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Abstract
Do children draw upon abstract representations of number when they perform approximate
arithmetic operations? In this study, kindergarten children viewed animations suggesting addition
of a sequence of sounds to an array of dots, and they compared the sum to a second dot array that
differed from the sum by one of three ratios. Children performed this task successfully with all the
signatures of adults' nonsymbolic number representations: accuracy modulated by the ratio of the
sum and the comparison quantity, equal performance for within- and cross-modality tasks and for
addition and comparison tasks, and performance superior to that of a matched subtraction task.
The findings provide clear evidence for nonsymbolic numerical operations on abstract numerical
quantities in children who have not yet been taught formal arithmetic.
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A wealth of evidence suggests that human infants, children, adults in diverse cultures, and
nonhuman animals share a capacity to represent number. Preschool children can compare
the cardinal values of large sets of elements, even when the particular elements in the two
sets differ in modality and format (Barth, La Mont, Lipton, & Spelke, 2005). Moreover,
non-human animals, human infants, and human children and adults with no school-based
instruction in arithmetic can add and subtract large numbers of visual forms or event
sequences (Brannon, Wusthoff, Gallistel, & Gibbon, 2001; McCrink & Wynn, 2004; Pica,
Lemer, Izard, & Dehaene, 2004; Flombaum, Junge, & Hauser, 2005; Barth et al., 2005,
2006; Slaughter, Kamppi, & Paynter, 2006; Cordes, Gallistel, Gelman, & Latham, 2007;
McCrink & Dehaene, 2007). Finally, 5-year-old children can perform approximate addition
and subtraction of symbolically presented numbers (Gilmore, McCarthy & Spelke, 2007).

In all these cases, number representations have been found to have four signature properties.
First, representations of number are approximate and subject to a ratio limit: performance on
comparison, addition, and subtraction tasks declines as the ratio of compared values
approaches 1 (e.g. Izard & Dehaene, 2008). Second, comparison performance is equally
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accurate when quantities appear in the same vs. different modalities (Barth, Kanwisher, &
Spelke, 2003; Barth et al., 2005, 2006). Third, addition performance is as accurate as
comparison performance with matched quantities (Izard & Dehaene, 2008; Pica et al., 2004;
Barth et al., 2005, 2006). Fourth, addition and comparison performance show higher
accuracy than subtraction (Barth et al., 2005, 2006; McCrink & Dehaene, 2007).

Despite these converging findings, the existence of early arithmetic with abstract quantities
continues to be debated (e.g. Rousselle, Palmers, & Noël, 2004; Mix, Huttenlocher, &
Levine, 2002; Newcombe, 2002; Simon, 1997; see also Huttenlocher, Jordan, & Levine,
1994). Although human adults can add sequences of sounds to spatial arrays of dots (Barth
et al., 2005) and represent the numerosities of visual and auditory sequences in a common
brain region (Piazza, Mechelli, Price, & Butterworth, 2006), abstract arithmetic could arise
from years of experience with symbolic arithmetic. To date, human infants and nonhuman
primates have been shown to add and subtract quantities in different modalities and formats
only when the two numbers are very small (Church & Meck, 1984; Feron, Gentaz, & Streri,
2006; Jordan & Brannon, 2006; Kobayashi, Hiraki, Mugitani, & Hasekawa, 2004;
Kobayashi, Hiraki, & Hasegawa, 2005; Nieder, Diester, & Tudusciuc, 2005). Addition and
subtraction of small numbers may depend, however, upon a system that represents small
numbers of items and holds them in working memory (commonly called “parallel
individuation; e.g. LeCorre & Carey, in press; 2007) rather than upon explicitly numerical
processes (Carey, 2004; Hauser & Spelke, 2004; Feigenson, Dehaene, & Spelke, 2004;
Simon, 1997; Xu, 2003).

Two series of previous experiments provide suggestive evidence for arithmetic operations
on abstract numerical quantities in five-year-old children with no formal training or relevant
symbolic number knowledge (Barth et al., 2005; Gilmore et al., 2007). In the experiments of
Barth et al., (2005), children successfully compared sets of dots to sequences of sounds, and
they added two sets of dots and compared the resulting sum to a sound sequence, with
accuracy equal to that of tasks requiring comparison of the sum to a third array of dots.
Follow-up tests showed that children succeeded without recourse to various non-addition
strategies. These tasks, however, did not require children to perform addition across sets
presented in different sensory modalities. In the experiments of Gilmore et al. (2007),
children added or subtracted large sets presented symbolically (as number words and Arabic
symbols) and compared the sum to a third, symbolically presented number. It is possible,
however, that children solved this task by converting each symbolic number to a
nonsymbolic visual representation of numerosity, and then by adding these numerosities in a
modality-specific format. Thus, it is not clear whether preschool children or animals can
perform arithmetic operations on abstract quantities, or whether they mimic these operations
through spatial transformations of visual arrays (see Barth et al., 2005; Mix et al., 2002;
Huttenlocher, Jordan, & Levine, 1994).

