interactomes were generated for the following species:
Arabidopsis thaliana, Drosophila melanogaster, Escherichia
coli (strain K12), Homo sapiens, Mus musculus and
Saccharomyces cerevisiae.

False Discovery rate (FDR) and power tests

With the purpose of finding the feature that best charac-
terizes a real PPI network, different parameters were
evaluated in terms of power (true-positive rates) and
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false-positive rates. Power is defined as the probability
of declaring a network as significantly different from a
random network when it has been obtained from a list
of actual functionally-related proteins. On the other
hand, the false-positive rate is defined as the probability
of declaring a network as significant when it is obtained
from lists of randomly selected proteins.

Networks are defined here as the shortest network that
connects all the physically interacting proteins within a set
of proteins, also known as Minimum Connected Network
(MCN). The shortest paths among these interacting
proteins are calculated using Dijkstra algorithm (63).

MCNs can be characterized by topological parameters
related to each node in the network, such as connection
degree (defined as the number of connections of a node),
relative betweenness (a measure of a node’s centrality,
which is the number of shortest paths from all nodes to
all others that pass through that node (64))—and cluster-
ing coefficient (a measure of degree to which nodes in the
MCN tend to cluster together (65)) or by parameters
related to the whole network (number of nodes, number
of connections and number of components). Furthermore,
we can also combine the whole network features and test
the average number of nodes or connections per compo-
nent. The different nature of parameters requires a distinct
strategy of network evaluation:

o Testing node-level parameters. The comparison of two
networks through their node-level parameters can
be performed by testing whether the corresponding
distributions of values are significantly different or
not. Different tests were checked in order to determine
which one provided more power for the discrim-
ination. The tests checked were as follows: (i) two
sample Wilcoxson (ii)) Kolmogorov—Smirnov and
(iii) the common area under both distributions (66).
For a given node-level parameter, the distribution of
reference for a random network of size N is derived
from 2000 networks made of N components randomly
selected among all the possible proteins.

e Testing whole network parameters. Whole network par-
ameters are described with a single number and are,
consequently, easier to test. Given a distribution of
values generated from 2000 random networks derived
as above, the P value can be estimated by simply
ranking the value of the parameter of interest on
such distribution.

The tests were performed using the S. cerevisiae
interactome, because it is the most comprehensive descrip-
tion of a whole protein interaction network in any
organism. All statistical tests were performed using R
software environment.

Generation of MCNs experimentally verified

Several networks described in the literature in (67-69)
were used as bona fide real networks that should be
detected by their peculiar network parameters’ values.
We also used KEGG pathways (70) and GO (4) terms,
which are also known to be rich in network component
(18,21). Specifically, GO-defined modules among levels
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6 and 12 were selected to avoid general and highly specific
GO terms. Since we may work among a range of list sizes,
lists containing 20, 50 and 100 proteins were collected
from all these sources. A total of 156 modules were
analyzed.

Generation of random MCNs

In order to calibrate the rate of false positives that the
combination of a parameter with a particular test (as
described above) produced, it was necessary to build up
a collection of networks connecting sets of randomly
chosen proteins. An extensive range of conditions has
been tested that include random sets from 10 to 200
proteins, for both the curated and the non-curated
interactome and for both direct connections and
allowing one intermediate connection by means of a
node external to the dataset analyzed. In order to obtain
a distribution of values for any of these conditions, 2000
random samples have been obtained. That amounts a
total of 1520000 MCNs to obtain an estimation of the
expectation of the network parameters just by chance for
an equivalent number of proteins not linked a priori by a
network. These values can be used as a pre-calculated
confidence interval when a MCN found in a new dataset
is tested (see next section).

The algorithm for network enrichment

Instead to take a sub-selection of the genes, the algorithm
starts with the complete list of gene or protein identifiers
involved in a genomic experiment, ranked by a given
criteria. In principle, ranking values are supposed to be
derived from a genomic experiment and must have, con-
sequently, a biological meaning. For example, it can be the
value of a t-test statistics derived from a differential ex-
pression experiment, thus accounting for the higher level
of expression in one of the conditions compared; it can
also be a P value in a genotyping association experiment,
thus accounting for the association of each of the genes
with a disease, etc. Obviously, this methodology is not
restricted to genotyping or differential gene expression
and other ranking values representing the results of
other types of experiments are also possible. Then, the
interpretation must be done accordingly to the biological
property that this particular ranking value is representing.
The ranking parameter is, therefore, used as a guide to
scan for sub-network enrichment through the entire
ranked list of molecules. This strategy, similar to the
GSEA strategy, avoids the imposition of a gene-based
threshold to pre-select a limited number of genes for
further network enrichment analysis. The algorithm
seeks for sets of genes connected among them, moderately
but coordinately associated to high (or low) values of the
ranking parameter. Since we look for a set-based property,
there is no point in pre-selecting a fixed number of genes
based on a conventional gene-based test. The algorithm
proposed follows the steps listed below:

(1) The ranked list S = (gy;,..., g,) of n molecules is
subdivided into a sequence of additive partitions
Sr=(gieS:i=1,.., k k<n) of size k.
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(2) The proteins corresponding to any of the partitions
are mapped onto the interactome scaffold and the
MCN, that is, the minimal network that connects
the maximum number of nodes in the partition is
found. The shortest paths among all the pairs of
nodes in the list are calculated using Dijkstra
algorithm (63). Then, the parameter of interest
(zx, defined as the average nodes per component of
the MCN) is calculated.

(3) Then we seek for the most relevant partition (the
sub-list S, as follows:

(a) First, ordering the parameter of interest z;, ac-
cording to the ranked list, all relative maxima
are identified. The partitions so selected (S]“)
represent situations where a new protein
capable of connecting to the previous ones is
added to the previous partitions.

(b) Second, the score L, is computed as
L,=(zx—1)/(k—1) for all the selected parti-
tions S7"“*. The score can be seen as a balance
between the increase in connected nodes and the
distance to the top of the ranked list (k = 1).

(c) Third, we choose the partition S, and index
kpes: corresponding to the highest L, computed
in b) form the S}’** chosen in (a).

(4) Finally, an empirical P value is calculated as the
proportion of 2000 random sub-lists of k., mol-
ecules (which corrects the size effect) with a value
for the network parameter greater than zje;.

In the step two, only proteins contained in the partition
are considered to find the MCN. That is, only direct PPIs
are considered. However, we can also consider another
scenario in which proteins not included in the partition
are used to connect proteins contained in the partition.
Thus, MCNSs can be found that connect proteins in the
partition using some connections external to the partition.
Given the potential density of connections of the
interactome, only one-step connections are used.
Allowing external nodes to participate in the MCN if
they directly connect two proteins in the partition is a
quite realistic assumption in several genomic experimental
designs. Thus, false-negative occurrences would remove
connecting proteins from the partitions analyzed and
would consequently have a negative effect on the ability
of finding MCNs. Allowing these proteins to participate in
the connections would overcome this effect. In other cases,
the own measurement can remove interesting proteins
from the analyzed dataset. For example, in the case of
differential expression experiments, it might happen that
proteins participating in the networks are always ex-
pressed but not differentially expressed. In this case,
these would not appear among the differentially expressed
proteins despite they participate in the differentially ex-
pressed network.

Optionally, a list of seed molecules may be incor-
porated. In this case, a seed list Sseeq = (€7,--., &n) Of
m molecules is forced to be part of the whole list, Sk,
defined as:

SK - Sseed+Sk
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The selection procedure is the same than described above
but keeping always the Sy..q molecules within the list.

Software implementation details

The NetworkMiner web interface was implemented using
HTML, CSS, JavaScript and Java. The queries to the
server are implemented in Java connecting to a MySQL
Server and a plain text file with the interactomes informa-
tion. The visualization tool was implemented using
HTML, JavaScript and SVG from HTMLS. This new
standard allows implementing advanced SVG graphics
directly on the web browser without the necessity of in-
stalling any plug-in or Adobe Flash or using any Java
applet. Moreover, HTLMS standard is extensively sup-
ported by modern web browsers such as Google Chrome
14+, Microsoft Internet Explorer 9, Mozilla Firefox 6+ or
Apple Safari 5+. CSS and JavaScript are used at the client
side together with HTMLS, while Java is used at the server
side of the NetworkMiner application to query a MySQL
Server and connect it to a plain text file with the
interactomes information.

