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Abstract
Studies of the effect of affect on perception often show consistent directional effects of a person’s
affective state on perception. Unpleasant emotions have been associated with a “locally focused”
style of stimulus evaluation, and positive emotions with a “globally focused” style. Typically,
however, studies of affect and perception have not been conducted under the conditions of
perceptual uncertainty and behavioral risk inherent to perceptual judgments outside the laboratory.
We investigated the influence of perceivers’ experience affect (valence and arousal) on the utility
of social threat perception by combining signal detection theory and behavioral economics. We
created three perceptual decision environments that systematically differed with respect to factors
that underlie uncertainty and risk: the base rate of threat, the costs of incorrect identification threat,
and the perceptual similarity of threats and non-threats. We found that no single affective state
yielded the best performance on the threat perception task across the three environments.
Unpleasant valence promoted calibration of response bias to base rate and costs, high arousal
promoted calibration of perceptual sensitivity to perceptual similarity, and low arousal was
associated with an optimal adjustment of bias to sensitivity. However, the strength of these
associations was conditional upon the difficulty of attaining optimal bias and high sensitivity, such
that the effect of the perceiver’s affective state on perception differed with the cause and/or level
of uncertainty and risk.
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The perception of facial actions as threatening is not a simple act of decoding facial
movements – it is influenced by both the internal state of the perceiver (e.g., accessible
conceptual knowledge; Lindquist, Barrett, Bliss-Moreau, & Russell, 2006; Gendron,
Lindquist, Barsalou, & Barrett, In press) and perceptual environment (e.g., background
scene; Barrett & Kensinger, 2010) (for a review, see Barrett, Mesquita, & Gendron, 2011;
Gendron, Mesquita, & Barrett, In press,). Here, we sought to evaluate how the perceiver’s
affective state might serve as an internal context that influences social threat perception
within different external, perceptual environments.

Address correspondence to Spencer Lynn, Psychology NI-125, Northeastern University, 360 Huntington Avenue, Boston, MA 02115;
s.lynn@neu.edu.

NIH Public Access
Author Manuscript
Emotion. Author manuscript; available in PMC 2013 August 01.

Published in final edited form as:
Emotion. 2012 August ; 12(4): 726–736. doi:10.1037/a0026765.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Prior research demonstrates widespread influence of perceivers’ affective state on
perception. For example, affect influences changes in sensitivity to different spatial
frequencies (Phelps, Ling, & Carrasco, 2006; Bocanegra & Zeelenberg, 2009), field of view
(Schmitz, De Rosa, & Anderson, 2009), estimates of height (Stefanucci & Proffitt, 2006)
and steepness (Stefanucci, Proffitt, Clore, & Parekh, 2008), estimates of temperature and
weight (Avramova, Stapel, & Lerouge, 2010), conscious awareness of affective stimuli
(Anderson, Siegel, & Barrett, 2011), and attribution of affect to neutral (Anderson, Siegel,
White, & Barrett, In press) or ambiguous (Bouhuys, Bloem, & Groothuis, 1995) stimuli.

The influence of affect on perception have been characterized in several ways. Some
research has shown that the perceiver’s affective state can bias perception of affect-laden
stimuli in a direction congruent with that affective state (e.g., Bower, 1991; Bouhuys, et al.,
1995). For example, participants induced to feel depressed (vs. elated) rated ambiguous
facial expressions as more sad than did other participants (Bouhuys, et al., 1995). Other
research argues that a person’s affective state can influence the style of processing,
sometimes characterized as effort, depth, or global vs. local focus (reviewed by Schwarz &
Clore, 2007). For example, people induced to feel happy expended less effort to evaluate
stimuli (reviewed by Schwarz, 1990), showed greater reliance on heuristics when
categorizing stimuli (Park & Banaji, 2000), showed less ability to adjust their behavior
following errors (van Steenbergen, Band, & Hommel, 2010), and showed greater influence
of perceptual context (Avramova, et al., 2010). Finally, other research argues that affect may
be associated with perceivers’ propensity to switch processing style, rather than dictating the
direction of the association itself (Huntsinger, Clore, & Bar-Anan, 2010). For example,
when Huntsinger, et al., 2010 people induced to be in a positive state and primed to be
locally focused stayed locally focused, while people induced to be in a negative state and
primed to be locally focused adopted a globally focused style. Huntsinger et al. (2010)
attribute the commonly reported link between negative state and local focus to a propensity
for people to employ a global focus style, so that induction of negative state, typically causes
a switch to a local focus style.

One limitation of prior studies is that they have tended not to investigate the interaction of
affective state with the uncertainty (e.g., perceivers cannot always be sure of what they are
seeing) and risk (e.g., being incorrect can be costly) inherent to perception outside of the
laboratory. Current theories imply that perceivers’ affect should exert its influence on
perception regardless of uncertainty or risk. For example, if one hypothesizes that negative
valence will influence perception of scowling faces in a mood-congruent or locally-focused
direction, current theories offer no expectation that the relationship should be different
among environments that differ on: (1) the ease of distinguishing threats from non-threats
(uncertainty), (2) the relative encounter rate with threats or costs of incorrect perception
(risk), or (3) the difficulty of optimizing one’s perceptual decisions under different levels of
uncertainty and risk. However, uncertainty and risk clearly influence perception, as
documented in the psychophysics literature (e.g., Commons, Nevin, & Davison, 1991). It is
conceivable that affect could influence how perceivers respond to risk and uncertainty
separately from how affect influences the better understood characteristics, such as mood
congruency and processing style. An understanding of how affect influences perception will
be incomplete until interactions of affect with uncertainty and risk are delineated.

