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ABSTRACT The rate of evolution in terms of the number of
mutant substitutions in a finite population is investigated assuming
a quantitative character subject to stabilizing selection, which is
known to be the most prevalent type of natural selection. It is
shown that, if a large number of segregating loci (or sites) are in-
volved, the average selection coefficient per mutant under sta-
bilizing selection may be exceedingly small. These mutants are
very slightly deleterious but nearly neutral, so that mutant sub-
stitutions are mainly controlled by random drift, although the rate
of evolution may be lower as compared with the situation in which
all the mutations are strictly neutral. This is treated quantitatively
by using the diffusion equation method in population genetics. A
model of random drift under stabilizing selection is then applied
to the problem of "nonrandom" or unequal usage of synonymous
codons, and it is shown that such nonrandomness can readily be
understood within the framework ofthe neutral mutation-random
drift hypothesis (the neutral theory, for short) of molecular
evolution.

It is generally accepted that stabilizing selection is the most
prevalent type of natural selection at the phenotypic level (1-
4). It eliminates phenotypically extreme individuals and pre-
serves those that are near the population mean (5). It is also
called centripetal selection (6) or normalizing selection (7), and
many examples have been reported. Probably the best example
in human populations is the relationship between the birth
weights of babies and their neonatal mortality, as studied by
Karn and Penrose (8). These authors found that babies whose
weight is very near the mean have the lowest mortality. This
optimum weight is slightly heavier than the mean, and mortality
increases progressively as the birth weight deviates from this
optimum (see also ref. 9). Unlike the type of natural selection
that Darwin (10) had in mind when he tried to explain evolution,
stabilizing selection acts to keep the status quo rather than to
cause a directional change. From this, it might appear that sta-
bilizing selection is antithetical to evolutionary change.

In this note, I intend to show that, under stabilizing phen-
otypic selection, extensive "neutral evolution" can occur. By
neutral evolution, I mean accumulation of mutant genes in the
species through random genetic drift (due to finite population
size) under mutational pressure. Thus, beneath an unchanged
morphology, a great deal of cryptic genetic change may be oc-
curring in natural populations of all organisms, transforming
even genes of"living fossils" (11). This will substantiate my neu-
tral mutation-random drift hypothesis (the neutral theory, for
short) of molecular evolution (ref. 12; for review, see ref. 13).
I shall also show that this gives a clue to understanding "non-
random" or unequal usage ofsynonymous codons (14-16) based
on the neutral theory.

Selection intensity at an individual locus when overall
phenotypic selection is given
Let us consider a quantitative character, such as height, weight,
concentration of some substance, or a more abstract quantity
that represents Darwinian fitness in an important way. We as-
sume that the character is determined by a large number ofloci
(or sites), each with a very small effect in addition to being sub-
jected to environmental effects. We also assume that genes are
additive with respect to the character. We follow the method
used by Bulmer (17, 18) and Kimura and Crow (19). Let X be
the measured phenotypic character with the mean M and the
variance a,2. We denote by XOP the optimum phenotypic value
and, unless otherwise stated, we shall take this point as the or-
igin. Let F(X) and W(X) be the relative frequency and the fitness
ofindividuals with character value X. Two examples ofW(X) are
shown in Fig. 1.

Consider a particular locus at which a pair of alleles Al and
A2 are segregating with respective frequencies 1 - p and p. We
assume a random-mating diploid population and let X. be the
average phenotypic value of AiAj individuals, where i = 1 or
2andj= lor2.

It is often convenient to measure various quantities relating
to the character value in units ofthe standard deviation (a). For
this purpose, lowercase letters will be used such as x = (X -
X )/lo, and the corresponding frequency and fitness functions
wifl be denoted byf(x) and w(x). We also let m = (M - XOP)l
ov and a, = (Xv- M)/lo. Note that a, is the deviation of AiA
from the population mean in v- units.
We assume that the background distribution ofthe character

is the same among different genotypes at this locus and that this
is given by f(x) with good approximation, because individual
gene effects are assumed to be extremely small. Let wjf be the
relative fitness ofAAs, then

f -

Wit= w(x)f(x - ayJ)dx,
_x

[1]

as explained in ref. 19. Assuming that aij is small, we expand
f(x - aij) in a Taylor series,

f(x - a,,) = f(x) - aijf'(x) + (a2/2)f"(x) -... [2]
as in ref. 19, but here we retain the second-order term, so that
we get, from Eq. 1,

Wij = bo - aibl + a2b2/2,
where [3]

bo= w(x)f(x)dx, b1 = f w(x)f'(x)dx,
_x co

and
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FIG. 1. Examples of the fitness function W(X). (A) Normal dis
bution. (B) Uniform distribution. -, fitness function; - - - -, freque
function.

b2= w(x)f"(x)dx.

