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Abstract By means of a model predictive control

strategy it was possible to ensure a high batch-to-batch

reproducibility in animal cell (CHO-cell) suspensions

cultured for a recombinant therapeutic protein (EPO)

production. The general control objective was derived

by identifying an optimal specific growth rate taking

productivity, protein quality and process controllabil-

ity into account. This goal was approached indirectly

by controlling the oxygen mass consumed by the cells

which is related to specific biomass growth rate and cell

concentration profile by manipulating the glutamine

feed rate. Process knowledge represented by a classical

model was incorporated into the model predictive

control algorithm. The controller was employed in

several cultivation experiments. During these cultiva-

tions, the model parameters were adapted after each

sampling event to cope with changes in the process’

dynamics. The ability to predict the state variables,

particularly for the oxygen consumption, led to only

moderate changes in the desired optimal operational

trajectories. Hence, nearly identical oxygen consump-

tion profiles, cell and protein titers as well as sialylation

patterns were obtained for all cultivation runs.

Keywords CHO cells � Specific erythropoietin

production rate � Specific growth rate � Model

predictive control � Optimal process design �
Reproducibility

Abbreviations

IVC Integral of viable cells (109 cells h)

XV Viable cell density (109 cells L-1)

Xt Total cell density (109 cells L-1)

Glc Glucose concentration (mM)

Gln Glutamine concentration (mM)

Lac Lactate concentration (mM)

NH4 Ammonia concentration (mM)

P Protein (mg)

W Culture weight (kg)

F Overall feed rate (kg h-1)

FBase Base consumption rate (kg h-1)

FEvap Evaporation rate (kg h-1)

FGlc Glucose feed rate (kg h-1)

FGln Glutamine feed rate (kg h-1)

FSample Sampling rate (kg h-1)

XV0 Viable cell density at start of feeding

(109 cells L-1)

W0 Culture weight at start of feeding (kg)
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Sf Substrate feed concentration (mM)

S Substrate concentration (mM)

q Liquid density (kg L-1)

t Time (h)

t0 Start of feeding (h)

x Viable cells (109 cells)

l Specific growth rate (h-1)

lnet Net specific growth rate lnet = l - kd (h-1)

lset Setpoint specific growth rate (h-1)

qi Specific consumption/production rate of

state variable i (mmol 109 cells-1 h-1)

qGlcmax Maximum specific glucose consumption

rate (mmol 109 cells-1 h-1)

qGlnmax Maximum specific glutamine consumption

rate (mmol 109 cells-1 h-1)

kd Cell decay rate (h-1)

kdmax Maximum cell decay rate (h-1)

kdeg Degradation constant for glutamine

kdeg = 0.004 (h-1)

YSX Yield consumed Substrate per cells formed

(mmol 109 cells-1 h-1)

YGlcX Yield glucose consumed per cells formed

(mmol 109 cells-1)

YGlnX Yield glutamine consumed per cells formed

(mmol 109 cells-1 h-1)

YLacGlc Yield lactate formed per glucose consumed

(mmol mmol-1)

YNH4X Yield ammonia formed per cells formed

(mmol 109 cells-1 h-1)

YOGlc Yield oxygen consumed per glucose

consumed (mmol mmol-1)

YOGln Yield oxygen consumed per glutamine

consumed (mmol mmol-1)

KGlc Glucose saturation constant (mM)

KGln Glutamine saturation constant (mM)

KLac Lactate inhibition constant for lactate (mM)

KNHþ
4

Ammonia inhibition constant for ammonia
(mM)

KO Inhibition constant (mM)

k1 Constant 1 for glucose (mM)

k2 Constant 2 for glucose (mM)

mGln Glutamine maintenance constant

(mmol 109 cells-1 h-1)

mO Oxygen maintenance constant

(mmol 109 cells-1 h-1)

nO2
Amount of oxygen consumed (mmol)

mAA Specific ammonia production rate at low gluta-

mine concentrations (mmol 109 cells-1 h-1)

(Zeng et al. 1998)

OUR Oxygen uptake rate (mmol L-1 h-1)

tOUR Total oxygen uptake rate (mmol h-1)

tcOUR ¼ nO2
total cumulative oxygen uptake rate

(mmol)

Introduction

The reason why most cell cultures for recombinant

protein production are controlled in an open loop

fashion is that closed loop controllers are quite

difficult to construct and need reliable estimates of

the actual state of the process.