Here, we take the perspective that perception is a decision, albeit a decision that perceivers
are typically unaware of making. As a decision, perception is characterized by uncertainty
and risk. For example, sometimes scowling people look threatening when in fact they are
not (they may be concentrating, or angry about something else) and sometimes people don’t
clearly show their feelings (they might appear unthreatening when they in fact are).
Furthermore, failing to correctly note when something is a threat can have different costs
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than seeing threat where it does not exist. For example, failing to respond appropriately
when someone is angry at you may accrue different personal or social costs than does
misattributing anger where it does not exist. Likewise, correctly identifying threat can have
different benefits than correctly rejecting threat in favor of an alternative conclusion.

To capture the decision-like characteristics of perception, and examine how a perceiver’s
affect might interact with them, we used signal detection theory (SDT) within a behavioral
economic framework (Lynn, 2005, 2006, 2010). SDT characterizes a perceiver’s response to
uncertainty and risk by quantifying the perceiver’s ability to discriminate signals of one kind
(targets, e.g., facial and body actions indicating threat) from another (foils, e.g., non-
threatening actions), called sensitivity; and the perceiver’s tendency to categorize any signal
as target vs. foil, called bias. A tendency to categorize signals as targets, or liberal bias,
incurs many correct detections of true threats, but also many false alarm reactions to non-
threatening circumstances as if they were threats. A tendency to identify signals as foils, or
conservative bias, incurs many correct rejections of non-threats, but also many missed
detections of true threats.

In SDT, any given perceptual environment can be characterized by three signal parameters:
(1) how frequently the perceiver encounters targets (e.g., threatening people), called base
rate; (2) the payoffs associated with the four possible decision outcomes, i.e., costs of a
missed detection of threat in another person or of a false alarm (incorrectly perceiving
someone as threatening), and benefits of correctly detecting threat in another person or of
correctly deciding that a person is not threatening; and, (3) the perceptual similarity of target
and foil, e.g., the physical similarity of facial expressions indicative of threat (target), vs.
non-threat (foil). A perceiver’s bias is largely influenced by base rates and payoffs (e.g., rare
targets or costly false alarms each promote conservative bias), while his or her sensitivity is
influenced by the perceptual similarity between targets and foils (e.g., people are more
sensitive when targets and foils are less similar to one another) (Green & Swets, 1966;
Macmillan & Creelman, 1991).

Within this parameterized SDT framework, overall performance is measured by utility, the
net benefit accrued over a series of decisions. Utility is the outcome of a series of correct
detections and correct rejections (which accrue benefits) minus the outcome of a series of
false alarms and missed detections (which accrue costs). A perceiver’s sensitivity and bias
both influence the utility of his or her perception. Sensitivity affects utility by its influence
on absolute number of errors committed. Higher sensitivity results in fewer false alarms and
missed detections. Bias affects utility by influencing the number of false alarm and missed
detection errors relative to each other. The amount and direction of bias that is optimal in a
given environment is a function of the environmental base rate and payoff values, but also of
the perceiver’s level of sensitivity (Supplemental Figure S3 describes the relationship of bias
to sensitivity).

The current study
We examined the association between perceivers’ feelings and their ability to judge social
threat under three different perceptual environments. We created a threat perception task in
which participants categorized faces depicting scowls of varying intensities as either “more
threatening” or “less threatening.” We used affective images and music to induce variation
in participants’ hedonic valence (feeling of pleasantness—unpleasantness) and arousal
(feelings of low—high activation). We used different values of the three signal parameters
(base rate, payoffs, and similarity) to create three environments with different levels of
perceptual uncertainty and behavioral risk. A low base rate of threat created a conservatively
biased environment, emphasizing risk of misidentification due to frequency of occurrence. A

Lynn et al. Page 3

Emotion. Author manuscript; available in PMC 2013 August 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



high cost of missed detections of threat created a liberally biased environment, emphasizing
risk of misidentification due to differential costs of mistakes. A high perceptual similarity of
threatening vs. non-threatening signals created an environment emphasizing risk of
misidentification due to perceptual uncertainty. On each trial, participants viewed a scowling
face (of variable scowl intensity from trial-to-trial) and judged the face as “more” or “less”
threatening. They earned points for each correct judgment and lost points for each incorrect
judgment. Participants were instructed to earn as many points as they could (i.e., optimize
their perceptual judgments of the faces). As measures of performance, we analyzed points
earned, response bias, perceptual sensitivity, and a novel index of signal detection optimality
that measures perceivers’ bias and sensitivity relative to an optimality criterion calculated
from the values of the three signal parameters (see Supplemental Material).