Here, the prime denotes differentiation.
Let a be the effect of substituting A2 for Al on the chara(

value x. Then, under random mating and assuming an addil
gene effect on x, we find that all = - 2ap, a12 = a(l - 2p),
a22 = 2a(1 - p). Then, by using Eq. 3, we can compute
mean fitness ti = wil (1 _ p)2 + w122(1 - p)p + W22p and
average fitness ofA2-i. e., w2 = w2 (1 -p) + w22p-and t]
turn out to be as follows:

v = bo + a2p(1 - p)b2

W2 = bo - a(l - p)bl + a2(1 - p)b2/2.

The change of the frequency ofA2 in one generation is gii
by Ap = p(w2 - tb)/ti (see p. 180 of ref. 20). Therefore, by s
stituting Eqs. 4 and 5 in this expression and neglecting ter
involving a and higher order terms, we obtain

AP= bo [- ab + a b2 (2 P)]

in agreement with Bulmer (17). Then, the selection coeffici
s, which represents the selective advantage ofA2 over Al i,

s = -abl/bo + a2b2 (1/2 - p)/bo.
With this selection coefficient s, the change of p by select
per generation is Ap = sp(l - p).

In the special, but important, case in which both the
quency and the fitness functions are given by normal distributi

f(x) = L- exp[- (x - m)2/2],

and
w(x) = exp(-kx2),

Eq. 7 reduces to

s = -mAa + (A2m2 -_A)(1/2-p)a2

that, if the deviation of the mean from the optimum is much
larger than the effect ofthe allele substitution (Im > lal), we have
s/a -Am, which agrees with equation 23 of ref. 19. In this
case, the situation is similar to truncation selection (see refs. 21
and 22), and natural selection acts very efficiently to change the
mean toward the optimum. During this short period of direc-
tional selection, extensive shift of gene frequencies is expected
to occur at many loci, but this process itself will seldom cause
gene substitutions.

If, on the other hand, the mean is at the optimum (m = 0),
we have s = A(1/2- p)a2 from Eq. 10. In this case, A2 is disad-

;tri- vantageous ifp < 1/2 but advantageous if p > 1/2. This selection
=yc- is frequency dependent, and alleles behave as if negatively ov-

erdominant. The change of gene frequency is then given by Ap
= Aa2p(1 - p) (p - 1/2) in agreement with Robertson (23) and
Wright (24). What is pertinent to our evolutionary consideration
is that, here, every mutation is deleterious, because Ap < 0 if
p is small.. Furthermore, ifa large number of loci are segregat-
ing, each with a very small effect, a is small so that a2 is ex-
tremely small. This applies with particular force ifwe consider

ter an individual nucleotide site rather than the conventional gene
tive locus, as it has been estimated (25) that the average individual
and in a large mammalian population is likely to be heterozygous
the at a million or so nucleotide sites. This substantiates Ohta's
the claim (26, 27) that the majority ofmutants at the molecular level
hey are nearly neutral but very slightly deleterious. As I shall show

below, negatively overdominant alleles are far more susceptible
to random genetic drift than unconditionally deleterious alleles

[4] having the same magnitude of selection coefficient.
As to the intensity of natural selection involved, we can mea-

[5] sure it in terms of load (L)-i. e., by the fraction of individuals
that are eliminated in each generation by natural selection dueyen to deviation of their phenotypic values from the optimum. For

rubs the frequency and fitness functions given as Eqs. 8 and 9, we
obtain

L = 1 - H/i77, exp(- Am2/2). [11]

