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ABSTRACT

To elucidate how microRNA (miRNA)-regulated
networks contribute to the uncontrolled growth of
hepatoma cells (HCCs), we identified several
proliferation-related miRNAs by comparing miRNA
expression patterns in clinical HCC samples and
growth-arrested HepG2 cells. To explore the mo-
lecular functions targeted by these miRNAs, we
classified genes differentially expressed in clinical
HCC samples into six functional clusters based on
their functional similarity. Using target enrichment
analysis, we discovered that targets of three
proliferation-related miRNAs—miR-101, miR-199a-
3p and miR-139-5p—were significantly enriched in
the ‘transcription regulation’ functional cluster. An
interactome network consisting of these three
miRNAs and genes in the ‘transcriptional control’
cluster revealed that all three miRNAs were highly
connected hubs in the network. All three miRNA-
centered subnetworks displayed characteristics of
a two-layer regulatory architecture, with transcrip-
tion factors and epigenetic modulators as the first
neighbors and genes involved in cell-cycle progres-
sion as second neighbors. The overexpression of
miR-101 in HepG2 cells reduced the expression of
transcription regulators and genes in cell-cycle
progression and suppressed the proliferation and
colony formation of HepG2 cells. This study not
only provides direct experimental data to support
the ‘miRNA-centered two-layer regulatory network’
model, but our results also suggest that such a
combinatorial network model may be widely used

by miRNAs to regulate critical biological
processes.

INTRODUCTION

MicroRNAs (miRNAs) are a family of small RNA mol-
ecules that negatively regulate the expression levels of
protein-coding genes. Mature miRNAs are incorporated
into the RNA-induced silencing complex (RISC) and
guide the RISC to interact with messenger RNAs based
on partial sequence complementarity, leading to the deg-
radation or translational repression of target mRNA.
There is accumulating evidence that indicates miRNAs
play critical roles in diverse cellular processes, including
cell growth, survival, differentiation and maintenance of
cellular homeostasis, while dysregulation of miRNAs may
be responsible for various disorders, including cancers
(1–3). A genome-wide analysis revealed that >50% of
human miRNAs are located in the chromosomal fragile
sites that are strongly associated with chromosomal alter-
ations in human malignancy (2,4). Indeed, numerous
profiling studies have revealed that the expression
patterns of miRNAs are significantly different in cancer
tissues. In addition the results of those studies indicate
that the expression levels of certain miRNAs are fre-
quently altered in tumor tissues. Functional studies
further demonstrate that these dysregulated miRNAs
can function either as oncogenes or tumor suppressors.
Experimental perturbation of these miRNAs is associated
with profound changes in all aspects of tumor phenotype
both in vitro and in vivo.

The mechanism by which miRNA exerts its functional
impact is a topic of great interest in cancer biology.
Several computational algorithms based on sequence com-
plementarity have been developed to predict miRNA
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targets. This computational approach estimates that each
miRNA may have hundreds to thousands of mRNA
targets (5,6). Similarly, individual protein-coding genes
may be targeted by tens to hundreds of miRNAs (6).
Recent large-scale transcriptomics and proteomics
studies have confirmed that individual miRNAs may
alter the transcript and protein levels of hundreds to thou-
sands of genes. However, despite the profound functional
consequences observed, the effect of miRNAs on the ex-
pression levels of most target genes is very subtle. Two
potential mechanisms have been proposed to explain the
apparent discrepancy between the biochemical and biolo-
gical effects. The first mechanism hypothesizes that
miRNAs may achieve a profound biological impact by
targeting multiple genes in the same signaling pathway.
This mechanism was initially proposed following
analysis of the pathway and enrichment of computation-
ally predicted miRNA targets and subsequently verified
using in vitro studies. For example, the miR-16 family
has been shown to trigger G0/G1 arrest by silencing
multiple cell-cycle genes simultaneously (7). Similarly,
miR-17-5p has been shown to regulate cell-cycle progres-
sion by suppressing, in a coordinated manner, more than
20 genes involved in the G1/S transition (8). The second
mechanism suggests that miRNAs may effectively regulate
a biological function by selectively targeting critical hubs
such as transcription factors in the signaling network.
These transcription factors can amplify the subtle effect
of miRNAs throughout the network to produce profound
biological consequences. By analyzing the molecular func-
tions of the predicted targets of miRNAs, Cui et al. found
that transcription factors are the most frequently targeted
protein-coding genes (9). In addition, by analyzing the
interaction network of miRNAs, Tu et al. observed a
miRNA-centered two-layer regulatory cascade in which
transcription factors function as key mediators of
miRNA-initiated regulatory effects (10). These complex
interactions between miRNAs and their targets fine tune
the expression levels of critical genes to maintain a stable
homeostasis of biological processes such as cell growth
and development. The alteration of miRNA levels
disrupts the network and can lead to severe consequences.

While early studies suggested that miRNAs mainly
function through translational suppression, recent
studies (11–13) indicate that in mammalian cells
miRNAs predominantly exert their effects by decreasing
the levels of target mRNAs. This observation provides the
rationale to integrate a microarray approach and miRNA
target prediction for investigating miRNA-regulated
networks and functional consequences. Indeed, through
the experimental manipulation of single miRNAs in
cultured cells, several groups have successfully constructed
miRNA-regulated networks of biological functions by
examining the inverse expression of miRNAs and their
targets with microarrays (14,15). However, inferring
miRNAs-regulated networks and function from clinical
tissue microarray data remains highly challenging.
Unlike the in vitro experimental models that allow
dramatic alterations of individual miRNA expression
levels, the magnitude of changes in miRNA levels is
much smaller in clinical samples, thus making the

recognition of miRNA targets in microarrays more diffi-
cult. In addition, the simultaneous alteration of multiple
miRNAs is commonly observed in clinical samples, there-
fore making the target assignment more complicated.
In this study, we describe a stepwise approach to

investigating how miRNA-regulated networks contribute
to the uncontrolled growth of hepatoma cells (HCCs)
(Figure 1). Several tactics were employed to resolve the
issues mentioned above. First, although many miRNAs
were significantly altered in HCC samples, we
incorporated an in vitro cell growth arrest model to
narrow down the proliferation-related miRNA candi-
dates. Second, a computational algorithm for miRNA
target prediction typically yielded targets with varying
degrees of efficacy. We used a stringent cutoff threshold
to eliminate low-efficacy targets. Third, we classified dif-
ferentially expressed genes (DE genes) based on their