Here we used a modified version of the task of Barth et al (2005) to test whether children
can add a visual array of dots to an auditory sequence of sounds, and then compare the result
to another dot array. Children performed this task reliably and without resort to comparison
strategies that are alternatives to true addition (e.g., say the comparison array is larger than
the sum when it is particularly large). Finally, we tested for the four signatures of adults'
abstract number representations. Children's performance showed all four signatures,
providing evidence for a system of abstract computation that is shared by preschool children
and adults. These findings provide the first evidence for the addition of abstract
representations of large numbers prior to arithmetic instruction.
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Experiment 1
The first experiment investigated whether kindergarten children can add large sets of
elements when the addition operation requires them to integrate numerical information
across different sensory modalities and stimulus formats: visual spatial arrays and auditory
temporal sequences.

Method
Participants were 16 children (5 years 6 months to 6 years 10 months; mean 6 years 2
months) recruited from Massachusetts kindergarten classrooms through letters sent home to
children's parents. Most of the children tested in this series of studies were white and
middle-class, but the sample included children of a range of ethnicities and socioeconomic
backgrounds reflecting the diversity of the local population. No information was available
about languages spoken in the children's homes or parental education level. Children were
tested individually at their schools. Displays were presented on a Macintosh G3 iBook
laptop using the VisionShell stimulus presentation software. Children were introduced to the
task as a computer game (adapted from the procedure of Barth et al., 2005) and were
introduced to the stimuli before the test trials began. First, children saw two example
animations in which an array of blue dots appeared all at once in the lower left corner of the
screen and were told, “Look, here are some blue dots! And in this game, more blue dots
come in when you hear this sound – see, here they come!” More blue dots appeared in the
array, one by one, each accompanied by a sound. In two more example animations, children
were shown that the dots could “appear” one by one even while hidden by an occluder. The
first array of blue dots appeared as before, and the child was told “Here are some blue dots,
and here's a blue box covering them up” as a blue rectangle moved into view, stopping at the
bottom left of the screen to cover the array. The experimenter then said “Now, the blue dots
will come in and hide behind the box when you hear that sound. You won't see them, but
you'll still hear them!” after which a sequence of sounds played, too quickly for verbal
counting, and the child was told, “Now all the blue dots are hiding back there.” The occluder
disappeared, revealing the altered blue dot array, and the child was told “See? If I take away
the box, there they are!”

Next children were familiarized with the full procedure in two training trials. They were told
“Now you'll see how the whole game works. Here are some blue dots [first set of blue dots
appears]. Now they are covered by a box [blue rectangle moves into place]. And now here
come some more blue dots hiding behind the box – listen! [sequence of sounds plays]. Now
the blue dots are all back there. And now, here are some red dots too! [red dot array appears
all at once on the bottom right] And the red dots get covered up too [pink occluding
rectangle moves into view to cover the red dot array]. Are there more blue dots hiding here
[indicating the blue occluder], or more red dots hiding here [indicating the pink occluder]?
After the child responded, the occluders were removed to reveal the dot arrays. Children
therefore received meaningful feedback only on these two trials. Finally, children received
two easy practice trials. The same procedure was followed except that the arrays were not
revealed at the end, the numerosities of the sets differed extremely to make discrimination
easy, and children were allowed to respond. Children's responses on these trials were almost
always correct; children were given mildly positive feedback regardless of response.

Eighteen test trials followed the general procedure of the two easy practice trials (see Figure
1A), except that for test trials, the numerosities of the sum and the comparison array differed
by ratios of 4:7, 4:6, or 4:5, with the comparison array more numerous on half the trials.
Table 1 presents the numerical values of all the problems used in Experiment 1. Columns
1−4 list the first operand (the first array “X”, column 1), the second operand (the sound
sequence “Y”, column 2), the never-presented sum (“X+Y”, column 3), and the foil (the
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second array “Z”, column 4). Column 5 lists the comparison ratio (collapsed over sum: foil
and foil: sum ratios) and Column 6 lists the correct answer to the problem (which is larger,
sum X+Y or foil Z?). The remaining columns provide information about each problem with
respect to various alternative non-addition strategies, discussed below. Test trials were
presented in a different pseudorandom order for each child, and different stimulus sequences
and arrays were generated for each child. Two additional easy trials were interspersed with
the test trials. Set sizes ranged from 16 to 56 elements (mean 37), and numerosities were
matched as closely as possible across the three ratio conditions. The dot stimuli were red or
blue filled circles (2.7 mm diameter) presented within an invisible rectangular envelope
(width 6.4 cm, height 4.6 cm). Sounds were abbreviated (18 ms) versions of a typewriter key
sound effect, and sound sequences were presented in an irregular rhythm (average ISI 700
ms) with total durations ranging from 640 ms to 3.46 s in duration. Stimuli were presented
too briefly for children to count verbally 1. Mildly positive feedback was given on all trials.