[6] For m = 0, this reduces to L = 1 - \/i.I In the special case
in which the fitness function has the same variance as the fre-
quency function-i.e., when K = 1/(20.2) or k = 1/2, we get L

nt, 0.293 or '30% elimination. In general, L is likely to be small
for any single character in mammals. For example, according

[7] to Haldane (1), the intensity of selection acting on birth weight
of babies through their neonatal mortality is L = 0.027. If L is

ion small, we have, with good approximation, L = A/2.

fre- Behavior of mutant alleles in a finite population under
ins, stabilizing selection

Probability of Fixation of a Mutant Allele. We denote by Ne
[8] the effective size of the population (for the meaning of Ne, see

ref. 28). Roughly speaking, Ne is equal to the number ofbreed-
ing individuals in one generation. This number is likely to be
much smaller in most cases than the apparent population size,

[9] which we denote by N. To simplify expressions, we let (31 =
-Ama and (2 = A(1 - Am2)a2/2, so that Eq. 10 reduces to

[10] S = (31 - 82(1 - 2p), [12]

where A = 2k/(1 + 2k). An equivalent result was obtained ear-
lier by Bulmer (18).

Note that, if we use the original scale (X) and express the
density function of the frequency distribution of the character
by F(X) = (1/V\2 7ro-)exp[- (X - M)2/2cr2], the fitness function
by W(X) = exp(-KX2), and the effect of allele substitution by
A, then the parameters in Eq. 10 are m = (M - XOP)/o, A =
2Ka2/(1 + 2Kcr2), and a = A/cr. From Eq. 10, it may be seen

where p is the frequency ofA2. Ignoring mutational change for
a moment, and denoting the frequency ofA2 by y, the mean and
the variance in the change of y during one generation are

Max = [31 - (32 (1 - 2y)] y(l - y) [13]

and
V&d = y(l - y)/2Ne.
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Let u(p) be the probability that A2 becomes eventually fieed in
the population (i.e., reaches 100% in frequency), given that its
initial frequency is p. Then, u(p) can be expressed in terms of
M*, and V&, by using a general formula for the probability of
fixation obtained by Kimura (ref. 29; see also p. 424 of ref. 20,
where x is used instead of y). We are particularly interested in
the probability of fixation ofA2 when it is initially singly rep-
resented in the population. Ifwe denote this probability by u,
then this is given by u(p) with p = 1/(2N). We then obtain

U = ij[2N f exp{-Blx + B2x(1- x)}dx], [15]

where B1 = 4NefB and B2 = 4NeP.
In the above treatment, we have assumed that m (the devia-

tion of the mean from the optimum) remains unchanged
throughout the process. This assumption appears to be unreal-
istic because, ifm # 0, one would expect Iml to be reduced with
time by the directional component of selection. There is an im-
portant possibility, however, that this change is opposed by
mutational pressure so thatm remains constant under continued
stabilizing selection, although Iml at equilibrium is likely to be
small. This occurs when the optimum and the mutational equi-
librium point do not coincide. We shall elaborate such a case
when we discuss the problem ofnonrandom synonymous codon
usage.

To show that mutants that have negative overdominance (as
induced by stabilizing selection) are far more likely to be fixed
by random drift than unconditionally deleterious mutants that
have comparable selection coefficients, some examples of the
probabilities offixation (u) for these two cases are listed in Table
1. In the case of stabilizing selection, we let m = 0 and denote
Aa2/2 by s, (selection coefficient for stabilizing selection), so
that Ap = -ssp(l - p) (1 - 2p). For the unconditionally del-
eterious case, we denote the selection coefficient against A2 by
-s' (s' > 0), so that the probability of fixation is given by

u = S'/[2N(eS - 1)], [16]

where S' = 4Nes' (see p. 426 ofref. 20). In both cases, u is tab-
ulated taking the probability of fixation of the completely neu-
tral case as the unit-i.e., it is expressed as a multiple of uO
= 1/(2N). It is clear from Table 1 that an enormous difference
exists between the two cases in fixation probability and that,
under stabilizing selection, extensive neutral evolution is pos-
sible even when 4Ness is 8 or more. For B = 4Nkss > 8, it can
be shown that u/uO --V exp(-B/4).
Gene Frequency Distribution. We now incorporate muta-

tional pressure and investigate the probability distribution of
allelic frequencies at statistical equilibrium attained under sta-
bilizing selection in a finite population. We shall denote by +(p)
the probability density such that 0(p)dp represents the prob-
ability that the frequency ofA2 in the population lies in the range