Figure 1. Overview of analysis procedure. MiRNAs involved in the
growth control of HCC cells were identified by combining profiling
data from HCC tissue samples and growth-arrested cultured HCC
cells. The targets for each proliferation-related miRNA were predicted
using TargetScan. In parallel, protein-coding genes DE in HCC
samples were identified from microarray data. The DE genes were clus-
tered based on their functional similarity in GO biological process
using GOSim. Enrichment of individual functional clusters with
targets of proliferation-related miRNAs was assessed by Fisher’s
exact test and compared with targets of randomly selected miRNAs.
The gene set from the functional cluster specifically enriched with
proliferation-related miRNAs was uploaded into GeneGO MetaCore
to build a network based on the shortest-path algorithm. Network
topology was visualized and analyzed with Cytoscape to identify
critical hubs and nodes in the miRNA-regulated subnet. Finally, an
in vitro study using cultured HepG2 was carried out to validate the
predicted function and targets of the miRNA-regulated network.
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biological functions and used an R package, GOSim, de-
veloped by Frohlich et al.(16), to resolve the redundancy
issues in GO annotation. Fourth, we calculated the enrich-
ment score between DE genes and predicted miRNA
targets to identify functional cluster regulated by
proliferation-related miRNAs. A shortest-path algorithm
was then used to build the miRNA-regulated network.
A topological analysis was used to identify critical hubs
in miRNA-regulated networks. The biological function
of miRNA-regulated networks was deduced by analyzing
the pathways embedded in the network. Through
this approach, we discovered a network regulated by
three proliferation-related miRNAs, including miR-101,
miR-139-5p and miR-199a-3p, in HCC cells. All three
subnetworks regulated by miRNAs exhibited a two-layer
regulatory cascade with transcriptional regulators,
including both transcription factors and epigenetic modu-
lators, acting as key mediators to regulate the expression
of multiple proliferation-related genes. We carried out
in vitro experiments to confirm the biological functions
of proliferation-related miRNAs and the interactions
between miRNAs and their neighbors in the network.
Our observations are consistent with the ‘miRNA-
centered two-layer regulatory network’ hypothesized by
Tu et al. (10) and illustrate the complex and intricate re-
lationship between miRNAs and transcriptional
regulators.

MATERIALS AND METHODS

Cell culture

The human hepatocellular carcinoma cell line HepG2 was
maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% fetal bovine serum,
2mM L-glutamine and 5% CO2 at 37

�C.

Overexpression of miR-101 in cultured HepG2 cells

Chemically modified double-stranded RNA mimicking
endogenous mature miR-101 and scrambled control
were purchased from Ambion (Austin, TX, USA).
Scrambled control and miR-101 mimetic (15 nM) were
transfected into cultured HepG2 cells using RNAiMAX
reagent following the manufacture’s protocol (Invitrogen,
Carlsbad, CA, USA). The expression level of mature
miR-101 was analyzed using stem-loop qRT–PCR
(Supplementary Figure S1).

Proliferation and colony formation assay

Cultured HepG2 cells were plated at 1000 cells/well in
96-well plate. Cells were transfected with scrambled
control or miR-101, respectively. After 2 and 4 days,
cells were fixed and stained with DAPI. Cell numbers in
each well were quantified by counting the DAPI-stained
nuclei using the IN Cell 1000 image analyzer (GE
Healthcare Lifesciences, Piscataway, NJ, USA). For
colony formation assay, HepG2 cells were plated at 2000
cells/well in a six-well plate. Cells were transfected with
miR-101 mimetic and scramble control, respectively.
After 14 days, cells were stained with crystal violet. The

colony number and size was determined by Image J (NIH,
Bethesda, MD, USA).

Luciferase reporter assay for FOS and TGFB1 30-UTR

To evaluate the direct effect of miR-101 on FOS and
TGFB1, the full-length 30-UTR of FOS which contains
one miR-101-binding site (Supplementary Figure S2A)
and TGFB1 was cloned into the pMIR-REPORT vector
(Invitrogen). Adherent HepG2 cells in 24-well plate at
80% confluency were transfected with 15 nM of miR-101
mimetic or scrambled control, respectively. After 24 h,
cells were cotransfected with 0.33 mg/well of control
pMIR-REPORT or fos-pMIR-REPORT and 0.033 mg/
well of control Relina luciferase expression vector using
Lipofectamine 2000 (Invitrogen). Cells were lysed 24 h
later and luciferase activity was analyzed using the dual
luciferase reporter system (Promega). The firefly luciferase
activity was normalized to the Relina luciferase control.

TGFB1 promoter activity assay

To evaluate the effect of miR-101 on TGFB1 promoter
activity, the TGFB1 promoter region with two
AP1-binding sites (Supplementary Figure S2B) was
cloned into the pGL3-Basic Reporter Vector (Promega).
HepG2 cells were grown in 24-well plate to 80% conflu-
ence and transfected with 15 nM of scrambled control or
miR-101 mimetic for 24 h. Cells were then cotransfected
with 0.33 mg/well of control pGL3-Basic reporter or
TGFB1-pGL3-basic reporter and 0.033 mg/well of
control Relina luciferase expression vector using
Lipofectamine 2000 (Invitrogen). Eighteen hours after
transfection, cells were treated with TPA (100 nM) to
activate AP1 activity for 6 h. Cells were lyzed and
luciferase activity was determined using the dual luciferase
reporter system (Promega). The firefly luciferase activity
was normalized to the control Relina luciferase activity.

RNA preparation

HCC tissue samples and adjacent normal liver tissues were
obtained from patients undergoing surgery and were
frozen immediately after surgical resection. Tissue collec-
tion was performed in accordance with regulations of the
Institutional Regulation Board of Chang Gung Memorial
Hospital, Taiwan. A total of 23 paired normal and
hepatoma tissues were used in this study, twenty paired
tissues were used in miRNA quantification while the re-
maining three were used for microarray study to identify
DE genes. Total RNA was extracted from biopsied
samples and cultured HepG2 cells using the TRIzol
reagent following the manufacturer’s protocol
(Invitrogen). RNA concentration was determined using
a NanoDrop spectrophotometer. RNA integrity was
evaluated using an Agilent 2100 BioAnalyzer (Agilent
Technologies, Palo Alto, CA, USA). Only samples with
an RNA integrity number >7.5 were used for miRNA and
mRNA quantification.
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Microarray analysis

The RNA was processed, labeled and hybridized to
Affymetrix U133 Plus2 chips according to the manufac-
turer’s protocol. The raw Affymetrix HG-U133 Plus2 data
were MAS5 normalized using the R package. DE genes
were identified using Partek Genomics Suite (version 6.4)
with the following settings: the gene was confidently
detected in at least 50% of the samples, the fold-change
was >2 and the paired t-test (two-tailed) P-value was
< 0.05. The expression values of the DE genes were sub-
jected to hierarchical clustering using Pearson’s dissimilar-
ity distance and Ward’s method.

miRNA expression analysis

The expression levels of 270 miRNAs were determined by
stem-loop RT–PCR as previously described (17). Briefly,
1 mg of total RNA from tissues or cultured cells was added
to a reverse transcription (RT) reaction along with pooled
miRNA-specific stem-loop RT primers. The RT products
were diluted and quantified with a miRNA-specific
forward primer and a universal reverse primer using an
ABI Prism 7900 Fast Real-Time PCR system (Foster City,
CA, USA). The expression levels of individual miRNAs
were expressed as 39 substrate the value of threshold cycle
(Ct), defined as the cycle number at which the change of
SYBR green intensity crosses the threshold of 0.2, after
global median normalization. A Student’s t-test was per-
formed to identify significantly and DE miRNAs.

mRNA quantification with qRT–PCR

For quantitating mRNA expression, the total RNA was
reverse transcribed using oligo-dT primers. The reverse
transcribed products were diluted and quantified using
gene-specific PCR primers (Supplementary Table S1)
designed by LightCycler and quantified using an ABI
Prism 7900 Fast Real-Time PCR system (Foster City) as
previously described (17). The average Ct of two internal
controls, EEF1A1 was used for data normalization.