We hypothesized that the affective state associated with highest utility would differ across
the three environments. We predicted that the regression relationship between affective state
(subjective ratings of valence and arousal) and utility (points earned) would differ across
perceptual environments for two reasons. First, the different levels or causes of uncertainty
and risk implemented in our task may play to the strengths of different affective states, as
characterized in the prior literature. For example, achieving optimal sensitivity under
conditions of high similarity might be promoted by the increased influence of discriminative
context on perception afforded by positive valence (Avramova, et al., 2010), while
optimizing bias to account for changing base rates or payoffs might be impaired by the lack
attention to details associated with positive valence (Stroessner, Hamilton, & Mackie, 1992).
Thus, the strength and direction of relationships of affective state with overall performance
could differ among the three conditions. Second, valence and arousal often have not been
examined as separate influences on perception in prior studies. Although in the literature the
influence of affect on perception is discussed in terms of valence, in practice, subjective
affect has often been measured as endorsement of a categorical emotion, e.g., “happy”
(positive valence, across a possibly wide range of arousal) vs. “sad” (negative valence,
typically at low arousal) (Forgas, 1995). Without separate analysis of valence and arousal,
effects attributed to positive vs. negative valence might also be due to high vs. low arousal.
This possible confound leaves room for doubt as to the dominance of a particular state
(combination of valence and arousal) across all three task conditions.

High utility results from both high sensitivity and optimal bias, and our design permitted us
to examine the influence of affect on these components of utility separately. We predicted
that valence would be associated with bias, such that people feeling more unpleasant would
exhibit a more optimal amount of bias than would people feeling pleasant. We reasoned that
unpleasant valence should cause more optimal bias due to “local focus” processing
characteristics, such as improved attention to category details (e.g., base rate [Stroessner, et
al., 1992]) and improved behavioral adjustment in response to errors (van Steenbergen, et
al., 2010). Based on prior studies of the influence of arousal on signal detection (reviewed
by Matthews & Davies, 2001), we hypothesized that arousal would be associated with
sensitivity, such that people feeling more activated would exhibit better sensitivity. Because
our measure of bias optimality–distance to a line of optimal response–is novel, we made no
a priori predictions about how arousal might influence it.

Method
Participants

Participants were two hundred and fifteen people, largely undergraduate Psychology majors
(118 females and 97 males; mean age = 20.2 ± 2.51 [SD] years). Participants gave informed
consent according an IRB-approved protocol and were compensated with $15 or 1.5
research participation credits.
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Affective State Inductions
Participants were assigned to receive pleasant, unpleasant, or neutral affective state
inductions with the goal of creating continuous variation in valence and arousal within the
sample, for use in regression analyses. Affective state induction comprised watching a 4.5
minute computer presentation of affective images (International Affective Picture System;
Lang, Bradley, & Cuthbert, 2005) accompanied by affect-congruent music (Supplemental
Table S1). Before and after affective state induction, participants rated their current level of
arousal (sleepy–excited) and valence (unpleasant–pleasant) on separate 9-point scales. See
Supplemental Material for data on efficacy of the inductions.

Participants were told that the aim of the study was to investigate the influence of
“concentration” (i.e., the threat perception task) on how people feel (i.e., their response to
the affective state inductions). This was the reverse of the study’s actual aim, and so
participants were unaware that the purpose of experiencing the images and music was to
induce an affective state with the intent of investigating its influence on their perception.

Threat Perception Task
Framework—We modeled threat perception by adapting a utility-based signal detection
framework developed for studies of animal learning (Lynn, 2006, 2010), which we call the
Signal Utility Estimator (SUE) model. The framework uses the SDT utility function (Green
& Swets, 1966: Equation 1.14; Supplemental Material) to predict optimal decision criterion
placement given values of the three signal parameters (base rate, payoff, and similarity).

The perceptual similarity parameter was implemented as two classes of stimuli, “more
threatening” (targets) and “less threatening” (foils), which varied over a range of scowling
face intensity (Figure 1). Each stimulus class was defined by a Gaussian distribution with
particular mean and standard deviation, e.g., the 40%-scowling morph as the mean foil and
the 60%-scowling morph as the mean target, with standard deviation = 10% for both
distributions. The presence of variance meant that the exact same stimulus would be shown
with some likelihood as a target exemplar on some trials, and with some alternative
likelihood as a foil exemplar on other trials, the likelihoods being specified by the
distribution of the respective Gaussian functions over the range of scowl intensities. The
base rate parameter controlled the proportion of trials drawn from the target vs. foil
distributions. There was thus a correct answer for every trial. However, due to overlap of the
distributions over the stimulus range, participants experienced considerable uncertainty as to
what the correct answer was (because the same physical stimulus could be a target on one
trial and a foil on another trial). The payoff parameter was implemented as points earned or
lost at each trial based on whether the trial resulted in a correct detection, false alarm,
missed detection, or correct rejection. A task comprised 178 trials on which participants
decided if a stimulus was from the “more threatening” or “less threatening” stimulus class.