When carefully operated and without severe dis-

tortions, an open loop control strategy runs quite well,

particularly when the process is run along robust

trajectories (Aehle et al. 2011a). However, in case of

significant distortions, corrections must be made to

remove the deviations from the desired path. In order

to perform such corrections fast enough, i.e. before the

system runs into critical situations, they must be

performed automatically.

In cell cultures the process dynamics change

drastically during the entire cultivation. Hence, the

parameters of conventional process controllers must

be adapted anyway. In order to adapt the parameters

properly, a-priori knowledge about the changes in the

process’ dynamics should be employed. This naturally

leads to model-supported controllers. For animal cell

culture processes, such adaptive controllers were

proposed by a few groups only (Siegwart et al. 1999;

Frahm et al. 2002).

When process models are applied, it is possible to

directly use this representation of a-priori-knowledge

for automatic corrections. Then, one can construct

more powerful correctors for process deviations. A

convincing variant of such model-supported control-

lers is a forward-looking one, in which the model is

used to predict the process behavior for some time

interval towards the future.

Exactly this practical procedure was developed for

production processes and is already used in chemical

process industries (Camacho and Bordons 1995) and

refineries (Zhang and Hua 2007; Yüzgeç et al. 2010),

where it is referred to as model predictive control. We

primarily expect from such a control approach that it

leads to a much smoother process operation as

compared to conventional control approaches. Signif-

icant deviations from the desired path should be
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recognized much earlier, so that only small actions are

necessary to keep the process on the desired track.

Materials and methods

The serum-free CHO-S cell line (Invitrogen, Kar-

lsruhe, Germany) was stably transfected with a hEPO

expression vector (pKEXHyg) carrying a hygromycin

B (PAA, Pasching, Austria) resistance for stable

production of high levels of recombinant human

EPO (rhEPO).

As the cultivation stock medium, HyClone’s

CHOSFM4-Utility medium (Logan, UT, USA)

enriched with hypoxanthin/thymidin (Gibco, Invitro-

gen, Karlsruhe), 4 mM NaHCO3, 10 mM HEPES and

1 g/L Pluronic was used. Two feeding solutions for the

applied fed-batch process, mainly containing gluta-

mine and glucose, respectively, were separately

pumped to the bioreactor by peristaltic pumps. The

concentrations of both substrates for the presented

experiments are depicted in Table 1 of the results and

discussion part. All other components added to the feed

solutions are described elsewhere (Aehle et al. 2011a).

All experiments were carried out in a 2 L fully

equipped Biostat B bioreactor (B. Braun, Melsungen,

Germany) placed on a balance. The ambient condi-

tions were kept constant at 37 �C, pH 7.15, 20% pO2

and 0.1 L/min airflow rate. More details on the reactor

setup can be found in Aehle et al. (2011a).

A quadrupole mass spectrometer (QMA200, Bal-

zers, Lichtenstein) was used to measure online the

oxygen volume fraction of the in-and outlet gas flow

by multiplexing to determine the culture’s oxygen

consumption rate.

During the cultivation, samples were taken for

offline analysis. The cell concentration and viability

were determined by a CASY system (CASY TT,

Roche Innovatis AG, Mannheim, Germany). Glucose

and lactate concentrations were measured using the

biochemistry analyzer YSI 2700 SELECT (Yellow

Springs Instruments, Yellow Springs, OH, USA).

Ammonium and glutamine concentrations were deter-

mined enzymatically using the ammonium kit (11 112

732 035, R-Biopharm, Darmstadt, Germany) and the

glutamic acid kit followed by an asparaginase reaction

(10 139 092 035, R-Biopharm, Darmstadt, Germany).

EPO concentrations were determined by immuno-

blot assays. The centrifuged supernatants were trans-

ferred to nitrocellulose filters. Every filter contained a

rhEPO standard (Merk KGaA, Darmstadt, Germany) at

different dilution to obtain a calibration curve of EPO

concentration and chemiluminescence intensity. The

blots were blocked with 5% fat-free dry milk powder in

PBS, incubated with the EPO (B-4)-monoclonal anti-

body (sc-5290, Santa Cruz Biotechnology, Heidelberg,

Germany), washed with PBS and incubated with the

secondary antibody (horseradish peroxidase (HRPO)

conjugated rabbit anti-mouse, Dianova, Hamburg,

Germany). After washing, EPO was detected by

enhanced chemiluminescence (Luminol�, Roth, Kar-

lsruhe, Germany) and visualized by exposing the blots

to a Bio-Rad imager system (ChemiDoc XRS, Bio-Rad

Laboratories, Munich, Germany) for 5 min. The mean

of each EPO sample includes a fourfold measurement.