Target prediction

To perform target prediction, the 30-UTR sequence of
17 330 human protein-coding genes was retrieved from
the UCSC genome database, and the sequences of all
mature miRNAs were downloaded from miRBase
(http://www.mirbase.org/). Target prediction and context
score analyses were performed using the TargetScan_50.pl
and TargetScan_Context_Scores.pl scripts downloaded
from the TargetScan website (http://www.targetscan.org/
vert_50/). A sum context score<�0.2 was used as a filter
to select high efficacy targets (5).

Functional classification of DE genes

DE genes were separated into different functional groups
based on their Gene Ontology (GO) Annotation database
biological process annotations. Their functional similarity
was calculated using the R package GOSim (16). The
package measures the semantic similarity of genes based
on their distances to the closest common ancestor term
and/or the annotation statistics of their common

ancestor terms. We used the Jiang and Conrath’s
method to evaluate the GO term similarity because of
the strong correlation between GO and family similarity
(18). The similarity scores calculated using this method
reflects the similarity between genes based on their
complete GO annotation. The maximum similarity
between any pair of genes was used to generate the
distance matrix for functional classification. Functionally
similar genes were partitioned using the K-means cluster-
ing algorithm, with a k-range of 3 to 20. A Davies–
Bouldin (DB) score (19) was calculated using 200 iter-
ations to estimate the ratio of within-cluster scatter to
between-cluster separation. The clustering results were
exported to spreadsheet and visualized by scatter plot.

Statistical analysis

We used Fisher’s exact test, calculated using the R
software package, to examine the specific enrichment of
proliferation-related miRNA targets in a functional
cluster. The 2D contingency matrix consisted of predicted
targets of a specific proliferation-related miRNA and DE
genes in a specific functional cluster. The Fisher’s exact
test P-value was converted into a �log scale and reported
as enrichment score.

Network modeling and topological analysis

To construct the miRNA-regulated network, we uploaded
the DE genes within each cluster and putative miRNA to
the target relationship as customized interactions in a
MetaCore database (GeneGo, St Joseph, MI, USA). For
each cluster, the uploaded dataset was used to construct a
separate network consisting of the shortest paths (i.e.
having the smallest possible number of directed one-step
interactions) between pairs of initial objects in each direc-
tion based on standard Dijkstra’s shortest paths algo-
rithm. In addition to the protein–protein interactions,
the networks also contained interactions based on tran-
scription regulations, including transcription factors and
miRNAs to their targets. The resulting networks were
exported to Cytoscape (http://cytoscape.org/index.php)
for visualization and network topology analysis. For the
network topological analysis, we defined the network as a
directed graph, G, let G=(V, E). The CentiScaPe 1.0
pug-in was used to calculate network centralities,
including node degrees and Betweenness, for all genes
and miRNAs in the network (20). The degree of connec-
tions, deg(v), reflects the number of nodes directly connect
to a given node v. A node assessed to have a high degree of
connection is likely to be a regulatory hub. The SP
(shortest path) Betweenness values were determined to
analyze the importance of a given node in maintaining
the functionally coherent network. The SP betweenness
was scored by counting the number of shortest paths
linking s and t through a node v and divided by the
total shortest paths between s and t:

CspbðvÞ ¼
X

s 6¼v2V

X

t 6¼v2V

�stðvÞ

�st
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where �stðvÞ indicates the number of shortest paths linking
s and t through a node v and �st indicates the total number
of shortest paths between s and t. A node with a higher
Betweenness score is more crucial to maintaining network
stability. Finally, a functional enrichment analysis was
performed using the Database for Annotation,
Visualization and Integrated Discovery 2008 Tool (21,22).

RESULTS

Identification of miRNAs involved in the growth control
of HCC cells

Recent studies clearly demonstrate that miRNAs are
involved in multiple aspects of cancer initiation and pro-
gression, including the regulation of cell growth, survival,
angiogenesis and metastasis (2,23). To identify miRNAs
that are differentially expressed in HCC cells, we profiled
the expression levels of 270 miRNAs in 20 pairs of HCC
and adjacent normal liver tissue samples using a stem-loop
RT–qPCR method previously established in our labora-
tory (17). DE miRNAs were identified using paired t-tests
after global median normalization. We identified 12
upregulated miRNAs and 26 downregulated miRNAs in
the HCC samples (paired t-test, P-value� 0.05,
fold-change� 2; Supplementary Table S2). These DE
miRNAs include several well-characterized oncogenic
miRNAs, such as miR-10b, miR-18a, miR-93, miR-221,
miR-222 and tumor suppressive miRNAs, such as
miR-22, miR-101, miR-122, miR-125b, miR-139-5p,
miR-199a-3p, miR-199a-5p and miR-451. The overall
miRNA expression patterns observed in our HCC
samples were similar to the miRNA expression profiles
reported by two previous studies (24–26). Unsupervised
hierarchical clustering using these 38 DE miRNAs
clearly separated normal and HCC samples into two dif-
ferent groups (Figure 2A).

To further identify miRNAs involved in the prolif-
eration of HCC cells, we took advantage of a
well-characterized TPA (12-O-tetradecanoylphorbol
13-acetate)-induced growth arrest model of cultured
HepG2 cells (27). Cultured HepG2 cells were treated
with 100 nM of TPA for 3 days to induce growth arrest,
and the expression patterns of 270 miRNAs in the
TPA-treated HepG2 cells were compared against
dimethyl sulfoxide (DMSO)-treated cells (Figure 2B).
Using a fold-change �3 as the cutoff, we identified 15
upregulated and nice downmodulated miRNAs in
TPA-arrested HepG2 cells (Supplementary Table S3).

We reasoned that a proliferation-related miRNA would
display an inverse expression pattern in uncontrolled
growing HCC tissues and growth-arrested HepG2 cells.
Therefore, we examined the miRNA expression patterns
to locate miRNAs whose expression was inversely altered
in the HCC samples and in the TPA-treated HepG2 cells
(Figure 2C). We identified five miRNAs, including miR-22,
miR-100, miR-101, miR-139-5p and miR-199a-3p, whose
expression levels were upmodulated by TPA treatment and
downmodulated in HCC samples. In addition, we also
identified miR-10b, whose expression was upmodulated
in HCC samples but downmodulated in HepG2 cells
upon TPA-induced growth arrest. These six inversely ex-
pressed miRNAs were selected as proliferation-related
miRNA candidates for subsequent studies (Table 1).