We created four sets of parameter values—four perceptual environment conditions. The
conditions differed from each other in the value of one of the three signal parameters (Table
1). In the Baseline Condition, we set base rate of threat to 0.50 (50% of trials were drawn
from the target stimulus class). Correct detection of targets (faces drawn from the “more
threatening” distribution) and correct rejection of foils (faces drawn from the “less
threatening” distribution) each earned +10 points. False alarms to foils lost 7 points and
missed detection of targets lost 3 points. The 40%-scowling morph was the mean foil and
the 60%-scowling morph was the mean target, with standard deviation = 10% for both
distributions. All else being equal, the slightly higher false alarm vs. missed detection cost
created a mildly conservatively biased perceptual environment.
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In the Low Base Rate Condition, we set the base rate of threat to 0.25 (25% of trials were
drawn from the target stimulus class). All other parameters were as in the Baseline
Condition. The payoff values and low base rate combined to create a moderately
conservatively biased perceptual environment (Figure 1). In the Costly-miss Payoff
Condition we set the cost of a false alarm to −1 point and the cost of a missed detection to
−15 points. All other parameters were as in the Baseline Condition. These payoff values
created a liberally biased perceptual environment (Figure 1). In the High Similarity
Condition we adjusted the perceptual uncertainty by setting the mean %-scowl of the “less
threatening” (foil) distribution to the 50%-scowling morph. All other parameters were as in
the Baseline Condition. The high perceptual uncertainty amplified the mild bias established
by the payoff values to create a conservatively biased perceptual environment (Figure 1).

Stimuli—A stimulus set consisted of 11 faces ranging from a neutral, relaxed face to a
scowling face in 10% increments (Figure 1). Faces were created by digitally blending
(MorphMan 4, Stoik Imaging) the neutral and scowling end-point faces. Posed, scowling
faces were used because they elicit “automatic” threat-related physiological and behavioral
responses in a perceiver (Roelofs, Hagenaars, & Stins, 2010). Faces were converted from
color to grey scale, placed against a black background, and rescaled to 500 × 625 pixels at
96 dpi resolution. Six such sets were created, comprising 3 female and 3 male photographic
models, all college-aged Caucasians from the MacBrain1 and IASLab2 face sets. Face
stimuli were shown for 67 ms then backward-masked with the neutral face of different
model. We selected a 67 ms stimulus exposure to attenuate on-line deliberative processing
while maintaining a supra-liminal visual experience (Szczepanowski & Pessoa, 2007). The
mask remained on-screen until the participant’s behavioral response.

Procedure
During recruitment, we asked participants to refrain from eating for at least two hours prior
to the experiment. During the study orientation, we informed participants that they could
exchange earned points for rewards—small bags of snacks (M&M® candies, potato chips,
cocoa-covered almonds, or graham crackers)—at a rate of 700 points per approximately 30
g serving. Prior to the threat perception tasks, participants sampled each food item and
informed the experimenter of the item for which they anticipated exchanging their points.
Each kind of snack was present in sealed jars on a table in front of the participant for the
duration of the study.

During the experiment, participants sat in a comfortable armchair in a sound attenuating,
dimly lit room. All visual stimuli were shown on a 40-inch LCD video monitor (Samsung
LNT4065F, 1080p resolution) 1.5 m from the armchair. Faces subtended ca. 7.2 horizontal
degrees by 9.5 vertical degrees.

Participants were assigned to one of three affective state inductions (pleasant, unpleasant, or
neutral) and one of three test conditions (low base rate, costly-miss payoff, or high
similarity), in a fully crossed design. Over the course of participating in a larger experiment,
participants (1) experienced an affective state induction in their assigned valence condition,
(2) performed a “practice” threat perception decision task in the baseline condition, (3)
experienced a second “booster” affective state induction in their assigned valence condition,

1Development of the MacBrain Face Stimulus Set was overseen by Nim Tottenham and supported by the John D. and Catherine T.
MacArthur Foundation Research Network on Early Experience and Brain Development. Please contact Nim Tottenham at
tott0006@tc.umn.edu for more information concerning the stimulus set.
2Development of the Interdisciplinary Affective Science Laboratory (IASLab) Face Set was supported by the National Institutes of
Health Director’s Pioneer Award (DP1OD003312) to Lisa Feldman Barrett. More information is available on-line at www.affective-
science.org.
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(4) performed the threat perception task in their assigned test condition, and (5) experienced
a neutral affect induction (so that they left the laboratory in a more or less neutral affective
state). Participants then exchanged total accumulated points for the snack(s) of their
choosing, and were debriefed and dismissed.

At the beginning of the each threat perception task, on-screen instructions informed
participants of the base rate and payoffs, and showed two exemplars from the centers of the
target and foil distributions. We directed participants to learn how to best categorize the
faces as “more threatening” or “less threatening” by attending to the points earned and lost,
and to earn as many points as possible. Participants categorized the face stimuli by using
their index fingers to press one of two keys on the computer keyboard, labeled “(+)” for
“more threatening” and “(−)” for “less threatening”. Position of the appropriate response
labels on the “1!” and “+=“ keys was randomized for each participant. On-screen feedback
was given immediately after each perceptual decision with the text “Yes, that was right.” or
“No, that was wrong.”, the points earned or lost for that trial, and total points accrued over
the entire study thus far.