Table 1. Relative probability of fixation (u/uo) of negatively
overdominant and unconditionally deleterious mutants
S Negatively overdominant Unconditionally deleterious
0 1.00 1.00
1.0 0.84 0.58
8.0 0.23 2.7 x 1o-3

16.0 0.042 1.8 x 10-6
20.0 0.017 4.1 x 10-8
30.0 0.0017 2.8 x 10-12

p - p + dp, where 0 < p < 1. We assume reversible mutations
between the two alleles and let vl be the mutation rate from Al
toA2 and v2 be the rate in the reverse direction. Then, the mean
and the variance in the change of A2 in one generation are,
respectively,

Map =[8n1-d2(1-2p)] p(l-p)-vp + vj(I-p) [17]
and

Vap = p(l - p)/(2N). [18]

By using Wright's (30) formula for the steady-state gene-fre-
quency distribution (see p. 434 of ref. 20), we obtain

+O(p) = Ce5BBpB(1-p) pvl-I (1 -p)V2-1, [19]

where B1 = 4N.P1, B2 = 4NeI'VI = 4NeVIV2 = 4NeV2, and
C is determined so that fl 0(p)dp = 1. The probability of A2
being temporarily fixed in the population may be obtained by
integrating +(p) from 1 - [1/(2N)] to 1, and we obtain, with
sufficient accuracy,

f2= C eB /[V2(2N)v2]. [20]

Similarly, the probability of A1 being temporarily fixed in the
population (i.e., A2 lost) is

[21]fi = C/[V,(2N)v ],

Then, the ratio off2 tof1 is

f2lf1 = e~' (Vl/V2)(2N)VlV2

In this paper, we shall be mainly concerned with the situation
in which both V1 and V2 are much smaller-than unity and alleles
are fixed most ofthe time. This situation is particularly pertinent
when we consider individual nucleotide sites rather than con-

ventional gene loci, because the mutation rate per site must be
of the order of 10-' rather than of 10-'.

In general, for any set ofvalues of B1, B2, V1, and V2, we can

compute the mean frequency p and the mean heterozygosity
He per locus through numerical integration by using p = E(p)
= l p4 (p)dp and Hle = E[2p(1 - p)] = f 2p(l - p)4.(p)dp.
If the phenotype is determined by n equivalent loci in addition
to environmental effects, we have M = 2nAP and o-2 =

nE[2A2p(1- p)]/p2 = nA2Hfjp2, where A is the effect of sub-
stitutingA2 forAl on the character (A = ao) and p2 is the fraction
of phenotypic variance due to gene segregation-i. e., broad
sense heritability. Furthermore, if mutation rates are equal in
both directions (vl = V2= v) and the phenotypic mean coincides
with the optimum phenotype (i.e., m = 0 or B1 = 0, B2 =

2NeAa2), the distribution formula is much simplified, and the
values of E[p(l - p)] are tabulated by Bulmer (18) for some

combinations of values of 4Nev and v/(ka2). One interesting
property of the frequency distribution of alleles under stabiliz-
ing selection is that it is more U shaped than the strictly neutral
case having the same mutation rate. It may sometimes be con-

venient to take as the standard the situation in which the minus
alleles are fixed at all loci. Then, the range ofX lies between
0 and 2nA ifwe assume that n loci are involved and the effect
of allele substitution is the same at all the loci. Let

Xop = 2nAQOP, [23]

where Q0p is the position of the optimum when the total range

ofX is rescaled so that it lies in the interval [0, 1]. IfAl is the
minus allele and A2 is the plus allele, so that A > 0, then the
optimum is less than the mean if Q0p < p and more than the
mean if QOP > p.

[22]

S stands for 4Ne8 for the negatively overdominant case and 4Ns'
for the unconditionally deleterious case.