Functional classification of DE protein-coding genes
in HCC

To identify candidate genes regulated by proliferation-
related miRNAs, we analyzed the expression patterns of
protein-coding genes in three additional pairs of normal
and HCC tissues using microarrays and identified a
total of 1648 DE genes, including 1136 upmodulated
and 512 downmodulated genes in the HCC samples
(Supplementary Table S4). Unsupervised hierarchical

Figure 2. miRNAs inversely modulated in HCC tissues and TPA-treated cultured HCC cells. (A) Hierarchical clustering of 20 normal liver tissues
samples and 20 HCC samples based on the expression levels of 38 DE miRNAs. Hierarchical clustering was generated using Pearson’s dissimilarity
distance and the average linkage method. (B) Expression levels of 270 miRNAs in cultured HepG2 cells after being treated with DMSO or 100 nM
TPA for 3 days. The dotted red lines indicate the 3-fold change boundary. (C) A Venn diagram of miRNAs DE in HCC samples and miRNA altered
upon TPA treatment. Shown in the intersection are the miRNAs inversely expressed in the HCC samples and TPA-treated samples.
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clustering analysis using these DE genes clearly separated
the HCC tissues from the normal liver tissue samples
(Figure 3A). To explore how these DE genes reflect the
underlying biological processes differentiating HCC from
normal hepatocytes, we used GO terms to annotate the
biological processes associated with these DE genes and

then calculated their functional similarity based on the
semantic similarity of their GO terms using the GOSim
package (16). These annotated DE genes were then
separated into multiple functional classes based on their
functional similarity using the k-means clustering method.
A total of 1104 DE genes were annotated with GO

Figure 3. Functional clustering of genes DE in HCC tissues. (A) Unsupervised hierarchical clustering of 1648 genes DE in normal liver tissue
samples and HCC samples. (B) Distribution of DB values of the k-means clustering of the functional similarity of DE genes. (C) Principal com-
ponent analysis of the functional clusters generated by k-means clustering method based on the similarity distance calculated by GOSim.

Table 1. MicroRNAs inversely altered in HCC tissues and TPA-treated HepG2 cells

microRNA
name

Chromosomal
location

Tissue miRNA
levelsa

Fold-change
(T versus N)

Paired
t-test
P-value

HepG2 miRNA
levelsa

Fold change
(TPA/DMSO)

Predicted
targets

Normal Tumor DMSO TPA

miR-139-5p 11q13.4 12.73±0.47 10.32±1.27 �5.35 1.54� 10�7 6.72 9.25 5.79 617
miR-199a-3p 1q24.3, 19p13.2 10.83±1.22 7.63±2.29 �9.16 9.02� 10�6 4.65 7.02 5.17 531
miR-101 1p31.3, 9p24.1 6.07±0.84 4.98±0.90 �2.13 1.48� 10�5 5.54 7.28 3.35 1004
miR-10b 2q31.1 5.21±0.73 7.20±1.53 3.98 5.57� 10�5 11.10 9.13 �3.92 329
miR-100 11q24.1 12.47±0.83 10.39±2.90 �4.22 5.94� 10�3 3.90 7.74 14.36 39
miR-22 17p13.3 12.45±1.53 11.41±1.92 �2.06 7.08� 10�3 6.50 8.09 3.00 459

amiRNA levels expressed as 39-Ct, Tissue miRNA levels expressed as mean±SD.
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biological processes, and a matrix of similarity distance
was generated for k-means clustering. To determine the
optimal number for a functional cluster, the k-means clus-
tering was performed for cluster numbers from 3 to 20,
and the DB value was calculated for each cluster number.
The lowest DB value was detected when the cluster
number was set at 6 (Figure 3B). These results suggest
that the annotated DE genes in HCC cells can be
grouped into six major functional clusters. A Principle
Component Analysis using similarity distance confirmed
that the annotated DE genes within each cluster were
closely associated with each other, and all six clusters
were separated with little or no overlap (Figure 3C).
These six functional clusters comprised genes coding for
protein transporters (c1), immune response (c2), cell-cycle
regulation (c3), signal transduction (c4), protein transla-
tion (c5) and regulation of transcription (c6). For each
functional cluster, the cluster size, enrichment statistics
and the most informative GO terms are summarized in
Table 2.

Functional clusters significantly and specifically enriched
by targets of proliferation-related miRNAs

To understand the relationship between proliferation-
related miRNAs and the DE functional cluster in HCC
cells, we predicted the target spectrum of these
proliferation-related miRNAs and assessed which func-
tional cluster was enriched with their putative targets.

The targets for proliferation-related miRNAs were pre-
dicted using the TargetScan algorithm, and high-efficacy
targets were selected by context score filtering (��0.2) (5).
A total of 2954 unique targets were predicted for the six
proliferation-related miRNAs. The extent of miRNA
target enrichment in each functional cluster was
analyzed using Fisher’s exact test (Table 3). A total of
248 predicted targets for all six proliferation-related
miRNAs were mapped to the HCC DE genes, with a
highly significant enrichment P-value (P-value=
1.85� 10�8). The targets of three proliferation-related
miRNAs, including miR-101, miR-139-5p and
miR-199a-3p, were found to be significantly enriched in
the regulation of a transcription cluster (c6) with P-values
of 0.001, 0.006 and 0.015, respectively. In addition, targets
of miR-139-5p were found enriched in immune response
cluster (c2, P-value=0.029) and targets of miR-199a-3p
were found enriched in the signal transduction cluster (c4,
P-value=0.018). To our surprise, genes in the cell-cycle
control cluster (c3) were not significantly enriched by
targets of any proliferation-related miRNA, implying
that genes involved in cell-cycle progression are not the
primary targets for proliferation-related miRNAs.

The size of these six functional clusters ranged from 81
to 306 genes, with c6 being the largest cluster. It is
possible that the difference in cluster size may affect
the results of the enrichment analysis. To rule out the
potential biases caused by cluster size, we calculated the

Table 2. Functional classification of differentially expressed genes in HCC

Cluster name No. of genes No. of enriched GO termsa Enrichment P-valuesb Biological function

C1 98 37 (109) 1.29� 10�4 GO:0015031�protein transport
GO:0045184�establishment of protein localization
GO:0055085�transmembrane transport
GO:0046907�intracellular transport
GO:0016192�vesicle-mediated transport

C2 166 36 (127) 1.45� 10�2 GO:0002526�acute inflammatory response
GO:0042158�lipoprotein biosynthetic process
GO:0006954�inflammatory response
GO:0042157�lipoprotein metabolic process
GO:0007596�blood coagulation

C3 81 97 (138) 2.63� 10�9 GO:0000087�M phase of mitotic cell cycle
GO:0000280�nuclear division
GO:0007067�mitosis
GO:0051726�regulation of cell cycle
GO:0000075�cell cycle checkpoint

C4 242 284 (459) 1.07� 10�3 GO:0007165�signal transduction
GO:0007242�intracellular signaling cascade
GO:0007243�protein kinase cascade
GO:0006915�apoptosis
GO:0042981�regulation of apoptosis