For the isoelectric focusing (IEF) 500 lL cell culture

supernatant was desalted and concentrated to a volume

of 50 lL with 5 K NMWL centrifugal filters (Milli-

pore, Merck KGaA, Darmstadt, Germany). Further

sample preparations and the used voltage gradient were

performed according to Bork et al. (2007) using pH 3-6

IPG stripes (7 cm) and a Protein IEF cell from Bio-Rad

(Munich, Germany).

The net specific growth rate lnet = (l - kd) and

other specific reaction rates qi for each time point were

calculated using the integral of viable cells (IVC) and

the changes in the state variables ci according to Eqs. 1

and 2

IVC ¼
Z t

t0

XV �
W

q
� dt ð1Þ

qi ¼
D ci � W

q

� �

IVC
ð2Þ

where D(ci � W/q) is the difference of the total amount

of each state variable ci over time. The measured

Table 1 Glutamine and glucose feed concentrations for the

open-loop experiments with different specific growth rates

lset (h-1) Glutamine (mM) Glucose (mM)

0.005 5 No feeding

0.01 20 83

0.02 20 83

0.03 40 166a

a Additional amino acids: 4 g/L serine, 4 g/L valine, 2 g/L

methionine
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culture weight W already considered the amount of

feed added. For the specific growth rate, qi equals

lnet = (l - kd).

In order to determine the qEPO(l)-relationship (Pirt

1975), the specific EPO production rate qEPO was

simply determined by plotting the amounts of EPO as

a function of IVC. The slope in the interval, where the

specific growth rate was nearly constant, was taken as

qEPO (mg 109 cells-1 h-1). The qEPO(l) relationship

is discussed in more detail below.

The yields Yij were calculated as the ratios of the

specific rates qi and qj between the off-line time points.

These specific rates of substrates and metabolites were

calculated according to Eq. 2.

Basic process representation

Models used in model predictive control procedures

are taken to optimize the profile of the controlled

variable across the time interval at every time step

that was used to update the manipulated variable.

Hence, the nonlinear process model structure must

not be too complex as they are to be evaluated many

times throughout the cultivation. In animal cell

cultures, the time increments for adjusting the

manipulated variable, usually the feed rate of the

growth limiting substrate, are rather long. It is

possible to use simple differential equation system

models and well established optimizers to determine

the optimal path of the manipulated variable for the

time horizon considered.

Generally, it is desirable to keep the model

complexity as low as possible to reduce the number

of free model parameters to a minimum since a lower

complexity usually leads to an improved robustness

during parameter identification.

Hence we restrict ourselves to the basic mass

balances for the total and viable biomass, the sub-

strates glucose and glutamine as well as for the

overflow products lactate and ammonium. Thus, the

state vector c considered is:

c ¼ ½Xt;XV;Glc,Gln,Lac,NHþ4 � ð3Þ
Initially, the parameters were estimated from

offline data acquired in a couple of cultivation runs.

The concrete balance equations are

dc

dt
¼ Rþ F

W
� ðcF � c) ð4Þ

dW

dt
¼ F ¼ FGlc þ FGln þ FBase � FEvap � FSample ð5Þ

cF are the concentrations in the feed solutions which

were fed at rate F(t). The volumetric conversion rate

expression R is equal to

R¼ l;lnet;qGlc;qGln�
kdeg �Gln

XV

;qLac;qNHþ
4
þkdeg �Gln

XV

� �

�XV ð6Þ

For the specific rates, the elements of R, simple

approximations were used:

l ¼ qGlc

YGlcX � Glc

k1þGlc

� �þ qGln �mGln

YGlnX

0
@

1
A

� 1� e
� t

tlag

� �
ð6:1Þ

lnet ¼ l� kd ð6:2Þ

kd ¼ kdmax �
Lac

KLac þ Lac
þ NHþ4

KNH4
þ NHþ4

� �
ð6:3Þ

qGlc ¼ qGlcmax �
Glc

Glcþ KGlc

ð6:4Þ

qGln ¼ qGlnmax �
Gln

Glnþ KGln

þmGln ð6:5Þ

qLac ¼ YLacGlc �
Glc

Glcþ k2

� qGlc ð6:6Þ

qNHþ
4
¼ YNHþ

4
X � lþmAA ð6:7Þ

The oxygen consumption rate is of primary impor-

tance as this quantity is used to compute the control

variable in the controller to be discussed. It is assumed

that the oxygen uptake rate is steadily in equilibrium

with the biomass concentration and was thus consid-

ered by a simple static relationship expressed by a

Luedeking–Piret-type model:

OUR ¼ qO2
� XV þmO � XV ð7Þ

with

qO2
¼ YOGln � qGln þ YOGlc � qGlc �

KO

Glcþ KO

ð7:1Þ

An important aspect in such models for animal cell

cultures is that the stoichiometry of the net biochem-

ical conversion processes changes with time. This
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requires changing of some model parameters, partic-

ularly the conversion yields with the cultivation time.

Results and discussion

Control objectives

Usually, the general objectives of the EPO production

are twofold. The process should be run (1) at maximal

productivity where (2) the reproducibility of the

process operation can be kept at high level and thus

the product quality more consistent.

The specific product formation with rate qEPO is

most often related to the specific growth rate l of the

cells. In order to determine the qEPO(l)-relationship,

data from a set of open loop experiments were used

(Aehle et al. 2011a).

For the open-loop experiments with different

setpoint specific growth rates lset different glutamine

and glucose feed concentrations were used. The

concrete data are compiled in Table 1.

Both feed solutions were separately fed to the

culture in an open-loop control mode using exponen-

tial feeding rates according to Eqs. 8 and 9

F ¼ F0 � expðlset � ðt� t0ÞÞ ð8Þ

F0 ¼
lset � XV0 �W0 � YSX

ðSf � SÞ ð9Þ

where F0 is a function of the cell concentration X0,

culture weight W0 at the start point t0 of the feeding,

the substrate concentration S in the bioreactor (S is

either glutamine or glucose), the substrate concentra-

tion Sf in the feed solution and the yield coefficients

YSX.

The glutamine feed was started from the beginning

t0Gln = 0 h whereas the glucose feed was started at

t0Glc = 75 h. The results with respect to the specific

EPO formation rate as a function of the specific growth

rate of the cells obtained in open loop experiments is

shown in Fig. 1.

The reason for the smallest specific EPO formation

rate qEPO at a specific growth rate l of about

0.011–0.013 h-1, which does not seems to fit into the

general decrease of qEPO with increasing l, needs

further investigation. However, it does not have an

impact on the conclusions for the optimal specific

growth rate when Fig. 2 is taken into account together

with the discussion on reproducibility. Fig. 2 shows the

calculated mass–time–yield, i.e. the mass of product

produced per mass of culture up to the entire culture

time.

Results depicted in Fig. 2 suggest that it is favorable

to run the cultures at higher specific growth rates.

However, as pointed out by Aehle et al. (2011b) and

Jenzsch et al. (2004), from the perspective of process

reproducibility, the cultivation should be run at specific

growth rates lower than lmax as then the process

becomes robust. As not only the qEPO(l)-relationship is

of importance for the choice of l but also the protein

quality, we performed IEF measurements for the

various specific growth rates to make sure that the

chosen l does not significantly influence the post-

translational modifications, particularly the sialylation

pattern (Fig. 3). Wang et al. (2002) also observed

identical EPO sialylation patterns for different specific
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Fig. 1 Specific product formation rate as a function of the net
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sponding to those from the last two figures
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growth rates using different culture modes. Hence, we

chose a specific growth rate of 0.02 h-1.

In production bioreactors, it is not convenient to

control the process to the optimal l as this would

require to accurately estimating this variable.

Although this would generally be possible, it is easier

to choose a control variable that is strictly related to l
but can be easily measured online. Possibilities for

such variables are the total carbon dioxide amount

produced or the total amount of oxygen consumed by

the cells. Both variables can be determined online in

cultivations via offgas analyzer data.

Model implementation

The model considers 7 state variables, the concentrations

of viable and total cells, two substrates, two metabolites

and OUR. 19 model parameters were estimated using

measurement data from 5 cultivation runs performed

around the specific growth rate of 0.02 h-1. The estimates

are compiled in Table 2. Figure 4 gives an impression of

the model quality by a comparison of the model results

with the measurement data from one experiment.