Data Analysis
For each trial, a computer logged the decision outcome (correct detection, correct rejection,
false alarm, missed detection), response time, and points earned. Responses occurring in
under 300 ms from face image on-set were excluded from analysis due to the high
probability of their containing motor errors. From the remaining trials we calculated
sensitivity (d′) and bias (c) (Macmillan & Creelman, 1991) and total points earned.

Additionally, for each condition, we used the SUE model to determine the optimal bias for
any given sensitivity value, which we call the Line of Optimal Response (LOR, see
Supplemental Material). The LOR traces the amount of bias that maximizes utility at any
given sensitivity level for particular environmental base rate and payoff values. We
determined each participant’s distance-to-LOR, which we call dO, (distance-sub-Optimal) as
shortest Euclidean distance from a point defined as (d′, c) to the LOR. Shorter distance-to-
LOR reflects a more optimal bias: At a given level of sensitivity, perceivers whose bias
places them closer to LOR accrue more utility (where utility can be indexed as, e.g., points
earned over a series of decisions). Because dO expresses a perceiver’s bias relative to the
bias that is optimal in a given environment, it permits a measurement of whether a perceiver
is too biased vs. not biased enough in a given environment, taking into account the
perceiver’s sensitivity.

We used multiple regression to examine how a perceiver’s affective state (measured as
valence and arousal ratings reported immediately after the “booster” affect induction)
influenced threat perception during the subsequent test condition (low base rate, costly-miss
payoff, or high similarity). Valence and arousal ratings were grand mean centered for each
test condition. We dummy-coded the three test conditions to simultaneously compare the
influence of affective state among the conditions in a single regression. The four dependent
variables, utility (points earned), bias (c), distance-to-LOR (dO), and sensitivity (d′), were
analyzed separately. The influence of affective state on distance-to-LOR was examined
controlling for sensitivity. Significant interaction of multiple regression predictor variables
(centered valence and arousal ratings) were further examined with simple slopes analysis
(Aiken, West, & Reno, 1991).

Results
We predicted that the relationship of affective state with utility would differ across the three
environmental test conditions and that this difference would be accompanied associations
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between valence and bias, and arousal and sensitivity. These predictions were supported,
but, unexpectedly, appeared conditional upon the apparent “difficulty” of adapting ones bias
and sensitivity to a given environment.

Maximizing Utility
Low Base Rate Condition—The low base rate condition presented a low frequency of
targets relative to the other conditions. In this condition, a perceiver’s valence and arousal
had separate, additive effects on the utility of threat perception (Figure 2A, Table 2).
Perceivers experiencing a pleasant affective state earned significantly fewer points over the
course of the task than did perceivers experiencing an unpleasant state (p<0.022). Unrelated
to effects of valence, participants experiencing low arousal affective state earned
significantly fewer points than did those in a high arousal state (p<0.003). When the base
rate of threat was low, it was most effective to feel unpleasant, high arousal.

Costly-miss Payoff Condition—The costly-miss payoff condition presented missed
detections as much more costly than false alarms (relative to the other conditions, in which
false alarms were somewhat more costly than missed detections; Table 1). In this condition,
valence and arousal interacted to influence the utility of threat perception (Figure 2B, Table
2). Points earned differed little for perceivers experiencing an unpleasant affective state.
However, among perceivers experiencing pleasant affect, those who also experienced low
arousal earned fewer points than those experiencing high arousal (interaction, p<0.020).
Simple slopes analysis found that a pleasant, high arousal affective state was associated with
more points earned than were all other affective states. Perceivers reporting pleasant valence
(i.e., 1 SD above the mean valence of participants in the costly-miss payoff condition)
showed a significant positive association between arousal and points earned (B=54.9, beta =
0.4, t=2.3, p<0.026). The association between valence and points at either 1 SD below or
above mean arousal did not reach significance (B=−29.6, beta=−0.2, t=−1.3, p<0.195 and
B=46.0, beta=0.3, t=1.7, p<0.085, respectively). When missing a threat was costly, it was
most effective to feel pleasant, high arousal.

High Similarity Condition—The high similarity condition presented targets and foils that
were more perceptually similar to each other compared to the other test conditions. In this
condition, affect appeared to influence the utility of threat perception in several ways, albeit
at marginal significance (Figure 2C, Table 2). Points earned was relatively high for both
unpleasant, low arousal perceivers and pleasant, high arousal perceivers (interaction,
p<0.064). Simple slopes analysis revealed a significant association between valence and
points at 1 SD above mean arousal (B=36.7, beta=0.5, t=2.4, p<0.018). There was no
significant association between valence and points earned at 1 SD below mean arousal (B=
−12.4, beta=−0.2, t=−1.0, p<0.332) but weak associations between points earned and arousal
at 1 SD below and above mean valence (B=−30.3, beta=−0.3, t=−1.7, p<0.097 and B=39.6,
beta=0.4, t=1.9, p<0.065, respectively). Under high perceptual uncertainty between threat
and non-threat, it was effective to feel either pleasant, high arousal or unpleasant, low
arousal.