C5 208 84 (135) 5.89� 10�4 GO:0006412�translation
GO:0006397�mRNA processing
GO:0008380�RNA splicing
GO:0019752�carboxylic acid metabolic process
GO:0010608�posttranscriptional regulation of gene expression

C6 306 68 (119) 2.04� 10�12 GO:0045449�regulation of transcription
GO:0010468�regulation of gene expression
GO:0031323�regulation of cellular metabolic process
GO:0006325�chromatin organization
GO:0016568�chromatin modification

aTerms with enrichment P-value< 0.05; total number of GO terms are shown in parenthesis.
bEnrichment P-value calculated using DAVID.
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baseline enrichment score for each functional cluster by
randomly selecting six miRNAs whose expression level
was not significantly altered in HCC cells and conducted
target prediction and target enrichment analysis for these
six functional clusters. Baseline enrichment fraction and
enrichment score were estimated from 10 such random
sets to avoid potential bias generated by miRNA selec-
tion. The details on the selected miRNAs, predicted
targets and the enrichment score in each functional
cluster for these 10 random sets used to derive the
baseline estimate are provided in Supplementary Table
S5. Both the enrichment fraction and enrichment score
of the proliferation-related miRNA targets were signifi-
cantly higher in the c6 cluster (one sample t-test
P-values< 0.0001, Figure 4A and B) compared with the
baseline level, implying that the proliferation-related
miRNAs exert their biological function by targeting
genes in the transcription regulation (c6) cluster. These
results are consistent with a previous report that indi-
cates that miRNAs preferentially target nuclear
proteins, most of which are transcription factors (9).

Building a miRNA-regulated network based on
interactome and identifying critical nodes and hubs

To understand how these three proliferation-related
miRNAs, miR-101, miR-139-5p and miR-199a-3p,

regulate genes in the cluster c6, we generated an
interactome network to connect these three miRNAs
and all the genes in the c6 cluster. The network was
modeled using the shortest path algorithm in GeneGO,
with a maximum allowance of two intermediate nodes.
The resulting network contained 811 nodes connected by
2975 links (Figure 5A). To assess the contribution of in-
dividual nodes to the stability of the modeled network,
topological properties, including the degree of connection
and Betweenness, were calculated and ranked for each
node. Nodes with a high (top 5%) degree of connection
were considered hubs, and nodes with high (top 5%)
Betweenness were defined as bottlenecks (Table 4).
Among the 31 ‘hub-bottleneck’ nodes, >50% were tran-
scription factors, for example, FOS, EGR1, HNF4A,
MYC, SP1, NFYA, LEF1 and TP53. Interestingly, the
highest ranked node (both of Betweenness and degree of
connection), FOS, is targeted by all three miRNAs
(Table 4). The remaining ‘hub-bottleneck’ nodes
included signaling molecules (CDKN2A, ERK1/2,
MAP3K1 and MTOR) and genes involved in epigenetic
regulation (EZH2, SUZ12). In addition to the
protein-coding genes, the three miRNAs, miR-101,
miR-139-5p and miR-199a-3p, also exhibited a
high-ranking ‘hub-bottleneck’ property in the network.
All three miRNAs were ranked within the top 3% in

Figure 4. Enrichment of individual functional clusters with targets of proliferation-related miRNAs and randomly selected miRNAs. (A) Number of
proliferation-related miRNAs (GR-miRs) and numbers of randomly selected miRNAs (Random-miRs) with targets significantly enriched in indi-
vidual functional clusters. Target enrichment analysis was performed using a one-sided Fisher’s exact test, and the threshold for significantly enriched
miRNA was P< 0.05. Data for random miRs are presented as the average±SD from ten sets of randomly selected miRNAs. (B) Aggregate
enrichment score in individual functional cluster by proliferation-related miRNAs (GR-miRs) and randomly selected miRNAs (Random-miRs).
Enrichment scores for individual miRNA are calculated as �log(P-value) where the P-value was calculated by Fisher’s exact test. Data for random
miRs are presented as the average±SD from ten sets of randomly selected miRNAs. For both 4A and B, the comparisons between GR-miRs and
Random-miRs were performed using one-sample t-tests (two-tailed). *P< 0.05; ***P< 0.0001.

Table 3. Enrichment of miRNA targets in functional clusters

miRNA name Predicted target Enrichment of miRNA targets in clustera

C1 (98) C2 (166) C3 (81) C4 (242) C5 (208) C6 (306) C1–C6 (1104)

miR-100 39 0 0 0 0 0 1 1
miR-101 1004 6 14 3 18 10 31*** 82***
miR-10b 329 2 2 2 7 4 4 21
miR-139-5p 617 6 11* 4 13 8 20** 62***
miR-22 531 3 6 3 7 4 11 34
miR-199a-3p 459 0 5 4 14* 8 17* 48***
all 6 miRs 2954 17 38* 16 59** 34 84*** 248***

aP-value calculated by Fisher’s exact test.
*P-value< 0.05; **P-value< 0.01; ***P-value< 0.005.
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Figure 5. microRNA-centered interactome network from cluster 6. Nodes with a top 5% Betweenness value from cluster 6 interactome and
miR-101, miR-139-5p and miR-199a-3p are highlighted. The distribution of nodes was based on the Betweenness values rather than the regulatory
level of the interactions. The higher the rank percentile, the more centered the node. The entire regulatory network (811 nodes and 2975 edges) is
shown in (A). (B–D) depicts the miR-101-, miR-139-5p- and miR-199a-3p-centered subnetworks, respectively. The subnetworks for each specific
miRNA were constructed by a two-step shortest path of regulatory interactions. There are 382 nodes and 552 edges in the miR-101-centered
subnetwork (B), 287 nodes and 354 edges in the miR-139-5p-centered subnetwork (C) and 142 nodes and 166 edges in miR-199a-3p-centered
subnetwork (D). Genes are represented by nodes and functional associations by edges.
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Betweenness and degree of connection among the 811
nodes in the network, suggesting that these miRNAs
play critical roles in stabilizing the c6 cluster network con-
nections (Table 4). Among these three miRNAs, miR-101
is the node with the highest ranking in both Betweenness
and degree of connection.