The program inputs a list of ordered genes (in a simple
column). An extra column can be added, which will be
taken as the wvalue of the ranking parameter.
Furthermore, an extra list of seed data can be provided.
Typically, this list represents the already known gene
diseases, and the program will try to include them in the
list. The user can also chose between using all the
described interactions or a more curated version of the
interactome containing only those interactions reported
for more than one detection method. The order in which
the ranked list will be explored can be ascendant or des-
cendent and the threshold for the P value can also be
defined.

The interactomes of the following species are supported:
A. thaliana, D. melanogaster, E. coli (strain K12), H.
sapiens, M. musculus and S. cerevisiae.

Once the calculations have been done, the result is pre-
sented in a network viewer box (see Figure 1 as an
example). The HTMLS5 technology allows a straightfor-
ward dynamic representation of the networks found, on
which many operations can be performed. Different
layouts are possible that implement different algorithms
for distributing the net components in different ways.
Furthermore, different backgrounds, including different
cell views over which the network can be represented,
can be seen in Figure 1.

Thus, nodes, intermediate nodes (not present in the par-
tition analyzed, but connecting nodes in the partition),
edges and edges between intermediate nodes can individu-
ally or collectively selected and deselected for different
manipulations such as moving them, collapsing or ex-
panding them. In addition, node and edge properties
including name, size, opacity adjustment, color, stroke,
edge shape, etc., can be customized.

The complete view can be zoomed in and out, and the
labels can also be customized in size. Different filters
based on specific attributes of the network can be
applied. These attributes include gene/protein ID, GO,
KEGG, Reactome, Interpro, Jaspar and Ensembl terms.
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Finally, all the information relative to nodes can be ex-
tracted and displayed in a pop-up window, including func-
tional and regulatory information, protein interaction
information, etc.

NetworkMiner is available within the Babelomics envir-
onment (http://www.babelomics.org) within the section of
functional analysis.

All the examples presented in the next section are also
available as pre-loaded case studies in the program.

RESULTS AND DISCUSSION

Study of network parameters characteristic of real
networks

A previous step in this study involves determining if a real
network can be distinguished from a random network
and, if so, what network parameter has the better discrim-
inatory power. With this purpose, we have collected a
number of validated biological networks as a test set on
which the efficiency of the combination of the most
common local and global network parameters with differ-
ent statistical tests has been tried. Reference networks
covering three sizes (20, 50 and 100 nodes), which
include KEGG pathways, sub-networks described in the
literature and some GO modules with the proteins highly
interconnected, were used.

We have checked two scenarios (i) networks found
within sets of proteins with direct connections among
them and (ii)) networks found within sets of proteins
with either direct connections or connected through one
intermediate protein not present in the set. This second
scenario represents a common situation in large-scale
genomic analysis. In many cases, in proteomic analyses,
some of the proteins activated in an experiment are simply
not detected, because of the sensitivity of the technique. In
the case of transcriptomics experiments, it is quite
common that the noise affecting to individual probes rep-
resentative of the genes (and the corresponding gene
products) makes some of them present different values
of the statistic. In an ideal situation, a group of proteins
that co-express and conform, for example, a complex
should appear together in a differential expression experi-
ment and should easily be detected by a conventional test
that look for network enrichment. In a real situation, it is
quite common that as a consequence of noise or experi-
mental errors some proteins of the sub-network are
missing in the experiment (in spite of being actually
involved in the network structure). It can also happen
that some proteins (key in the definition of the network)
do not change their expression across the compared con-
ditions, thus a differential expression experiment did not
report them in the result. Thus, looking for networks
within a set of proteins, allowing for some connections
provided by proteins not in the set, increases enormously
the sensitivity of the network detection method and makes
it more robust against noise. It also allows overcoming
some intrinsic limitations of experimental designs based
on differential expression, such as the difficulty of detect-
ing networks in which some of the nodes do not differen-
tially express across the conditions compared.
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Figure 1. Screen snapshot of the network viewer box of NetworkMiner represented over a cell image background.

In order to derive the expected values for the topo-
logical network parameters for random networks different
approaches can be used. For a given number of genes N,
an empirical simulated distribution can be derived by re-
peatedly selecting N genes randomly from the genome,
then looking for the MCN that connects them and
measuring the parameter of interest. Repeating this pro-
cedure 2000 times allows deriving the distribution sought.