Problems were designed so that choices based on some simple non-addition strategies would
lead to chance performance, whereas other non-addition strategies would lead to above-
chance performance overall but chance performance on critical subsets of trials that were
analyzed separately. Because the task required children to integrate information across both
sensory modalities and stimulus formats (temporal and spatial), it is unlikely that continuous
quantity cues (such as area, density, duration, and rate) could guide performance.
Nevertheless, dot arrays varied in element size, array size, and density to control for some of
these variables and to allow tests for the others (see Results).

Results
Overall performance levels—Children performed well above chance on the addition
task (73%, sM=4.63, t(15)=5.681, p<.0001, d=1.42), answering successfully for all three
ratios (0.57: 78%, sM=4.75, t(15)=4.743, p<.0001, d=1.48; 0.67: 71%, sM=5.15,
t(15)=4.038, p<.0006, d=1.01; 0.8: 69%, sM=4.00, t(15)=4.7, p<.0002, d=1.18; see the solid
line in Figure 2A). Performance on the present cross-modal addition task was compared to
kindergarten-age children's performance in an earlier within-modality addition study (adding
two dot arrays and comparing the sum to a third array; Barth et al., 2005) with a 2
(Modality: within vs. across) by 3 (Ratio) ANOVA. There was a main effect of Ratio,
(F(2,62)=11.406, p<.001, η2=.269) and a linear contrast analysis showed that performance
declined as the ratio approached 1 (F(1,31=25.512, p<.001, η2=.451). There was no effect of
Modality: this cross-modal addition task yielded an overall accuracy score of 73% correct,
whereas children were 66% correct overall on the previously reported within-modality
addition task.

Tests for alternative strategies—Table 1 provides information about each presented
problem with respect to various alternative non-addition strategies that we explored. When a
problem is listed as “1” with respect to a particular strategy, the strategy predicts the correct
answer for that problem. A “-1” indicates that the strategy predicts the incorrect answer, and
a “0” means that the strategy does not provide a clear prediction for that problem (if, for
example, the quantities to be compared according to the strategy in question are too similar
to discriminate). Many simple non-addition strategies would lead to chance performance
overall. In particular, children would perform correctly on half the trials, but incorrectly on
the other half, if they simply chose the sum X+Y as larger for all trials (Column 7), chose
the foil Z as larger (Column 8), or compared the second operand Y to the foil Z second

1No child engaged in overt verbal counting, though for the smallest sets (e.g. sets of 3 items in the two easy practice trials), children
sometimes identified the exact number of items present. The rapid presentation of the stimuli (with three large sets of elements
presented in close temporal proximity) and the experimenter's verbal narration of the events in the trial were likely to prevent attempts
at silent verbal counting.
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addend (Column 9). Children could perform above chance overall, however, if all children,
or a critical subset of children, compared the first array X to the foil Z, ignoring the second
operand (the sound sequence Y). To test for the use of this X vs. Z strategy (Column 10), we
compared accuracy on those problems for which the strategy predicts the correct answer (10
trials per child, 68% correct overall, sM=6.83) with accuracy on those problems for which it
does not (8 trials per child, 74% correct overall, sM=5.28). Children performed above chance
for both types of problems (t(15)=2.648, p<0.001, d=0.66; and t(15)=4.581, p<0.0002,
d=1.15, respectively) and the two types did not differ from each other (t(15)=0.62, p>0.05).
We conclude that children did not use the X vs. Z strategy 2.

Children could also perform above chance if they pursued a strategy based on the overall
range of numerosities presented across trials, by guessing “more blue dots” whenever the
first array X was especially large or “more red dots” whenever it was especially small, or by
making analogous guesses based on the size of the second dot array Z. These strategies
produce better-than-chance accuracy levels overall, because roughly half of the trials in each
experiment contained extreme values that were informative about the correct answer (see
Column 11 for the extreme X-value strategy and Column 12 for the extreme Z-value
strategy). The other half of the trials, however, did not contain extreme values and so such
strategies made no prediction: children using these strategies would produce chance
performance levels on this subset only. Accordingly, analyses in considered performance
separately for the subsets of trials for which range informative was predictive vs. not
predictive of the correct response. Performance was above chance for trials that could not be
answered correctly using these range-based strategies (strategies based on the first array:
74%, sM=4.83, t(15)=5.029, p<.0001, d=1.26; second array: 71%, sM= 4.75, t(15)=4.315,
p<.001, d=1.08; see Figure 2B and 2C). Therefore, children's success at this task did not
depend on these range-based strategies 3.