The miRNA-regulated subnetwork exhibits a two-layer
regulatory architecture

To further understand the regulatory architecture and the
biological function of these proliferation-related miRNAs,
we extracted the subnetwork regulated by individual
miRNAs and evaluated their topological properties
(Supplementary Tables S6–S9). Notably, when the
miRNA-regulated subnets were plotted based on the topo-
logical ranking of individual nodes, all three miRNA-
regulated subnets exhibited a two-layer regulatory archi-
tecture, with multiple transcriptional regulators clustered
in the inner layer, while genes with other molecular

functions were scattered in the outer layer. The subnet-
work regulated by miR-101 consisted of 381 nodes con-
nected by 552 links (Figure 5B). The high-ranking nodes,
which are with higher Betweenness value, in the miR-101
subnet included multiple transcription factors (FOS, SP1,
LEF1, MYC, EGR1, TP53, STAT3, NFYA, RELA,
ZNF143 and CEBPD), epigenetic modulators (EZH2,
SUZ12 and NCoR) and signaling molecules (MTOR,
JAK2, ERK1/2, CDKN2A and IGF1). Some of these
top-ranking nodes, including FOS, ZNF143 and EZH2,
were predicted targets of miR-101. These high-ranking
nodes were clustered in the inner layer of the miR-101
subnet. Notably, miR-199a-3p was also a high-ranking
node within the miR-101 subnet. miR-199a-3p itself also
regulated a subnet with 142 nodes connected by 166 links
with multiple high-ranking nodes including transcription
factors (FOS, SP1, MYC, EGR1, LEF1, NFYA, TP53,
CEBPD and ESR1), epigenetic modulators (EZH2,
SUZ12) and signaling molecules (IGF1 ad CDKN2A)
(Figure 5C). Similarly, the miR-139-5p subnet contained

Table 4. Topological properties of the top 5% objects in cluster C6 network

GeneGO
object
name

Mappedgene
symbol

Molecular
function

DEGs Predicted
targetsa

miRNA
subnetworkb

Betweenness No. of interactions
(degree)

Value Rank*
(%)

Total In Out Rankc

(%)

AP-1 FOS TF 101, 139-5p,
199-3p

101, 139-5p, 199a-3p 249208.61 0.14 291 112 179 0.14

EGR1 EGR1 TF Yes 101, 139-5p, 199a-3p 72295.33 0.27 125 32 93 0.28
miR-101 miR-101 56924.00 0.41 77 4 73 0.42
HNF4-alpha HNF4A TF 101, 139-5p 44757.16 0.54 69 8 61 0.56
miR-139-5p miR-139-5p 30350.00 0.68 50 1 49 0.99
c-Myc MYC TF 101, 139-5p, 199a-3p 26864.92 0.82 63 25 38 1.41
SP1/SP3 complex SP1 TF 199-3p 101, 139-5p, 199a-3p 26196.43 0.95 70 14 56 0.70
NF-Y NFYA 199a-3p 25680.85 1.09 63 12 51 0.85
Tcf(Lef) LEF1 TF 101, 139-5p, 199a-3p 22192.08 1.22 59 24 35 1.55
ESR1 (nuclear) ESR1 TF 101, 139-5p, 199a-3p 21792.08 1.36 54 22 32 1.83
p53 TP53 TF 101, 139-5p, 199a-3p 21048.43 1.50 57 28 29 2.11
IGF-1 IGF-1 101, 139-5p, 199a-3p 20782.87 1.63 46 36 10 7.46
KLF4 KLF4 TF Yes 101, 139-5p 20556.33 1.77 55 25 30 1.97
C/EBPdelta CEBPD TF Yes 101, 139-5p, 199a-3p 19309.54 1.90 61 36 25 2.54
miR-199a-3p miR-199a-3p 101 18887.15 2.04 55 13 42 1.13
NF-kB RELA TF 101, 139-5p 17556.05 2.18 41 15 26 2.39
ERK1/2 ERK1/2 16240.25 2.31 27 13 14 4.93
EZH2 EZH2 EPIGENES Yes 101 101, 139-5p, 199a-3p 15792.27 2.45 53 13 40 1.27
Androgen receptor AR TF 101, 139-5p 13974.19 2.59 40 20 20 3.24
JAK2 JAK2 101 101, 139-5p 13876.60 2.72 26 11 15 4.65
c-Src SRC 101, 139-5p 13570.23 2.86 22 13 9 9.01
MEKK1(MAP3K1) MAP3K1 12517.24 2.99 10 7 3 24.08
N-CoR NCOR1 TF Yes 101, 139-5p 12444.68 3.13 47 14 33 1.69
STAT3 STAT3 TF 101, 139-5p 12201.45 3.27 28 12 16 4.08
p16INK4 CDKN2A Yes 101, 139-5p, 199a-3p 11640.78 3.40 45 41 4 18.17
mTOR MTOR Yes 101, 139-5p 9691.05 3.54 30 20 10 7.46
SUZ12 SUZ12 EPIGENES Yes 199a-3p 9046.93 3.67 40 12 28 2.25
Caspase-3 CASP3 101, 139-5p 101, 139-5p 8983.41 3.81 12 3 9 9.01
IRF8 IRF8 TF Yes 8469.37 3.95 35 12 23 2.82
Ubiquitin UBB 101, 139-5p, 199a-3p 8159.22 4.08 31 9 22 2.96
LRH1 NR5A2 TF Yes 139-5p 101, 139-5p 7736.99 4.22 38 27 11 6.34
ATF-3 ATF3 TF Yes 101, 139-5p, 199a-3p 7376.23 4.35 39 22 17 3.94
Cathepsin L Cathepsin L 101, 139-5p, 199a-3p 7358.72 4.49 26 22 4 18.17
ZNF143 ZNF143 TF Yes 101 101 7337.00 4.63 15 5 10 7.46

aPredicted by TargetScan and context score <�0.2.
bThe components in specific miRNA-subnetworks.
cRank percentile.
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287 nodes connected by 354 links (Figure 5D). The
top-ranking nodes of the subnet included several tran-
scription factors (FOS, LEF1, SP1, MYC, HNF4A,
EGR1, CEBPD, RELA, ESR1, ATF3, STAT3 and
TP53), epigenetic modulator (EZH2) and signaling mol-
ecules (MTOR, SRC, JAK2, CDKN2A and IGF1).
We chose miR-101 among the three candidate miRNAs

for further characterization based on the following con-
siderations. First, miR-101 was the highest ranking
miRNA in the c6 interactome network (Table 4), and
the targets of miR-101 were found to be enriched only
in C6 (Table 3), suggesting that miR-101 may preferen-
tially regulate genes in C6 cluster. Second, in our inter-
action network, miR-101 also regulates the expression of
another highly ranked miRNA, miR-199a-3p, through the
epigenetic modulation (28). Third, while miR-101 has
been found to promote serum starvation-induced apop-
tosis in HCC cells by targeting Mcl-1 (29), a
miR-101-regulated growth control network has not been
investigated.
To confirm the validity of our miR-101 regulatory

network, we manually examined the interactions
between the highest ranked transcriptional factor (FOS)
and epigenetic modulator (EZH2) and their down-stream
targets listed in MetaCore database. In the miR-101 regu-
latory subnetwork, FOS contains 56 out-going inter-
actions which are experimentally supported in 174
different publications (Supplementary Table S10).

Similarly, the 51 out-going interactions from EZH2
within the miR-101 subnetwork were also experimentally
supported by 32 unique studies (Supplementary Table
S11). These data suggest that miR-101 may exert a
broad effect on gene expression by targeting these
critical transcriptional modulators.

