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Abstract
We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be
used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated
intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-
bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-
MRI immediately before, one day and three days after treatment. Values of the apparent diffusion
coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number
of cells in each voxel and also for whole tumor regions of interest. The data from the first two
imaging time points were then used to estimate the proliferation rate of each tumor. The
proliferation rates were used to predict the number of tumor cells at day three and this was
correlated to the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson’s
correlation coefficients ranging from −0.06 to 0.65, whereas the region of interest analysis
provided Pearson’s and concordance correlation coefficients of 0.88 and 0.80, respectively.
Additionally, the ratio of positive to negative proliferation values was used to separate the treated
and control animals (p < 0.05) at an earlier point than the mean ADC values. These results further
illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can
be incorporated into mathematical models that predict tumor growth.
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1. Introduction
Mathematical models of tumor growth and treatment response are often parameterized by
quantities that are difficult to measure in intact organisms with any reasonable spatial
resolution. The required inputs to each model are commonly obtained invasively or in
isolated, idealized in vitro or ex vivo systems. It is also very difficult to obtain longitudinal
measurements of tumor properties if the system under investigation has to be compromised
in order to make the measurements. Consequently, there has been limited application of
mathematical models to clinical data sets and practically no incorporation into clinical trials.
Incorporation of data that can be obtained non-invasively could increase the application and
relevance of mathematical modeling of tumors, and one way to accomplish this is through
the use of non-invasive imaging.

As imaging data can be obtained noninvasively and in 3D, measurements from individual
patients can be incorporated into mathematical models so that the results generated are
patient specific. Also, longitudinal studies can be performed and these can be used to verify
or modify the models themselves; more specifically, imaging data obtained early during
therapy can be used to make predictions which can then be compared to experimental data
obtained at a later time point. In this way such models can in practice be assessed for
accuracy, and insights can be gained into how a given model should be modified.

The prediction of the response of tumors early in the course of therapy is of fundamental
clinical importance. Mathematical modeling based on imaging data may provide a way to
predict the state of a tumor at later time points, thereby providing clinicians an ability to
modify or change treatments. We and others have previously shown in simulation (Atuegwu
et al., 2010; Yankeelov et al., 2010; Konukoglu et al., 2010; Hogea et al., 2007, 2008; Jbabdi
et al., 2005) and experiments (Konukoglu et al., 2010; Hogea et al., 2007, 2008; Jbabdi et
al., 2005) how imaging data can be incorporated into mathematical models of tumor growth
and treatment response. Here we focus on using measurements made with diffusion
weighted magnetic resonance imaging (DW-MRI) as initial conditions for a simple
mathematical model of tumor growth.

DW-MRI relies on the phenomenon that water molecules in tissues constantly undergo
random Brownian motion and diffuse at a rate that is dependent on tissue microstructure.
The rate of water diffusion within tissues measured by conventional MR methods are often
summarized in terms of an apparent diffusion coefficient (ADC), which is a measure of the
effective distance over which water can migrate within tissue within a specified time.
Several clinical and animal studies have confirmed the ability of ADC to report on changes
in tumor cellularity at some time after treatment. (Galons et al., 1999; Zhao et al., 1996;
Chenevert et al., 1997; Hall et al., 2004; Stegman et al., 2000). Furthermore, several
investigators have used DW-MRI and its extension, diffusion tensor imaging (DTI), to
model how brain tumors grow or respond to treatment.

Konukoglu et al proposed a parameter estimation method for the reaction–diffusion growth
model using time series of both synthetic and patient tumors (Konukoglu et al., 2010). The
parameters estimated include rate of diffusion of tumor cells in gray and white matter, and
the time elapsed since the tumor cells started diffusing. They used synthetic tumors to show
the coupling between the parameters of the reaction-diffusion models and were able to
estimate tumor cell diffusion in gray and white matter and also the time elapsed since the
tumor started diffusing by fixing the proliferation rate of the tumor cells to values found in
the literature. For the patient data, they used DTI coupled with prior time series of T1- or T2-
weighted MR images to estimate the tumor cell diffusion in gray and white matter. They
then used the estimated rate of diffusion of tumor cells in gray and white matter to simulate
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the evolution of the tumor delineation and then compared the simulated results to the
observed tumor delineation from a T1 or T2 image at a later time point (Konukoglu et al.,
2010).