Computations based on continuous variables rather than discrete numerosity could enter into
children's judgments in the present cross-modal tasks, if children combined estimates of the
magnitude of a dot array's spatial extent and the magnitude of a sound sequence's temporal
extent. Because the duration of the sound sequence was consistently longer for more
numerous sequences, this was a possible strategy for children. As a result of the choice to
generate new dot arrays, with different dot positions, for each child, there are no fixed
subsets of trials in which array extent is or is not correlated with numerosity. Nevertheless,
numerosity was more likely to be correlated with spatial extent for the subset of problems in
which the first array X contained relatively few dots. This is because the dot arrays were
presented in a relatively small rectangular envelope on the screen (see Methods): as the
number of dots increased, the spatial extent of the array could not continue to increase
beyond this envelope. For larger-numerosity arrays, the density of the array rather than its
spatiotemporal extent would tend to be correlated with numerosity. We classified trials
whose first arrays contained 24 or fewer dots as more susceptible to the spatiotemporal
extent strategy in order to create two roughly equal trial subsets (see Table 1, Column 13).

2Could some individual children have used this strategy? In the realm of symbolic addition, large differences in strategy choice may
be observed across participants (e.g. Siegler, 2007). Although most of the children produced data inconsistent with the use of the X vs.
Z strategy, five of the sixteen children produced data that were consistent with its use (better performance on trials for which this
strategy gave the correct answer). This result are consistent with at least two possible interpretations: these five children could have
made use of the X vs. Z strategy, or they could have shown a tendency to choose the last set encountered (the red set).
3Half of the children produced individual data that were not consistent with the use of range-based strategies (individual accuracy
scores of 70% or better for the subsets of trials that could not be answered correctly using these strategies). Five of the sixteen
produced data that were consistent with the use of the size of the first (X) array (individual accuracy scores near chance for the subset
of trials that could not be answered correctly using this), so it is possible that these children were influenced by the size of the first
array. Six of the sixteen (including three of the previous five) produced analogous results for the strategy based on the size of the
second (Z) array. Therefore eight unique children produced data consistent with the idea that they might have been influenced by
individual array size in this task.
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Trials in which the spatiotemporal extent strategy predicted the correct answer and trials in
which it did not provide useful information produced the same level of accuracy (73%, sM=
6.48, and 73%, sM= 4.52 for the two trial types, respectively), suggesting that children did
not rely on this strategy 4.

Discussion
Children successfully performed the across-modality addition task, and their accuracy was
dependent upon the ratio of the numerosities of the sum of the first two sets and the
comparison set. Performance on the present across-modality addition task did not differ
from children's performance on a previous within-modality addition task (Barth et al., 2005).
Analyses of critical subsets of trials revealed that children did not succeed at the addition
task through guessing strategies based on the sizes of single arrays (for example, judging
that there were more blue dots when the first array was particularly large). Performance also
did not depend on other numerical comparison strategies or on computations based on
continuous quantities.

Could children have succeeded at this task by drawing on their skills at verbal counting and
learned symbolic arithmetic? These children had not received school-based training in
arithmetic, but they may have been exposed to relevant arithmetic training in other contexts.
It is unlikely that such training was responsible for success at this task for at least four
reasons. First, the task itself discouraged verbal counting 1. Second, children can perform
approximate nonverbal addition on visual sets that involve numerosities that fall outside
their verbal counting range (Ballinger & Barth, 2007). Third, the children in the present
study participated in a symbolic arithmetic post-test designed to screen for knowledge of
exact symbolic arithmetic facts. In the post-test, children were asked to produce a small
subset of the sums used in the nonsymbolic computerized task (“If there were 28 kids in a
pool, and 8 more jumped in, how many kids would be in the pool?”). Children were not able
to retrieve answers to these questions from memory, suggesting that they did not possess
knowledge of arithmetic facts relevant to this task. They did possess knowledge of a
procedure that could lead to the answer: nearly all children used a verbal counting-up
strategy, counting slowly out loud and tallying on their fingers. This strategy was not
applied during the nonsymbolic computerized task . Finally, recent experiments by Gilmore
et al. (2007) provide evidence against the hypothesis that children could have solved the
present nonsymbolic task by drawing on exact arithmetic knowledge. Children from the
same population that we tested were given a simple forced-choice symbolic arithmetic task
with the same structure as our nonsymbolic task. Performance on the symbolic arithmetic
task was approximate, not exact: accuracy was dependent on the ratio of the presented
alternatives (as in the present nonsymbolic task), and children were unable to distinguish the
correct sum from a close alternative (Gilmore et al., 2007). This finding is inconsistent with
the idea that children arrived at their responses through verbal counting and learned, exact
symbolic arithmetic. Although these children may have had informal exposure to symbolic
arithmetic, they do not draw on this knowledge in the present nonsymbolic task.