Genetics: Kimura
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Application to the problem of nonrandom codon usage
Recently, nonrandom or unequal usage of synonymous codons
has been reported in many genes of various organisms (for re-
view, see ref. 14). Indeed, nonrandom codon usage appears to
be a rule rather than an exception, and this is often mentioned
as evidence against the neutral theory. I shall now show that this
can be explained in the framework of the neutral theory. Note
that the existence of selective constraint (negative selection) by
no means contradicts the neutral theory (see ref. 13).

To simplify the argument, we group nucleotide bases A (ad-
enine) and U (uracil) as Al and C (cytosine) and G (guanine) as
A2. It is known (31) that, at the third position of degenerate
codons in mammalian mRNAs, A2 predominate over Al. For
globin mRNA, the ratio of A2 to Al at position 3 is =7:3 (32).
As shown above, the distribution function 4(p) (Eq. 19), when
applied to a nucleotide site rather than a gene locus, indicates
that either Al or A2 is fixed most of the time in the course of
evolution. This is because the mutation rate per site is exceed-
ingly low, so that the probability of polymorphism per nucleo-
tide site is very small, although this probability may amount to
more than 10% when applied to a locus that is comprised of 1000
or so nucleotide sites.

As to the cause of nonrandom codon usage, recent studies
of Ikemura (15, 16) are instructive. He found a strong positive
correlation between the frequency of synonymous codon usage
and abundance of cognate tRNA in Escherichia coli. This cor-
relation appears to be related to the translational efficiency (see
also ref. 33). If this applies in general to other organisms, the
most plausible explanation for preferential codon usage is that
it represents the optimum state in which the population of syn-
onymous codons matches that of cognate tRNA available in the
cell. This will help to carry out more efficient cell function, lead-
ing to higher Darwinian fitness. This appears to be compatible
with the genome hypothesis of Grantham et al. (14), who claim
that a surprising consistency of choices of degenerate bases ex-
ists among genes of the same or similar genomes and that "the
genome and not the individual gene is the unit of selection."

Let Qop be the optimum proportion of A2 (guanine or cyto-
sine) at position 3 of the codons and assume that mutation rates
are equal between Al and A2-i.e., V1 = V2-fthen the mean
of p(p) does not coincide with QOP unless Q0 = 0.5. So, we
assume that stabilizing selection is at work to told p near Q0P.
At individual sites, however, A2 is either fixed or lost most of
the time. Letf2 be the probability that A2 is fixed in the pop-
ulation at a given site. Similarly, let fi be the probability that
Al is fixed (A2 is lost). Then, from Eq. 22, we have fA/f, =
exp(B1), where B1 = 4Nef31 =-4NeAmt. Thus, we can estimate
B1 by the relationship B1 = ln(fi/f1), and we obtain B1 = 0.85
for f2lf = 0.7/0.3. In most mammalian species, the effective
size Ne must be at least 104. Therefore, the intensity ofselection
that acts at an individual site to produce nonrandom codon usage
is an exceedingly weak one, leaving plenty of room for random
drift to operate. This is consistent with Latter's (34) claim that
mutations responsible for enzyme polymorphisms are very
slightly deleterious with "Ns" values in the range 1-3.
One important question that remains is the extent to which

the rate of evolution in terms of mutant substitution is influ-
enced by such selection. As the relative evolutionary rate (in
terms ofmutant substitution) under stabilizing selection as com-
pared with the strictly neutral case is given by u/u0 with uo
= 1/(2N), we have, from Eq. 15,

uiuo = I/f exp[-Blx + B2x(1 - x)]dx, [24]

where B1 =-4NeAma and B2 = 2NeA(l - Am2)a2. lfwe assume

that 2N0Aa2 is negligibly small, so that B2 0, then we get

u/UO 2flf2ln(2/fl)/(f2 - fl). [25]

Forf2/f1 = 0.7/0.3, as we observe at the third position of the
codons in globin and other mammalian mRNAs, we get u/uO
= 0.89. In other words, the evolution is retarded by 10% from
what is expected under complete selective neutrality. Under
the more extreme condition fdlf1 = 0.9/0.1, we get u/u0
0.49, which means 50% retardation.

In actual situations, however, there are four possible "alleles"
(bases) per nucleotide site rather than two and, together with
other complications due to differences in the speed of transla-
tion among different types of genes, etc. (16), we need more
careful and detailed analysis to arrive at a more accurate figure
for the retardation.

