Skip to main content
. 2012 Aug 31;40(20):10041–10052. doi: 10.1093/nar/gks768

Table 1.

Re-engineering of riboswitches

Target RNAinverse
RNAensign
100K
310K
1000K
length Inline graphic Inline graphicG Inline graphic Inline graphicG Inline graphic Inline graphicG Inline graphic Inline graphicG Inline graphic Inline graphicG
Ade ydhL gene OFF 110 0.238 −17.2 0.118 −25.0 0.169 −25.5 0.100 −25.7 0.116 −24.7
Ade ydhL gene ON 110 0.238 17.2 0.237 −6.1 0.343 −9.2 0.352 −3.7
Ade add gene OFF 113 0.446 −1.8 0.253 −5.8 0.075 −9.2 0.073 −15.2 0.088 −8.8
Ade add gene ON 113 0.446 1.8 0.307 −9.8 0.159 −9.8 0.189 −10.8
c-di-GMP OFF 124 0.381 −8.8 0.237 −25.3 0.233 −27.7 0.225 −38.0 0.304 −27.3
c-di-GMP ON 124 0.381 8.8 0.292 −15.1
SAM OFF 134 0.302 −15.3 0.123 −15.2 0.213 −29.0 0.183 −22.7 0.147 −22.5
SAM ON 134 0.302 15.3
xpt-pubX OFF 148 0.073 −18.3 0.101 −22.7 0.116 −31.6 0.117 −18.9
xpt-pubX ON 148 0.073 18.3 0.435 −5.8

Re-engineering of riboswitches using RNAinverse (we report the best results among 1000 runs) and RNA-ensign. Only solutions with less than 10% of mutations have been considered. We selected the solution with the lowest entropy. For each method, we report the entropy Inline graphic and the difference of energies Inline graphicG between the two conformation ‘ON’ and ‘OFF’ of the riboswitches. To illustrate the versatility of our approach, we ran RNA-ensign with three different formal temperatures: T = 100 (increased thermodynamic pressure), T = 310 (default) and T = 1000 (reduced thermodynamic pressure).