Taken together, the findings of Experiment 1 demonstrate that children succeeded at this
cross-modal addition task, and that success was not due to alternative non-addition
strategies. Moreover, children's performance showed two signatures of nonsymbolic
addition in adults: an effect of ratio on performance and equally high addition performance
on within-modality and cross-modal tasks. Accordingly, the next experiments tested whether
children share two additional signatures of adults' nonsymbolic arithmetic performance:

4Four individual participants produced data consistent with the use of this spatiotemporal strategy (better performance on trials that
were more likely to be answered correctly through the use of the strategy).
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equal performance of addition and comparison (Experiment 2), and poorer performance of
subtraction than of comparison (Experiment 3).

Experiment 2
This experiment investigated whether children's cross-modal addition performance is as
accurate as simple comparison of two arrays. Children performed a comparison task
identical to the addition task of Experiment 1 in all respects except one: all the elements in
the two addend sets of Experiment 1 were presented together, as a single sound sequence. If
children show comparable accuracy at cross-modal addition and comparison tasks,
performance in Experiment 2 should be similar to that of Experiment 1.

Method
A new group of 17 children (5 years 8 months to 6 years 8 months; mean 6 years 3 months)
participated in Experiment 2. Children were again recruited from Massachusetts
kindergarten classrooms through letters sent home to children's parents. Most of the children
tested were white and middle-class, but the sample included children of a range of
ethnicities and socioeconomic backgrounds reflecting the diversity of the local population.
No information was available about languages spoken in the children's homes or parental
education level. Children were tested individually at their schools. The method was the same
as in Experiment 1, except in two respects (see Figure 1B). No initial array of blue dots
appeared at the start of a trial. Instead, the blue screen moved into place, and children were
told “Here come some blue dots” as they heard a sequence of sounds. After the sequence,
the experimenter said “Now the blue dots are hiding back there.” For each comparison
problem, the two comparison quantities were equal to those of the sum and comparison
array from a corresponding addition problem in Experiment 1; there were 3 ratios, with the
visual array larger on half the trials.

Results and discussion
Comparison performance was above chance overall (69%, sM= 5.41, t(16)=6.632, p<.0001,
d=1.61), and at each ratio (0.57: 81%, sM= 4.73, t(16)= 6.654, p<.0001, d=1.61, 0.67: 65 %,
sM=5.41, t(16)= 2.762, p<.007, d= .67; 0.8: 61%, sM=6.06, t(16)=1.833, p<.05, d=.44).
Performance in Experiment 2 was compared to that of Experiment 1 by a 2 (Operation:
comparison vs. addition) by 3 (Ratio) ANOVA. This analysis revealed a significant effect of
Ratio, F(2,62)=6.199, p<.005, η2=.17) with a significant linear trend of declining
performance as the ratio of the compared numerosities approached 1 (F(1,31)=12.327, p<.
002, η2=.28). There was no main effect of Operation and no interaction (F<1): children were
equally accurate in the addition and comparison tasks (Figure 2a). Children's nonsymbolic,
abstract addition therefore shows a third signature of adults' performance: children can add
two quantities and compare the sum to a third quantity as accurately as they compare the
latter two quantities directly. Accordingly, the last experiment tested for the fourth signature
of adults' performance: addition and comparison performance that is superior to subtraction
performance.