Figure 2 summarizes the results obtained in the
combined study of network parameters and tests. In the
case of local network parameters, the connection degree in
combination with the Kolmogorov—Smirnov test provided
the highest sensitivity in distinguishing real networks from
random networks. However, sensitivity decreases if inter-
mediate nodes (not present in the partition analyzed but
connecting nodes from the partition) are included in the
MCN. On the other hand, Figure 2 shows that the most
sensitive among the global network parameters is the
average number of nodes per component. This feature
also demonstrates to be robust to the inclusion of inter-
mediate nodes and will be used throughout the case studies
illustrating the usefulness of the approach proposed.

All the network calculations have been carried out using
the server-side NetworkMiner application implemented
behind the web interface.

A case study with differential gene expression:
sub-networks activated or deactivated in FA

FA is a rare inherited disease complicated by aplastic
anemia. There is evidence that hematopoictic stem cells
have lost self-replicative capacity and undergo apoptosis
when exposed to inhibitory cytokines including interferon
gamma and tumor necrosis factor-alpha (71). Moreover,
there is a known susceptibility to leukemia in FA patients
(72). A recent study uses gene expression microarrays to
identify differences at the transcription level between
bone marrow cells from normal volunteers and from
children and adults with FA (73). FA patients were
identified using mitomycin C and/or diepoxybutane
chromosomal breakage analysis. Eleven normal volun-
teers and 21 patients were studied.

Gene expression datasets for FA were obtained from
the GEO database (see Materials and Methods for
details). In both the cases, the most differentially ex-
pressed genes in FA when compared with cases and vice
versa were analyzed, respectively. Since the statistic
accounts for differential expression high and low values
of the rank list account for gene more expressed in cases
and in controls, respectively. Thus, the analysis has been
done twice, in both extremes of the list.
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Figure 2. Comparative analysis of the discriminatory power of different network parameters to distinguish a true biological network from a random
network. The x-axis accounts for the MCN size. Arrangement of charts in rows and columns corresponds to intermediate node inclusion and false/
true-positive rates (FDR: false-positive rate; power: true-positive rate). Color corresponds to the feature tested.

In order to discard any possible influence of the nor-
malization method in the results, we have used both the
default settings obtained from GEO and the RMA nor-
malization method. The results obtained were the same
(data not shown). The network analysis allowed the intro-
duction of one intermediate node connecting any two
nodes in the network to increase the capability for discov-
ery of whole functional modules with nodes not differen-
tially expressed.

Figure 3A shows the sub-network found among the
genes activated in FA. A total of 44 highly expressed
genes are densely connected to a big network component,
comprising 560 proteins (P = 0.0015), many of them
involved in the spliccosome and the ribosome. A simpler
network is obtained (P = 0.041) in the case of genes down-
regulated in FA (Figure 3B), and the 30 genes belonged to
up to 54 different KEGG pathways (see Supplementary
Table 1) that include, among other cancer pathways,
Chronic myeloid leukemia, which is particularly relevant
given the known link between FA and several cancers
(74) and specifically with leukemia (72).

Functional modules, when composed by physically con-
nected proteins, are easily detected by network analysis.
However, differential gene expression data reveal only
that part of the module which shows a different
behavior among the conditions studied. In this way, ex-
periments of differential gene expression provide only an
incomplete description of the functionalities operating in
the compared conditions. The advantage of the approach
proposed here that allows the introduction of extra nodes
not differentially expressed (in many cases because these
are expressed in both conditions) reveals a picture much
closer to the real functional modules operating in the con-
ditions compared.

A case study with GWAS: sub-networks associated to
bipolar disorder

Anonymous genotypic data from the WTCCC (51) were
downloaded. A total of 2000 Caucasian UK patients of
bipolar disorders and 1500 controls genotyped on the
Affymetrix 500 K mapping array were studied. GWAS
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Figure 3. Sub-network found among the genes in a differential expression experiment that compares FA patients to controls. (A) Genes up-regulated
in FA. A total of 44 of 55 highly expressed genes are densely connected to a big network component (P = 0.0015), comprising 560 proteins. These
genes are related to ribosome and spliceosome processes. (B) A total of 24 of 30 genes significantly down-regulated in FA (P = 0.041), connected by
70 intermediate proteins conforms the network which is differentially more expressed in controls than in FA. As mentioned in the text, some of these
genes are related to the mTOR signalling pathway (in green) and to the Chronic myeloid leukaemia pathway (in red).