To further confirm the two-layer architecture of
miRNA regulatory network, we selected the
miR-101-FOS-TGFB1 circuit (Figure 6A) for experimen-
tal validation. TGF-b-signaling pathway exhibited the
highest fold-enrichment score in the pathway enrichment
analysis of miR-101 second neighbors in both KEGG and
BioCarta pathway databases (Supplementary Table S12).
Indeed, overexpression of miR-101 in HepG2 cells sup-
pressed the FOS mRNA level up to 75% (Figure 6B)
and reduced the mRNA level of TGF-b1 up to 70%
(Figure 6C), confirming the regulatory effect of miR-101
on FOS and TGF-b 1. Overexpressing miR-101 in HepG2
cells caused a 50% reduction in the FOS 30-UTR reporter
activity but showed no effect on TGFB1 30-UTR reporter
activity (Figure 6D), demonstrating that FOS is a direct
target of miR-101 whereas TGFB1 is a second neighbor.
These results agree with the TargetScan prediction which
found a high efficacy miR-101-binding site on the 30-UTR
of FOS (Supplementary Figure S2A) but no miR-101-
binding site on TGFB1 30-UTR. To further confirm the
two-layer regulatory circuit, we constructed a reporter
containing the TGFB1 promter and analyzed the

Figure 6. miR-101 regulates expression level of TGFB1 through AP-1. (A) The proposed miR-101-to-FOS-to-TGFB1 regulatory circuit. (B) Effect
of miR-101 on FOS mRNA level. Cultured HepG2 were transfected with 15 nM of miR-101 or scrambled control for 48 h. FOS expression level was
determined using qRT-PCR. ***P< 0.001. (C) Effect of miR-101 on TGFB1 expression level. Cultured HepG2 were transfected with 15 nM of
miR-101 or scrambled control for 48 h. TGFB1 expression level was determined using qRT–PCR. ***P< 0.001. (D) Effect of miR-101 on FOS
30-UTR and TGFB1 30-UTR reporter activity. Cultured HepG2 were transfected with 15 nM of miR-101 or scrambled control for 24 h. Cells were
cotransfected with plasmids containing firefly luciferase reporter carrying FOS 30-UTR or TGFB1 30-UTR and control Relina luciferase and
incubated for additional 24 h. Luciferase activity was determined as described in materials and methods. The firefly reporter activity was normalized
to the Relina luciferase activity. Data are means±SEM of three independent experiments each analyzed in duplicates. *P< 0.05. (E) Effect of
miR-101 on TGFB1 promoter activity. Cultured HepG2 were transfected with 15 nM of miR-101 or scrambled control for 24 h. Cells were
cotransfected with plasmids containing firefly luciferase fused to TGFB1 promoter and control Relina luciferase and incubated for additional
24 h. Cells were treated with DMSO or TPA (100 nM) for 6 h in a fresh culture medium before the luciferase activity assay. TGFB1 promoter
activity was normalized to the Relina luciferase activity. Data are means±SEM of three independent experiments each analyzed in duplicates.
*P< 0.05.
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reporter activity in HepG2 cells upon miR-101
overexpression. The TGFB1 promoter contains two
AP1-binding sites and can be activated by TPA treatment
in HepG2 cells (Supplementary Figure S2C). As shown in
Figure 6E, overexpressing miR-101 reduced the promoter
activity of TGFB1 by 36%. These data support the
two-layer regulatory mechanism in the miR-101-FOS-
TGFB1 circuit.

miR-101-regulated multiple cell-cycle-related genes in
HCC cells

To understand the molecular mechanism of the
miR-101-regulated growth control, we analyzed 297
nodes in the second layer of the miR-101 subnet for
pathway enrichment using the KEGG and BioCarta data-
bases along with the online bioinformatics service tool
DAVID. A total of 162 nodes were mapped in the
KEGG pathway database, and 144 nodes were mapped
in the BioCarta pathway database (Supplementary Table
S10). The most significantly regulated pathway in the
KEGG database was the cell-cycle pathway
(P-value=3.28� 10�12, fold-enrichment=6.03),
followed by the TGF-b-signaling pathway (p-value-
=1.01� 10�9, fold-enrichment=6.49), MAPK-signaling
pathway, multiple growth factor-mediated signaling
pathways, cell adhesion pathways, immune response
pathways and apoptosis pathways. Similarly, the most sig-
nificantly regulated pathway in the BioCarta database was
the G1/S check point in cell cycle (P-value=1.06� 10�7,
fold-enrichment=5.16), followed by the p38 MAPK-sig-
naling pathway and the TGF-b-signaling pathway in
addition to multiple growth and differentiation-related
pathways. These data revealed that the secondary nodes
regulated by miR-101 are highly enriched with genes
involved in cell growth and proliferation, particularly
effector genes involved in cell-cycle progression
(Figure 7A).

miR-101 has been shown to promote apoptosis in
serum-starved HepG2 cells by targeting the Mcl-1 gene.
However, the effect of miR-101 on cell growth and prolif-
eration has not been explored in HCC cells. To test the
effect of miR-101, synthetic miR-101 was transfected into
cultured HepG2 cells and cell proliferation was evaluated
by cell counting and colony formation assay under regular
culture condition. Compared with a scrambled control,
HepG2 cells overexpressing miR-101 demonstrated a sig-
nificant reduction in cell number and colony counts
(Figure 7B, C and Supplementary Figure S3). To
confirm the miR-101-regulated subnet, we analyzed the
expression levels of multiple nodes in the first and
second layer in cultured HepG2 cells overexpressing
miR-101. As shown in Figure 7D, overexpression of
miR-101 significantly suppressed the expression levels of
nodes in the first layer, including multiple transcription
factors (FOS, EGR1, SP1, CEBPD and RELA) and epi-
genetic modulators (EZH2 and SUZ12). Similarly, the ex-
pression levels of second layer targets, including multiple
G1-phase regulators (CCNE1 and CDK4) and S-phase
regulators (MCM family), were also reduced in miR-101
expressing HepG2 cells (Figure 7E). In addition, the

second layer target, cyclin-dependent kinase inhibitor
CDKN1B, was upregulated in HepG2 cells overexpressing
miR-101 (Figure 7E). The results indicated that miR-101
is a proliferation-related miRNA that regulates cell
growth and proliferation by concordantly modulating
the expression of multiple transcription regulators and
cell-cycle related genes in HCC.