Experiment 3
Experiment 3 investigates whether kindergarten children successfully subtract a sequence of
sounds from a dot array and compare the difference to a third set in the form of a dot array.
Moreover, it investigates whether subtraction performance is less accurate than addition and
comparison performance for children, as it is for adults.
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Method
Seventeen children participated in the subtraction task (5 years 6 months to 6 years 8
months; mean 6 years 1 months). Because the values used in this task necessarily differed
from those used to test addition, a separate group of 17 children was tested with a
comparison task (5 years 5 months to 6 years 6 months; mean 5 years 11 months).
Participants were again recruited from Massachusetts kindergarten classrooms through
letters sent home to children's parents. Most of the children tested were white and middle-
class, but the sample included children of a range of ethnicities and socioeconomic
backgrounds reflecting the diversity of the local population. No information was available
about languages spoken in the children's homes or parental education level. Children were
tested individually at their schools. The subtraction problems used operands identical to
those in the addition task of Experiment 1: for each addition problem in the form X+Y vs.
Zadd, there was a subtraction problem X-Y vs. Zsub. Because the operands were the same,
their sums were larger than their differences. Therefore comparison task numerosities were
modified to match the subtraction problems, so that the comparison sets (Zadd) presented in
Experiment 1 differed from those (Zsub) presented in Experiment 3. Comparison
numerosities ranged from 8 to 30 (mean 18). The difference (X-Y) differed from the third
set Zsub by a ratio of 4:7, 4:6, or 4:5 (or close approximations). Subtraction set sizes ranged
from 5 to 40 elements, and the mean of the final numerosities to be compared was 18. Table
2 presents the numerical values of all the problems used in Experiment 3. Columns 1−4 list
the first operand (the first array “X”, column 1), the second operand (the sound sequence
“Y”, column 2), the never-presented difference (“X-Y”, column 3), and the foil (the second
array “Z”, column 4). Column 5 lists the comparison ratio (collapsed over difference: foil
and foil: difference ratios) and column 6 lists the correct answer to the problem (which is
larger, difference X-Y or foil Z?).

As in Experiment 1, problems were designed so that various non-subtraction strategies
would lead to chance performance either overall or on a subset of trials, and analogous
controls for continuous quantity cues were applied here as well. The comparison procedure
was identical to that of Experiment 2. The subtraction procedure was as described
previously for the addition task, except that the example sequences now demonstrated that
each sound accompanied the removal of an existing dot instead of the addition of a new dot.
The subtraction test trial procedure was similarly analogous to the addition procedure (see
Figure 1C).

Results
Overall performance levels—Children performed reliably above chance on the smaller-
set comparison task 5 (74%, sM= 3.74, t(16)=10.274, p<.0001, d=2.49). Performance was
better than chance for all three ratios (0.57: 81%, sM= 3.98, t(16)=7.82, p<.0001, d=1.90,
0.67: 81%, sM= 3.98, t(16)=7.82, d=1.90, p<.0001; 0.8: 59%, sM= 3.30, t(16)=2.496, p<.02,
d=.61; Figure 3A). Children also performed reliably above chance on the subtraction task
(65%, sM= 4.44, t(16)=5.352, p<.0001, d=1.30; Figure 3A). Performance was better than
chance except for the most difficult ratio (0.57: 68%, sM= 3.90, t(16)=4.518, p<.0002,
d=1.10, 0.67: 72 %, sM=5.68, t(16)=3.801, p<.0008, d=.92; 0.8: 56%, sM=3.76, t(16)=1.562,

5Experiment 3 also provides a means for testing a possible objection to the conclusion that Experiment 1 addition performance was as
good as comparison in Experiment 2. The comparison task presented children with larger sets than the addition task. If these larger
sets were more difficult for participants to process, perhaps comparison performance suffered relative to addition. Experiment 3
contains a comparison task that uses smaller numerosities, allowing us to test for potential set size effects. Comparison task
performance was assessed across Experiments 2 (larger sets, matched to addition problems) and 3 (smaller sets, matched to
subtraction problems) with a mixed-factor 2 (Set Size) by 3 (Ratio) ANOVA, with the first factor between subjects. There was a
significant main effect of Ratio (F(2, 64)=10.616, p<.0005) and a significant linear trend of Ratio (F(1, 32)=20.036, p<.0005), but no
effect of Set Size: comparisons were as accurate for larger sets as for smaller sets.
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p>.05). Subtraction and comparison performance were compared by a 2 (Operation:
comparison vs. subtraction) by 3 (Ratio) ANOVA. This analysis revealed a significant effect
of within-subjects factor Ratio (F(2, 64)=13.311, p<.0005, η2=.29), with a significant linear
trend of ratio (F(1,32)=18.182, p<.0005, η2=.36). There was a significant effect of
Operation (F(1,32)=5.861, p<.03, η2=.15): accuracy was lower for the subtraction task than
for its matched comparison task. There was no Ratio by Operation interaction.