was performed using the basic association test of Plink PBA (14,29), we filter this list retaining SNPs mapping
toolset (52), based on comparing allele frequencies between within or in the neighborhood of genes. Then, we filter
cases and control. The association study rendered a list of the list again leaving only one SNP per gene. The
SNPs ranked by P value. Following a strategy similar to SNP retained is the one with the smaller (most significant)
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P value, which is finally converted to the ID of the cor-
responding gene. This ID conversion process is identical
to the performed by similar functional-based approaches
such as PBA (29). Thus, a list of genes ranked by the best
P value of one of their markers is obtained. This list is
used by NetworkMiner, which looks for the significant
sub-networks associated to the lowest P values of the as-
sociation test, i.e. sub-networks associated to the bipolar
disorder. The network analysis was performed allowing an
intermediate node in the MCN. Genes previously known
to be associated with bipolar disorder obtained from
Uniprot database (53) were used as seed genes (see
Materials and Methods).

Figure 4 shows the network significantly associated to
bipolar disorder (P = 0.028), which includes 11 genes
highly associated to the disease and 12 additional genes
connected to them. One of the genes already known to be
associated to the disease, FXYD6 (75), belongs to the
network found. The network is enriched in genes belong-
ing to four GO biological processes, one of them signifi-
cant, learning (P = 0.0364), and the three others cognition,
nervous system development and, specifically, nerve growth
factor receptor signaling pathway marginally significant.
All these processes are likely to be associated to the
bipolar disorder.

This example is the typical case of a GWAS of a
common disease where clear associations are not found
mainly because heritability of complex traits is due to
multiple genes of small effect size (76). None of these
small effect genes will obtain a significant value in a
gene-based test, but all of them will have simultaneously
a low P value and consequently will be closer to the top

]
Default Nervous System Development
Gene associated to BD Learning
O =

Gene from GWAS Cognition

TNFAIPSBLL
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side of the ranked list. If these genes are part of an inter-
acting network, then network analysis methodologies will
discover them as collectively associated to the disease
through their connections.

Sub-networks that characterize essential genes in cancer

Beyond the conventional genome-wide studies on gene
expression or gene association, any other parameter than
can be measured for lists of genes that account for any
interesting biological property can be used to find gene
networks associated to this parameter. A very interesting
example is provided by a recent study of the essentiality
of genes in different cancer cells (54). As commented in
the methods section, the genes were ranked according to
the RIGER score provided by the authors, which, basic-
ally, accounts for gene essentiality. As can be seen in
Table 1, in almost all of the cell lines, the most essential
genes configure significant sub-networks. These results
demonstrate that essential genes in different cancer cell
lines are close in the interactome (77). These sub-networks
are probably depicting signaling pathways and molecular
complexes that are essential for the phenotype of cancer
lines (31).

As previously observed (78,79), the essential sub-
networks are enriched in a number of molecular
pathways that include mRNA processing and splicing,
translation and cell cycle regulation (see Supplementary
Table 2). Although some general functions are common
for all the sub-networks identified here, each of them also
shows enrichment in specific functionalities. Just to
mention an example: while essential sub-network in

UNC119

Figure 4. Sub-network found among the genes most associated to bipolar disorder in a GWAS. A total of 11 genes highly associated to the disease,
in addition to 12 intermediate proteins, are significantly connected (P = 0.028). Subcellular location of the genes is displayed by the cell layout used

by the NetworkMiner software, based on GO subcellular locations.
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Table 1. MCNs found in the different cell lines with the correspond-
ing size and P value

Cell lines Size of MCN P value Score
HS82 181 <0.001 0.064
LN229 16 <0.001 0.346
REH 25 <0.001 0.225
K562 19 0.003 0.173
H1650 45 0.016 0.067
H187 14 0.018 0.119
H1975 144 0.02 0.042
SUPT1 155 0.039 0.036
JURKAT 66 0.049 0.043
A549 192 0.076 0.032
HCC827 14 0.1 0.0615
U251 110 0.241 0.028

A significant network (P <0.05) could not be found for the three last
cell lines (in italics).