Discussion
During its lifetime, an individual is subject to natural selection
through a large number of quantitative characters, many of
which are mutually correlated. Let us assume, to simplify the
treatment, that we can choose a certain number, say nc, of in-
dependent characteristics that collectively represent, to a first
approximation, the total pattern of selection. Various parame-
ters pertaining to the ith character will be expressed by sub-
script i (i = 1, 2, . . ., n).

Because the total selection intensity is limited, the selection
intensity, as measured by Li at each component character is
expected to be small if the number of characters involved is
large. Let LT be the total selection intensity, then (1 - Lr) =
R(l - Ld, so that LT 1 - exp(- X:L).To simplify the treat-
ment still further, let us suppose that the L4s are all equal among
component characters, so that Li -(1/nj)ln(l - LT). The se-
lection coefficient per site is then -Ak(1/2 - p)a2 and, noting
that L4 A/2 and dropping the subscript i, we have s = ln(l
- LT)(1 - 2p)a2/nc (approximately). On the right-hand side of
this formula, we note that a2/n.= A2/(nca.), where n.o-2 is the
variance of the total phenotype. Let he be the average hetero-
zygosity per site and, if we denote by nn the total number of
nucleotide sites concerned, then nnucA he = n~co2p2, where A
is the effect of substituting one nucleotide on a component phe-
notype and p2 is broad sense heritability. Thus, the coefficient
for stabilizing selection s,, as defined by the relationship s =
-s,(1 - 2p), turns out to be s, = - [ln(l - LT)]p2/(nnuche). This
represents the selection intensity involved in nucleotide sub-
stitution under stabilizing selection (assuming m = 0).

Let us assume that the average heterozygosity per enzyme
locus with respect to electrophoretically detectable alleles is 0.1
and (rather conservatively) that there is twice as much hetero-
zygosity with respect to silent alleles. Then, if the average num-
ber of nucleotide sites that comprises a locus is 103, we get he
= 3 X 10-4. Extrapolating this to the total genome of a mammal
that has 3.5 x 109 nucleotide sites, the average number of het-
erozygous nucleotide sites per individual is nnuche = 1.05 x 106.
As typical values of genetic load and heritability for a mammal
(such as the human species), let us suppose that LT = 0.5 and
p2 = 0.5, then, we obtain ss = 3.3 x 10-7. This is a very small
selection coefficient for stabilizing selection and shows that the
majority of mutations at the molecular level are nearly neutral
but very slightly deleterious. This agrees with Ohta's hypothesis
of very slightly deleterious mutations (26, 27). However, the
fitness of the species does not drift downward in this view as
it does in Ohta's hypothesis. Also, in this view, those genes that
are substituted by random drift and those that are responsible
for phenotypic variability of quantitative traits belong to the
same class. It is possible that many, and even most, of the mu-

5776 Genetics: Kimura



Proc. NatL Acad. Sci. USA 78 (1981) 5777

tants affecting a quantitative trait are regulatory raiter-than
structural. DNA outside the coding region may be more im-
portant from this standpoint than translated DNA. The present
analysis agrees with Lande (35), who suggests that many poly-
genic changes can accumulate by random drift because they
have little or no net phenotypic effect.

Needless to say, some sites produce much larger phenotypic
effects than others and therefore are subject to stronger selec-
tion. On the other hand, a certain fraction of sites (presumably
a large fraction) produce no phenotypic effects at all and there-
fore are completely neutral with respect to natural selection.

The picture ofevolution that emerges from the present anal-
ysis is as follows. From time to time, the position ofthe optimum
shifts due to changes in environment and the species tracks such
changes rapidly by altering its mean. But, most of the time,
stabilizing selection predominates. Under this selection, neu-
tral evolution (random fixation of alleles by sampling drift) oc-
curs extensively, transforming all genes, including those of liv-
ing fossils, profoundly at the molecular level.
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Smith, J. F. Crow, and K. Aoki for helpful suggestions and useful com-
ments to improve the presentation. This is contribution no. 1364 from
the National Institute of Genetics, Mishima, Shizuoka-ken, 411 Japan.
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