Tests for alternative strategies—Table 2 provides information about each subtraction
problem with respect to various alternative non-subtraction strategies. Some of the simple
non-subtraction strategies analogous to those tested in Experiment 1 would lead to chance
performance. We tested for the use of other non-subtraction strategies as follows. Compare
Y to Z (Column 9): Children were better than chance for the subset of trials for which the Y
vs. Z strategy either predicted the incorrect answer (5 trials) or made no prediction (1 trial),
a subset of 6 trials per child total (65% correct, sM=5.34, t(16)=2.766, p>0.001, d=0.67).
Compare X to Z (Column 10): Children were better than chance for the subset of trials for
which the X vs. Z strategy either predicted the incorrect answer (5 trials) or made no
prediction (3 trials), a subset of 8 trials per child total (65% correct, sM=4.94, t(16)=2.978,
p>0.005, d=0.72). Extreme X-value and extreme Z-value strategies (Columns 11 and 12):
Analyses treated performance separately for the subsets of trials for which range information
was predictive vs. not predictive of the correct response. There was no evidence that
children simply based their judgments on the size of the first array X (because they
performed better for trials on which this strategy was uninformative than for those on which
it was informative; see Figure 3B). Importantly, children performed at chance on the subset
of trials that could not be answered correctly with the extreme Z-value strategy (49%,
sM=3.67, t(16)<1; Figure 3C). Children's overall above-chance performance, therefore, was
observed only on the subset of trials in which a guessing strategy based on the size of the
second array predicted the correct answer. Spatiotemporal strategy (Column 13): Trials in
which the spatiotemporal extent strategy predicted the correct answer and trials in which it
did not provide useful information led to above-chance accuracy levels for both trial types
(63%, sM=5.08, t(16)=2.605, p<0.01, d=0.63, and 66%, sM=3.83, t(16)=4.302, p<0.001,
d=1.04, respectively) and these did not differ from each other (t(16)-0.47, p>0.05),
suggesting that children did not rely on this strategy 6.

Addition vs. subtraction operations—A final analysis tested whether subtraction
performance in Exp. 3 was inferior to addition performance in Exp. 1. Because children's
choices in Exp. 3 were influenced by the strategy based on the size of the second array, this
analysis focused only on performance on the subset of trials in each experiment for which
this strategy did not apply. Subtraction performance was inferior to addition performance on
this subset (subtraction 54%, addition 71%, t(31)=2.73, p<0.006, d=.95).

Discussion
Experiment 3 provided evidence for two signatures of nonsymbolic arithmetic in preschool
children. First, these children's performance of subtraction was less accurate than their
performance of matched comparison problems. Second, their subtraction performance was
less accurate than their addition performance. The existence of these signatures provides

6Individual children's performance patterns with respect to alternative strategies for the subtraction task were as follows. A majority of
the children produced data consistent with the use of the Y vs. Z strategy or the X vs. Z strategy. Twelve of the fourteen children
performed better on trials for which the extreme Z-value strategy predicted the correct answer; the remaining five children performed
equally well on these trials and on trial for which the extreme Z-value strategy was not helpful. Six of sixteen children performed
better for the subset of trials that were more susceptible to the spatiotemporal strategy, and the remaining children produced data
inconsistent with the use of that strategy.
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evidence for a system of abstract computation that is common to preschool children and
educated adults.

Our analyses suggest that children did not rely on simple comparison strategies or
continuous quantitative variables. Children also did not tend to guess that the difference was
larger (or smaller) than the comparison array when the first dot array was particularly large
(or small). Indeed, they appeared to perform better when the first dot array was intermediate
in size, contrary to this strategy (Figure 3B). In contrast to Experiment 1, however, tests for
the use of a range-based strategy focusing on the size of the final comparison array
suggested that children may have relied upon a guessing strategy based on the size of that
array. Children performed above chance only on the subset of trials in which this strategy
predicted the correct answer (i.e., the subset of trials in which the final set either contained a
very small number of red dots and was smaller than the difference, or a very large number of
red dots and was larger than the difference). Although children succeeded in the addition
task without resort to this strategy (Figure 2C), providing evidence for the addition of
abstract quantities, our analysis of subtraction task performance does not provide conclusive
evidence for abstract subtraction.

This finding is consistent with two interpretations. First, it is possible that children did not
subtract at all and simply guessed based on the size of the final array presented. Second, it is
possible that children did subtract in this task but had low confidence in their responses.
When the final array contained either a very large or a very small numerosity, children may
have switched strategies and let their choices be determined by that array's size. If the latter
interpretation is correct, subtraction accuracy was not good enough to result in above-chance
performance on this task. We return to these possibilities below.

General Discussion
Our experiments provide the first evidence for children's approximate, nonsymbolic addition
of abstract large numerical quantities prior to relevant arithmetic instruction. Kindergarten
children added numerical quantities presented in different stimulus modalities and formats
without verbal counting and without the use of alternative non-addition strategies (such as
those based on the numerosity of a single set, or on continuous variables correlated with
numerosity). Though perceptual accounts have been proposed to explain children's
performance on tasks that ostensibly involve numerical processing (Mix et al., 2002;
Rousselle et al., 2004), such explanations cannot account for children's success in
Experiment 1. Children evidently possess an addition process that can operate on
representations of number across modalities or formats, providing evidence for a degree of
abstraction in children's approximate large-number addition computations.