Summary—The relationships of valence and arousal with utility found to be significant in
one environmental condition were not present in the other conditions. This inconsistency
means that the relationship between how people felt and how they judged potential threats
differed depending on the base rate of threats, the cost of missing a threat vs. false alarming,
and the perceptual similarity between threat and foil. We found that the strength and
direction of relationships between affective state and perception were conditional upon the
level and/or causes of risk and uncertainty of the decision-making processes that comprise
“perception.” Therefore, to understand why a particular combination of valence and arousal
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resulted in high utility in a given environment we must examine the relationships of
affective state to the perceptual processes that underlie utility: sensitivity and bias.

Calibrating bias to base rate and payoff
As predicted, we found a significant relationship between bias and valence. In the low base
rate condition, unpleasant valence was associated with more conservative-going bias (one-
tailed p<0.031; Figure 2D, Table 2). When threats were infrequent, pleasant-feeling
perceivers were insufficiently conservative, resulting in less optimal bias (distance-to-LOR;
p<0.024, Figure 2G, Table 2). However, associations between valence and either measure of
bias were not significant in the other conditions (Table 2).

We attributed the inconsistency of these relationships among conditions to differences in the
difficulty of calibrating bias to base rate and payoffs. Participants in the low base rate
condition achieved lower optimality of bias (higher distance-to-LOR, dO) than did
participants in the costly-miss payoff condition (Table 3, Supplemental Figure S2). The
influence of valence on bias was, thus, only observed in the condition in which an
adjustment of bias to either base rate or payoff was necessitated by the environment, and
was also relatively difficult to accomplish: namely, the low base rate condition (the high
similarity condition did not require an adjustment of bias to changes in base rate or payoff).
Sampling artifacts did not explain the inconsistent influence of affective state across the
conditions: The mean and variance of valence and arousal among participants in the low
base rate and costly-miss payoff conditions did not differ, nor did the variance of bias (Table
3).

Calibrating bias to sensitivity
The LOR defines an inverse relationship between optimal bias and sensitivity. This
relationship suggests that, in a perceiver, declining sensitivity (here, implemented as the
transition from the baseline condition to the high similarity condition) necessitates an
increase in bias (here, more conservative-going in the high similarity condition than in the
baseline condition). We found that in the high similarity condition, optimality of bias
(distance-to-LOR) was significantly associated with arousal. Perceivers reporting low
arousal attained shorter distance-to-LOR than others (p<0.014; Figure 2I, Table 2) and more
conservative bias (p<0.022; Figure 2F, Table 2). Associations between arousal and either
measure of bias were not significant in the low base rate condition, but were possibly
represented in the costly-miss payoff condition as a trend-level interaction on distance-to-
LOR (p<0.100; Figure 2H, Table 2). In the costly-miss payoff condition low arousal was
associated with more optimal bias for participants feeling unpleasant.

We attributed the inconsistency of these relationships among conditions to differences in the
difficulty of calibrating bias to sensitivity. Participants in the costly-miss payoff and high
similarity conditions exhibited significantly lower sensitivity than those in the low base rate
condition (Table 3, Supplemental Figure S2). The influence of arousal on bias optimality
was, thus, only observed in conditions which necessitated calibration of bias to challenged
sensitivity: namely, the high similarity and costly-miss payoff conditions.

Achieving High Sensitivity
As predicted, we found a significant relationship between sensitivity and arousal. In the low
base rate condition, high sensitivity was associated with high arousal (one-tailed p<0.046;
Figure 2J, Table 2). When threats were infrequent, high arousal perceivers were better able
to discriminate threats from non-threats. However, the association between arousal and
sensitivity was not significant in the other conditions (Table 2). Instead, in the costly-miss
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payoff condition, we found evidence for a possible interaction of arousal and valence on
sensitivity (p<0.076; Figure 2K, Table 2)).

We attributed the inconsistency of this relationship among conditions to differences in the
difficulty of achieving high sensitivity. As mentioned above, participants in the low base
rate condition exhibited higher sensitivity than did participants in the costly-miss payoff and
high similarity conditions (Table 3, Supplemental Figure S2). The breakdown of a clear
association between high arousal and high sensitivity, and possible emergence of an
interaction with valence was, thus, observed in conditions in which high sensitivity was
difficult to achieve, namely, the costly-miss payoff and high similarity conditions.

Discussion
We examined the influence of a perceiver’s affective state on perceptual decision-making in
the domain of social threat discrimination. By combining signal detection theory with
behavioral economics, we were able to measure the utility, bias, and sensitivity of threat
perception over a series of decisions. We found that the exigencies of the environment
influenced the details of how perceivers’ experience of valence and arousal affected
perception. Inconsistencies in the strength and direction of affect—perception relationships
complicate conclusions of prior studies that have shown consistent directional associations
between affective state and perception. Our findings indicate that the influence of affective
state on perception is conditional upon (i) the level and/or cause of uncertainty and risk, as
instantiated by the values of the three signal parameters, and (ii) the “difficulty” of
calibrating one’s perception to that uncertainty and risk.