The model perfectly describes the measurement

data. At a first glance, this does not seem to apply for

the glutamine concentration. Here, however, it should

be kept in mind that the glutamine concentrations in a

true glutamine-limited fed batch process are in the

order of magnitude of the Monod constant KGln. These

concentrations are clearly below values where reliable

measurements can be expected from the analytical

techniques usually used. Hence, a match of data and

model results for glutamine cannot be expected.

The controller itself does not need the measured

glutamine concentrations as the controlled variable,

the mass of oxygen consumed, primarily depend on

the cell concentration and the specific growth rate.

Thus, the controller performance does not suffer from

the less accurate measured glutamine concentration.

It is important to note, that this balance model

structure is quite generally applicable to fed-batch

processes in animal cell cultures. All parameters,

particularly the yields, must of course be adapted to

the actual strain. Moreover, the yields are by no means

constant and they significantly change with time.

Examples of their variation during the glutamine

limited fed-batch cultivation are given in Fig. 5.

The changes in these parameter values cannot be

predicted to a sufficient accuracy. Hence, in online

applications of that model which are necessary in a

model predictive controller, the yield parameters must

be adapted online. This can be done within a moving

Fig. 3 IEF results of the final samples at the end of processes

with the different specific growth rates. Every spot represents

EPO with a different degree of sialylation

Table 2 Overview of

model parameters and their

values after identification

for the cultivation shown in

Fig. 4

Parameter Value Parameter Value

qGlcmax 0.18 mmol 109 cells-1 h-1 YNH4X 0.48 mmol 109 cells-1

qGlnmax 0.06 mmol 109 cells-1 h-1 YOGlc 2.57 mmol mmol-1

KGlc 2.25 mM YOGln 10.43 mmol mmol-1

KGln 0.23 mM k1 0.32 mM

KLac 52.26 mM k2 3.14 mM

KNH4X 5.39 mM mGln 5 9 10-3 mmol 109 cells-1 h-1

kdmax 6 9 10-3 h-1 mAA 2 9 10-4 mmol 109cells-1 h-1

YGlcX 6.97 mmol 109 cells-1 KO 1.05 mM

YGlnX 0.97 mmol 109 cells-1 mO 0.06 mmol 109 cells-1 h-1

YLacGlc 1.59 mmol mmol-1
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window. In several experiments it was found that the

best identification results can be achieved using an

interval that contained the last three offline measure-

ments. From a sensitivity analysis of the model (results

not presented), it turned out that 5 model parameters,

kdmax, KLac, KNH4
, KOGlc and mAA could be kept

constant throughout the entire process. The parameter

identification can then be performed with a standard

Nelder–Mead downhill simplex technique (e.g. MAT-

LAB’s fminsearch).

Adaptation of the model parameters

Whenever new measurement values for the offline

variables became available, the model parameters were

updated by fitting the model to the process data from the

last period of 24 h. After each adaptation of the model

parameters, the new starting point for the prediction was

then taken as the average of the last prediction and the

measurement values. The simple arithmetic mean was

used assuming that the measurement error is roughly

equal to the modeling error. For the period up to the next

sampling point of the offline data, the model was used

with the parameters just determined to make predictions

for the coming 12 h with a time increment of 144 s.

Figure 6 shows the results of the model parameter

adaptation for the various process variables.

Model predictive controller

With the fairly general process model for cell cultures

and the exponential feed rate profile it is now possible
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Fig. 4 Offline fit of the model to process measurement data from the CHO culture described above
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Fig. 6 Online estimate of the current process state together with the corresponding offline and online measurement data
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to derive a model-supported controller. Its essential

features are

1. The parameters of the basic model are periodi-

cally fitted to the measurement data within a

moving window containing the last three offline

measurement values of the viable and total

biomass, glutamine, glucose, lactate, ammonia

as well as the online values of the oxygen

consumption rate. This adaptation is performed

at each time instant where new offline measure-

ments became available (each 12 h).

2. This model is then used to predict the future

process behavior in a time interval up to a time

horizon of 12 h ahead.

3. At each time instant at which online measure-

ments become available (time increment of

144 s), the algorithm computes the optimal glu-

tamine feed rate (action variable) in order to

minimize the deviations (RMSE) between the

predicted and the desired nO2
profile within the

time horizon of 12 h without violating the

constraints with respect to all variables involved.