DISCUSSION

In this study, we combined computational and biochem-
ical approaches to identify proliferation-related miRNAs
and the biological networks regulated by these miRNAs in
HCC cells. By comparing the miRNA expression patterns
in clinical HCC samples and miRNAs differentially
expressed in growth-arrested HepG2 cells, we identified
six candidates as proliferation-related miRNAs in HCC.
As these proliferation-related miRNAs are differentially
expressed in HCC tissues, their targets and associated
pathways were expected to present corresponding alter-
ations in HCC cells. Through functional clustering using
GoSim, we identified six major functional categories,
including ‘cell-cycle control’ and ‘transcriptional regula-
tion’ in the protein-coding genes differentially expressed
in HCC tissues. To explore the relationship between these
proliferation-related miRNAs and the DE functional
categories in HCC, we analyzed the enrichment of
miRNA targets in each functional cluster. Interestingly,
none of the six miRNAs presented significant target en-
richment in the ‘cell-cycle control’ functional cluster.
Instead, the targets of three miRNAs, miR-101,
miR-199a-3p and miR-139-5p, were significantly
enriched in the ‘transcription regulation’ functional
cluster. These three proliferation-related miRNAs
identified in this study have also been found
downmodulated in HCC samples when compared with
adjacent benign tissues (25).
To understand how these three miRNAs may regulate

proliferation of HCC cells through ‘transcription control’,
we built an interactome network with the three miRNAs
and all genes in the ‘transcriptional control’ cluster using
the shortest-path algorithm. Topological analysis revealed
that all three miRNAs were highly connected hubs in the
network, with the ‘Betweenness’ and ‘degree of connection’
all ranked in the top 3% of the entire network. More im-
portantly, all three miRNA-centered subnetworks dis-
played characteristics of a two-layer regulatory
architecture, with multiple transcription factors and epi-
genetic modulators as the first neighbors and genes
involved in other functions as the second neighbors.
Analysis of the miR-101-regulated subnetwork revealed
that nodes in the second neighbors are enriched with
genes involved in growth control, including multiple
genes in cell-cycle progression. Overexpression of
miR-101 reduced the expression of multiple genes
involved in G1- and S-phase transition and suppressed pro-
liferation and colony formation of HepG2 cells. In
addition, the expression levels of multiple transcription
regulators were significantly altered upon miR-101
overexpression. These data indicate that miR-101 regulates
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Figure 7. miR-101 regulates multiple cell-cycle-related genes and controls the growth of HCC cells. (A) Distribution of objects from the
miR-101-regulated sub-network in the KEGG Cell-cycle pathway. The genes labeled with grey color indicate the nodes in miR-101-regulated
subnetwork. (B–C) Expression levels of genes that are the first-layered regulators (B) and second-layered effectors, which are cell-cycle-related
genes (C) of the cell cycle in HepG2 cells transfected with negative control and miR-101. Total RNA was obtained 48 h after transfection, and
mRNA measurements were performed in duplicate. Data are presented as the means±SEM of three independent experiments. (D) Effect of
miR-101 on growth of HepG2 cells. HepG2 cells were transfected with control or miR-101 and maintained for 2 and 4 days, respectively. The
cells were fixed and stained with DAPI. The cell number was determined using an InCell 1000 imaging system. Data are the average of nine fields.
(E) Effects of miR-101 on colony-forming activity of cultured HepG2 cells. Cells were transfected with control or miR-101 and plated at 2000 cells/
well in six-well plates for 14 days. After staining with crystal violet, the colony number and size were determined using Image J.
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cell growth by directly targeting transcription regulators
rather than targeting genes involved in cell-cycle progres-
sion. Our observation implies that miR-101 uses both
mechanisms; targeting critical hubs in the network and
coregulating multiple genes in the same pathway to
achieve growth control in HCC. It is possible that such a
combined regulatory mechanism is widely used by
miRNAs to regulate critical biological processes.

Previously, most studies tend to attribute the miRNA-
mediated biological effect to a single or few selected
targets whose levels were dramatically modulated by the
miRNA. However, recent large-scale transcriptomics and
proteomic studies clearly demonstrate that individual
miRNAs may alter the expression of hundreds to thou-
sands of genes at both the transcript and protein levels.
Except for a few targets, the impact of miRNAs on the
expression levels of most targets is usually very subtle.
However, a miRNA may still exert profound biological
impacts when its targets are mapped to the same
pathways. Therefore, several computational approaches
have been developed to integrate target prediction and
pathway analysis in order to infer the biological functions
of miRNA. The most widely used approach is to predict
targets for miRNAs of interest and then deduce biological
function by performing pathway enrichment analysis on
the predicted targets. This approach is straightforward,
but the deduced biological functions may not be biologic-
ally relevant if a significant portion of the predicted targets
is not expressed by the cells under investigation. The
second approach is to identify predicted miRNA tar-
gets which show inverse expression patterns with the
miRNA of interest in matching samples. Biological
functions of miRNA under investigation were then
inferred from these inversely expressed targets. Due to
the subtle effect of miRNAs on their targets, the
number of inversely correlated targets could be limited
and thus makes the functional interpretation more diffi-
cult. In this study, we built the regulatory network
using the interactome data from the GeneGO database
to include both physical and regulatory interactions,
thus allowing transcriptional regulation to be included
in the network. As a result, the interactions between
the miRNAs and transcriptional regulators can be thor-
oughly examined, and the topological weight of direct
and indirect neighbors can be simultaneously evaluated.
The resulting two-layer regulatory network reveals a
concerted interaction of miRNAs and transcription regu-
lators in regulating critical cellular function such as cell-
cycle progression. Such intricate interactions would have
been obscured using the protein–protein interactome
alone.

In our study, several genes involved in proliferation and
cell-cycle progression were found differentially expressed
in HCC cells, and these genes were grouped into func-
tional cluster 3. Most of these genes were catalytic
enzymes required for an orderly progression of cell
division. Interestingly, this cluster was not enriched by
targets of proliferation-related miRNAs, suggesting that
these catalytic molecules are not the main targets of
proliferation-related miRNAs. On the other hand, HCC
differentially expressed transcription regulators in

functional cluster 6 were enriched with targets of
proliferation-related miRNAs, suggesting that these
differentially expressed transcription regulators are the
primary targets of miRNAs. More importantly, down-
stream effectors of these transcription regulators are
enriched with genes involved in cell-cycle control, suggest-
ing that modulating these transcriptional regulators can
significantly amplify the effect of a single miRNA
through the activity of transcriptional control. Thus, the
observed two-layer regulatory network explains how
miRNA can induce a dramatic phenotype change by
causing a collection of slight but concordant changes in
target genes.
Aberrant expression of miRNAs has been observed in

various pathological conditions, including in most types of
cancer. The three proliferation-related miRNAs identified
in this study include miR-101, miR-139-5p and miR-199a.
All three miRNAs have been found to be downmodulated
in a previous study using HCC samples from a different
geographical location (25), suggesting that these miRNAs
play important role in regulating the growth of HCC cells
regardless of the cancer etiology. It is possible that these
miRNAs also regulate proliferation of other cell types
through the two-layer regulatory mechanism, and
downmodulation of these miRNAs may contribute to un-
controlled proliferation in other cancer types. Indeed,
miR-101 have also been found downmodulated in lung
cancer (30), glioblastoma (31) and gastric cancer (32).
Similarly, miR-199 have been found to be downmodulated
in human parathyroid carcinomas (33), oral squamous cell
carcinoma (34) gastric cancer (35), prostate cancer (36)
and serous ovarian cancer (37), while reduced level of
miR-139 have been found in head and neck cancer (38),
lung cancer (30), colorectal cancer (39), oral squamous cell
carcinoma (40) and pancreatic cancer (41). Previous
studies have shown that miR-101, miR-139 and miR-199
directly target c-fos and c-Myc, two well-characterized
oncogenic transcription factors involved in various types
of malignant disorders (42). The loss of these
proliferation-related miRNAs could result in the
upregulation of these oncogenes and lead to the uncon-
trolled growth of tumor cells.
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