Specifically, we found that experiencing unpleasant valence promoted calibration of bias to
those environmental parameters that directly influence bias—the base rate of threat and the
benefits and costs accrued for correct vs. incorrect perceptual decisions. However, this
association was apparent only in the condition in which the overall bias exhibited by
participants at the end of the task was relatively suboptimal. We found that experiencing low
arousal promoted calibration of one’s bias to one’s sensitivity (distinct from calibrating bias
to base rate or payoff). However, this association was apparent only in conditions
necessitating calibration of bias to declining sensitivity. We found that experiencing high
arousal promoted high sensitivity. However, this association was characterized by mild
interaction with valence in conditions in which high sensitivity was difficult to achieve. In
these conditions, the experience of arousal failed to influence sensitivity among participants
who felt unpleasant.

The direction of the valence-by-arousal association with sensitivity suggests that the
influence of arousal can be enabled or attenuated by the local- vs. global-focus processing
style that prior studies have associated with unpleasant and pleasant valence, respectively. In
the costly-miss payoff and high similarity conditions, participants experienced difficulty
achieving high sensitivity (Supplemental Figure S2). Participants in these conditions
experiencing unpleasant valence and high arousal failed to show the effect of high arousal
on their sensitivity (Figures 2K & L). In prior literature, experiencing unpleasant emotional
states (e.g., sadness) has been associated with a processing style particularly sensitive to
“local” details of a perceptual environment or target stimulus class, at the expense of more
“global” task features (reviewed by Schwarz & Clore, 2007). In particular, Avramova, et al.
(2010) demonstrated that people in an unpleasant state can be insensitive to the
discriminative perceptual context in which stimuli are evaluated, such as when stimuli are be
evaluated relative to one another or in the presence of distractors. We speculate that high
sensitivity—the discrimination of targets as a stimulus class distinct from foils—requires
representing what targets look like in the “context” of what foils look like, and that when
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high sensitivity is difficult to achieve, unpleasant valence becomes a perceptual impairment.
We propose that local focus interferes with the sensitivity-promoting effects of high arousal.

We found no consistent evidence of mood-congruent effects. When judging scowling faces,
unpleasant valence might be expected to lead to consistently liberal bias. For example,
Baumann & DeSteno (2010) have hypothesized that negative valence may be associated
with over-estimation of the base rate of threat (see also Mayer & Gaschke, 1988). Our
modeling indicates that base rate over-estimation should manifest as suboptimally liberal
bias (i.e., large and liberal-going distance-to-LOR). We found instead that unpleasant
valence was associated with most more optimal bias (i.e., short distance-to-LOR) in both
liberally and conservatively biased perceptual environments.

We anticipated that sensitivity would be equal in the low base rate and costly-miss payoff
conditions because those conditions used identical similarity parameter values. Nonetheless,
participants in the costly-miss payoff condition did not attain sensitivity equal to that of
participants in the low base rate condition. The finding suggests a lack of independence in
how payoffs and similarity are “estimated” by the brain. As rewards and punishments,
payoffs must figure prominently in informing the brain about both the base rate and
similarity of targets to foils. Having to learn new values for costs and benefits (from baseline
to the costly-miss payoff condition) may to have interfered with perceivers’ ability
distinguish target from foil. Parameters may not be independently represented in the brain,
in spite of their theoretical independence (see, e.g., Bohil & Maddox [2001] for a
discussion).

Participants in the low similarity condition were largely unable to adapt their bias to their
low sensitivity. The LOR indicates that, in environments in which some amount of bias is
optimal, the low utility associated with reduced sensitivity can be somewhat mitigated by
adopting a more extreme bias (Supplemental Figure S3). In between-subjects manipulations
of similarity, we have found this relationship to hold (Lynn & Barrett, unpublished data).
The failure of that relationship in the current within-subjects manipulation of similarity
(from baseline to the high similarity condition) suggests that perceivers have difficulty
adapting an established relationship between bias and sensitivity to a decrease in sensitivity.

Though human perceivers do adapt their behavior to changes in the three signal parameters
in directions predicted by considerations of utility (e.g. Green & Swets, 1966, p 88; See,
Warm, Dember, & Howe, 1997), the degree of optimization achieved can be quite variable
(reviewed by Dusoir, 1975; Bohil & Maddox, 2001). In this context, our studies can be
viewed as an examination of individual differences in perceiver affective state that
contribute to variability in the degree of optimality perceivers achieve. We have proposed
that how a person feels (valence and arousal) influences how he or she adapts perceptual
decision-making to the environmental conditions in which the decisions are being made.
This suggests that perceivers could optimize their threat perception by either strategically
managing how they feel or perhaps by paying particular attention to parameters with which
their current affective state may interfere.