Jurkat, a human leukemic helper T-lymphocyte line, is
enriched in pathways related to cell death such as
apoptosis and programmed cell death regulation, the
K562 sub-network is enriched in mRNA processing and
splicing process. This is in accordance with the fact that
Jurkat is highly dependent on the CD95 (Fas/APO-1)-
induced apoptosis pathway (80). In contrast, the charac-
teristic sub-network of essential genes found in K562
sub-network bears a mutated gene for the p53 protein
and an abnormal fusion gene BCR-ABL. As a result,
the pro-apoptotic regulatory function is annulled and
cells are resistant to drug-induced apoptosis, which
may explain that apoptosis pathway elements are not
essential for K562 survival (81,82). A recent study
has demonstrated that the transcription regulatory
machinery is highly active in K562 and that the alteration
of such process causes a decrease in cell growth (83).
Much more relevant information can be extracted
from the detailed analysis of the essentiality networks
but is beyond the aim of this work. Figure 5 shows the
significant networks obtained for both cell lines, Jurkat
and K562.

Supplementary Table 2 shows the number of genes cor-
responding to different KEGG pathways that appear con-
nected within the essential gene networks in the different
cell lines. Pathways like Ribosome and Spliceosome are
quite common since the corresponding networks are sig-
nificantly enriched in genes belonging to these. The same
can be said of other pathways relevant in cancer such as
MAPK signaling pathway, Toll-like receptor signaling
pathway, NOD-like receptor signaling pathway and
RIG-I-like receptor signaling pathway. Obviously, smaller
networks result in less significant enrichments but, in
general, most of the pathways in Supplementary Table 2
seem to be shared by the different essential networks in the
different cell lines, despite the genes involved in the differ-
ent networks are not the same. This fact suggests that in
different cancer cell lines the same processes triggering
cancer are acting in different ways, through different
genes, to produce different flavors of the same cancer hall-
marks (84). Supplementary Figure 1 shows the different
networks found for the cell lines analyzed.

PaGe 10 oF 13

CONCLUSIONS

Here, we propose a simple but powerful approach able to
find the sub-network component associated to extreme
values of a list of genes (or proteins) ranked by any cri-
terion (differential gene expression, disease association in
a GWAS, etc.). Contrarily to other methods, which need
to optimize a number of parameters in a way that is sen-
sitive to initial conditions, our proposal has only one par-
ameter which is the value used to rank the list of genes.
This rank is not restricted to a particular biological
property (e.g. differential gene expression, gene associ-
ation to a disease or trait) and can consequently be
applied in a large variety of experimental or theoretical
scenarios. An exhaustive analysis for finding the combin-
ation of parameter and test that best distinguishes between
a real network and a random network has been per-
formed. The results point to the average number of nodes
per component of the MCN as the most sensitive param-
eter to discover real networks and distinguish them from
random networks. An advantage over almost all similar
approaches is that this approach allows the inclusion of
molecules originally not in the portion of the list analyzed
that connect molecules in the subset analyzed. This
provides a more realistic and efficient approach to real
scenarios where not all the proteins involved in the
network are in the portion of the list analyzed either
because of experimental sensitivity or because the experi-
ment does not allow to target them (e.g. a differential ex-
pression experiment will not point on genes relevant but
expressed in both of the conditions compared).

As part of our efforts to provide the scientific commu-
nity with user-friendly web tools, a web server to run this
test, named NetworkMiner, is freely available within the
Babelomics (47) environment. This web interface and visu-
alization tool was implemented using the latest web
standard HTMLS5. This new standard allows implement-
ing advanced SVG graphics directly on the web browser
without the necessity of installing any plug-in or Adobe
Flash or using any Java applet. Moreover, HTLMS
standard is extensively supported by most of the modern
web browsers.

The web server offers a large number of options for the
graphical representation of the network, easily customiz-
able, including different layouts for the network and back-
grounds, within the context of the range of graphical
possibilities of HTMLS5. The program is connected to
other Babelomics tools such as FatiGO (5), which allows
studying whether there is a functional enrichment analysis
in the MCN based on GO terms, KEGG or Reactome
pathways.

The approach has been applied in several case examples
that illustrate the power of this methodology to uncover
the network component contained in different groups of
genes selected by different experiments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2 and Supplementary
Figure 1.
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Figure 5. Significant sub-networks (see also Table 1) found among the lists of most essential genes, ranked by the RIGER parameter, obtained for
both cell lines: (A) Jurkat and (B) K562. Genes are colored according to their main functions (KEGG terms): pale blue: connecting protein; blue:
MAPK signaling pathway; green: ribosome; yellow: proteasome; pink: cell cycle; magenta: apoptosis; orange: spliceosome and pale green: RIG-I-like

receptor signaling pathway.
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