Note, nO2
is the controlled variable.

4. Only the first value of the computed optimal action

variable profile is needed at the actual time instant

and is thus sent to the glutamine feeding pump.

The time increment 144 s was derived from

stimulus/response experiments performed with gluta-

mine pulses. This led to direct estimates of the process

response times and thus the process’ dynamics. These

experiments are described in detail in Aehle et al.

(2011b).

Control performance

The control performance can be seen by comparison

between the desired profile of the controlled variable

and the measured one.

The reference profile was developed during the

cultivation with the study number S693. Here an open

loop cultivation was performed with an exponential

glutamine feed corresponding to a specific growth rate

of lset = 0.02 h-1. As this cultivation run without

significant distortions, the profile of the total amount

of oxygen consumed, was taken. It was slightly

smoothed and then taken as the setpoint of nO2
ðtÞ for

the set of experiments performed with the controller.

The control profile and the corresponding profiles of

the specific biomass growth rate and cell counts are

shown in Fig. 7.

In this reference cultivation, the desired specific

biomass growth rate of 0.02 h-1 was obtained after

about 40 h cultivation time and was then kept constant

for roughly 100 h. Note that the nO2
signal values

depict credible values only after 1 day. This requires

open loop control for the first day of cultivation.

Its success can best be judged by the reproducibility

obtained in a series of cultivations (Fig. 8).

The results shown in Fig. 8 depict an excellent

batch-to-batch reproducibility with respect to the

controlled variable the total amount of oxygen

consumed by the cells.

As the objective is not consuming oxygen but

proliferating cells expressing the desired product, we

must look for the corresponding biomass or cell count

and product mass profiles. The cell count profiles of

the four cultivations are shown in Fig. 8.

Again, we find an excellent reproducibility of the

biomass profiles. This essentially means that the

variables nO2
and Xv are tightly related to each other.

Also the product mass profiles proved to be highly

reproducible.

It must be taken into account that the product data

depict a higher measurement error than the cell count

measurement and the error in the measured control

variable. Nevertheless, it becomes clear that the

product amount can be obtained in a highly reproduc-

ible way.

Finally we look at the product quality for the 4

controlled runs. The corresponding sialylation pat-

terns presented do not show any significant variations

from batch-to-batch (Fig. 9). As can be seen, the

number of bands and the intensity did not change.

Hence, the reproducibility is confirmed even in the

sialylation pattern.

An important advantage to all other controllers we

investigated at this cell culture is that the model

predictive controller effectively works in such a way

that it takes care of all constraints with respect to the

inputs, the outputs and the biological variables. As it

tries to find an optimal path towards the time horizon

of the cultivation while not violating the constraints, it

does not make abrupt corrections. Hence, the signal of

the manipulated variable is much smoother than for

other controllers. This is an immediate advantage in
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Fig. 7 Upper plot: set point profile for the controlled variable nO2
ðtÞ. Lower plots: corresponding net specific biomass growth rate (left)

and biomass profile (right)
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Fig. 8 Four successively performed CHO-cell cultivations controlled with the model predictive nO2
-controller
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cell cultures where cells sensitively react on changes

in their environment. A typical profile of the glutamine

feed rate adjusted during one cultivation is shown in

Fig. 10.

The comparison with a controller that does not look

ahead, like the so-called tcOUR controller (Aehle et al.

2011b), shows that the feed rates did not need to make

abrupt changes in the case of the model predictive

controller.

Hence, the model predictive controller does not

only lead to a high reproducibility, it also performs

with moderated actions taking into account the

estimated future development of the culture.

Conclusions

Model predictive control is a technique that employs a

simple process model to perform forward-looking

corrections to a substrate feed rate at a running cell

culture.

The technique has the advantage, compared to

conventional feedback controllers, that it takes

changes in the process development into account that

are to be expected on the base of à-priori knowledge

about the process behavior. The actions of the

controller, here the adjustments to the feed rate, can

be made in such a way that no constraint to the process

operational procedure is violated accompanied with

only moderate changes. In this way, the probability of

disturbing the culture by controller actions can be

excluded.

The performance of the controller is fairly good

which can best be judged by the batch-to-batch

reproducibility obtained in cultures that are operated

with this controller. The controller does not employ a

complex esoteric model. On the contrary, the model is

quite universal and the model parameters are adjusted

online.
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