Children's abstract addition performance appears to show four characteristic signatures of
adults' nonsymbolic number representations: a ratio limit on accuracy, similar performance
on cross-modal and within-modality addition, equal performance on cross-modal addition
and matched comparison, and poorer performance on cross-modal subtraction, relative both
to addition and to comparison. These common signatures provide evidence for a common
system of abstract magnitude representation in adults and children, emerging prior to the
onset of formal large-number arithmetic instruction.

In contrast to previous research (Barth et al., 2006; Slaughter et al., 2006, Gilmore et al.,
2007), the present experiments provide no evidence for nonsymbolic subtraction. Because
children have been shown to subtract quantities successfully when presented with purely
visual arrays or with symbolic numbers, it is possible that children are able to subtract one
numerical quantity from another only when the two quantities appear in, or can be mapped
to, the same modality. Alternatively, young children may be capable of abstract subtraction,
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but their accuracy may be too low to be detectable in this task, in the face of our stringent
controls for alternative strategies.

Previous findings with adults are consistent with the second interpretation. The mental
magnitudes that underlie these and similar tasks are approximate measures of numerosity,
and their variability increases with larger numerosities (Gallistel & Gelman, 2000). These
properties combine to decrease the accuracy of subtraction, relative to comparison or
addition of matched quantities (Izard, 2006; Cordes et al., 2007; McCrink & Dehaene,
2007). The comparison ratios employed in the present experiments may simply have been
too difficult to compensate for this effect, preventing the subtraction task from revealing
children's abilities. It is also possible that some property of the stimuli made the subtraction
task more difficult than the addition task. For example, children may have found it easier to
understand that each sound accompanied the addition of a dot, than to understand that each
sound accompanied the removal of a dot 7. If this is the case, then the present task may
underestimate children's across-modality subtraction ability.

Thus, abstract subtraction may be possible for children but highly demanding. Consistent
with this possibility, children have succeeded at large-number approximate subtraction tasks
that were less complex than those described here (Slaughter et al., 2006; Zur & Gelman,
2004; Gilmore et al., 2007); previous research has suggested that pigeons are able to
perform numerical subtraction as well (Brannon et al., 2001). Further research is needed to
determine whether young children possess the ability to draw upon abstract numerical
representations for subtraction (as adults do), or whether performance in previous
subtraction tasks was due to cognitive operations that are modality-specific .

In summary, a system of abstract number representation, permitting both comparison and
addition of abstract large numerical quantities, is in place prior to the onset of formal large-
number arithmetic instruction. Nevertheless, we cannot yet conclude that such a system
develops independently of language and verbal counting. Although the children in the
present experiments did not use verbal, symbolic number knowledge in the present tasks,
children in this age range have mastered the system of verbal counting (LeCorre, Van de
Walle, Brannon, & Carey, 2006) and show considerable understanding of the verbal number
system (Lipton & Spelke, 2005, 2006). Studies of younger children or cultures lacking a
verbal counting routine are needed to probe the possible relationship between these aspects
of language and abstract number.
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Figure 1.
Schematic depictions of test displays and narration for (A) the addition test trials of
Experiment 1 (B) the comparison test trials of Experiment 2, and (C) the subtraction test
trials of Experiment 3.
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Figure 2.
Accuracy data for the cross-modal addition task (Experiment 1) and matched comparison
task (Experiment 2). Chance is 50% for all plots. A. Accuracy scores (mean and SEM) are
plotted against the ratio of the numerosities to be compared. B. Accuracy at each
comparison ratio for addition trials whose first array represented extreme numerical values
(near the low end or the high end of the range of numerosities used) and for addition trials
whose first array included only mid-range values. C. Accuracy at each comparison ratio for
addition trials whose second array represented extreme numerical values (near the low end
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or the high end of the range of numerosities used) and for addition trials whose second array
included only mid-range values.
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Figure 3.
Accuracy data for the cross-modal comparison and subtraction tasks of Experiment 3
(chance is 50%). A. Accuracy scores (mean and SEM) are plotted against the ratios of the
numerosities to be compared. B. Accuracy at each comparison ratio for subtraction trials
whose first array represented extreme numerical values (near the low end or the high end of
the range of numerosities used) and for subtraction trials whose first array included only
mid-range values. C. Accuracy at each comparison ratio for subtraction trials whose second
array represented extreme numerical values (near the low end or the high end of the range of
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numerosities used) and for subtraction trials whose second array included only mid-range
values.
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