Our studies implemented a limited number of environmental conditions. We manipulated
the three parameters in a single direction only. Therefore, the generalizability of the
associations of valence with bias and of arousal with distance-to-LOR and sensitivity, and of
the influence of optimization “difficulty,” remains to be determined. For example, we have
described two conditions in which the ability of perceivers to make effective (i.e., high
utility) perceptual decisions unexpectedly appeared jeopardized: increasing the cost of
missed detections (which impaired sensitivity) and decreasing similarity (which impaired
optimal bias adjustment). However, this study does not indicate whether these impairments
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would also be found for decreasing the cost of missed detections and increasing similarity,
respectively. We also found that how a person feels can have conflicting effects on
perception depending on the environment, and these conflicts are another potentially fruitful
area for further study. For example, high arousal was associated with high sensitivity, yet
low arousal was associated with better adjustment of bias to sensitivity when sensitivity was
poor. Sensitivity appears to have a stronger influence on utility than does bias in our data
(Figure 2), suggesting that, in general, high arousal will serve perceivers better than low.
Nonetheless, the interaction of arousal and valence on utility of perception in the high
similarity condition (Figure 2C) indicates that this generalization may not be true in all
environments.

Placing signal detection issues in the context of behavioral economics has benefits over the
use of accuracy, or sensitivity and bias, alone. Utility permits determination of how much
bias is optimal. For example, on its own, our finding that, in the low base rate condition,
perceivers feeling pleasant valence exhibited less biased behavior than those feeling
unpleasant valence means only that pleasant valence was associated with a tendency to label
moderately scowling faces as “more threatening” while unpleasant affect tended to reserve
that response for more intensely scowling faces. Bias alone says nothing about which
behavioral pattern led to better decision-making. That information is only given by points
earned over the series of decisions or a measure of bias optimality, such as distance-to-LOR.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Threat perception as a signal detection issue. As input, the Signal Utility Estimator model
uses experimenter-supplied signal parameters (e.g., mean and standard deviation of target
and foil threat categories [comprising less <−> more scowling faces], modeled here by green
and blue bell-shaped likelihood distributions that define the similarity parameter). The SUE
output is the expected utility (red lines) of adopting a decision criterion at any given location
on the range of faces. The point of maximum utility is the optimal decision criterion location
for a given set of parameter values. Perceiving all faces right of criterion as “threat” will
maximize utility (measured as points earned in our experiments). Different environmental
conditions (sets of parameter values) have differently shaped utility functions. Some
environments call for a liberal (leftward) criterion location, mildly scowling faces on the left
of the continuum should be categorized as “more threatening” (thus incurring few missed
detection mistakes but many false alarm mistakes). Other environments call for a
conservative (rightward) criterion, in which perceivers should not respond to those same
mildly scowling faces as “more threatening” (incurring more missed detections but fewer
false alarms). For clarity, the y-axis for the signal distributions (Probability Density) and the
distribution of foils for the low similarity condition are not shown.
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Figure 2.
Simple slopes resulting from multiple regression of valence and arousal on four dependent
variables (utility [points earned], sensitivity [d′], bias [c], and distance-to-LOR [dO]) in each
of three conditions (low base rate, costly-miss payoff, and high similarity). Valence and
arousal ratings were grand mean centered for each condition prior to regression. The simple
slopes for mean, mean + 1 SD, and mean − 1 SD of arousal (moderate, high and low arousal,
respectively) are plotted against mean, mean + 1 SD, and mean − 1 SD valence (neutral,
pleasant, and unpleasant valence, respectively).
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Table 3

Comparison of mean and variance of valence, arousal, points earned, bias, distance-to-LOR, and sensitivity
among the three perceptual environment test conditions. For each variable, results of the omnibus test across
the three conditions are followed by results of paired comparisons. Conditions: Base rate denotes the low base
rate condition, Payoff denotes the costly-miss payoff condition, and Similarity denotes the high similarity
condition.

Variable Equality of Mean (ANOVA) Equality of Variance (Levene’s Test)

F p F p

Valence 0.5 0.629 3.6 0.029

 Base rate vs. Payoff 0.973 0.9 0.935

 Base rate vs. Similarity 0.409 5.4 0.022

 Payoff vs. Similarity 0.403 4.9 0.028

Arousal 2.6 0.072 1.7 0.178

 Base rate vs. Payoff 0.603 0.001 0.928

 Base rate vs. Similarity 0.027 2.6 0.107

 Payoff vs. Similarity 0.102 2.8 0.097

Utility 24.2 <0.001 8.6 <0.001

 Base rate vs. Payoff <0.001 1.0 0.309

 Base rate vs. Similarity <0.001 16.8 <0.001

 Payoff vs. Similarity 0.003 9.6 0.002

Bias 103.9 <0.001 0.191 0.900

 Base rate vs. Payoff <0.001 0.2 0.723

 Base rate vs. Similarity <0.001 0.09 0.767

 Payoff vs. Similarity <0.001 0.3 0.555

Distance-to-LORa 39.1 <0.001 0.8 0.469

 Base rate vs. Payoff <0.001 0.2 0.619

 Base rate vs. Similarity <0.001 0.6 0.454

 Payoff vs. Similarity 0.028 1.3 0.259

Sensitivity 23.3 <0.001 10.8 <0.001

 Base rate vs. Payoff 0.015 0.09 0.771

 Base rate vs. Similarity <0.001 19.9 <0.001

 Payoff vs. Similarity <0.001 17.3 <0.001

a
Mean distance-to-LOR was compared with ANCOVA using sensitivity as a covariate. Residuals from the correlation between distance-to-LOR

and sensitivity were submitted to Levene’s test.
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