Hogea et al modeled the mechanical effects of gliomas on the surrounding brain tissue using
a non-linear reaction-advection–diffusion equation coupled with underlying tissue elasticity
equations (Hogea et al., 2007). Using simulations they showed the growth of a synthetic
glioma with varying tumor cell diffusivity levels. They also used T1 images of dogs with
implanted brain tumors and T1 images of a human brain tumor patient to show the
improvement of their proposed model over incremental pressure models in predicting the
position of selected landmarks in the brain (Hogea et al., 2007). In a separate study, Hogea
et al used an adjoint based PDE-constrained optimization to estimate the parameters of a
reaction diffusion model of tumor growth and the mechanical impact of the growth on the
surrounding tissue in simulation (Hogea et al., 2008). Some of the parameters include tumor
cell proliferation rate, variables that control the mechanical deformation of the brain tissue
and variables that control the radius, center, and initial number of tumor cells. They used
MR images acquired from a human brain cancer patient at two time points to estimate the
initial tumor cell density, tumor cell diffusivity in white matter, tumor growth and tumor
mass effect. They chose landmarks in the patient’s brain and then used the model to
minimize the mismatch between the predicted and the actual landmarks (Hogea et al., 2008).

Jbabdi et al used DTI information in conjunction with a proliferation diffusion model of
brain tumor growth to simulate low grade gliomas in a virtual brain provided by a 3D MRI
atlas. By fixing tumor cell proliferation to values from the literature, and DTI data from a
healthy brain, they estimated the direction of the tumor cell diffusion along fiber tracks and
then visually compared the simulated results to the MR images of patients with grade II
gliomas (Jbabdi et al., 2005).

These prior studies have focused on predictions of where tumor cells will proliferate based
on mechanical constraints and, in general, have not used individual patient data to estimate
the rates of growth. The goal of this work is to use only imaging data as input into a simple
mathematical model of tumor growth and treatment response. The results from the model
will be subject specific. For the mathematical modeling, we build on previous work
(Atuegwu et al., 2010; Yankeelov et al., 2010) to show how DW-MRI data can be used to
estimate proliferation rates in a 9L model of rat brain cancer for animals treated with the
chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU or Carmustine) and
control animals that were not treated with the drug. Two sets of analyses were performed:
voxel based and a region of interest (ROI) based analysis. The DW-MRI data at early time
points were used to generate ADC maps that were then used to estimate the proliferation
rates of the tumor at both the voxel and ROI level. The proliferation rates were then used to
predict the tumor cell density values at a later time point and these were compared to the
experimentally measured values at that time point. Also, the proliferation rate was used to
calculate a novel proliferation value ratio (PVR) that was used to separate the treated and the
control animals after one day of treatment.

2. Materials and Methods
2.1 Animal Model

All procedures in this study were approved by Vanderbilt University’s Institutional Animal
Care and Usage Committee. Thirteen male Fischer 344 rats, weighing approximately 250 g,
were anesthetized with a 2%/98% isoflurane/oxygen mixture and inoculated intracranially
with approximately 105 9L glioblastoma cells. Eight of the rats were treated with BCNU and
five rats were used as untreated, tumor-bearing controls. The tumors were allowed to
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develop untreated for 11-12 days. All animals were then imaged immediately before (day 0),
one day and three days after treatment. The control animals were also imaged on those three
days (days 0, 1 and 3).

2.2 Treatment protocol
BCNU is an antineoplastic chemotherapy drug and it has been shown to be effective in the
treatment of the 9L tumor model (Chenevert et al., 1997). Treatment solutions were
prepared by dissolving a 13.3 mg/kg powdered dose in ethanol, and diluting with saline to
achieve a 10/90% ethanol/saline solution totaling approximately 1 mL in total volume. The
dose of 13.3 mg/kg has been shown in previous studies to produce an approximate 0.8 log
cell kill in 9L tumors (Ross et al., 1998). Control animals received vehicle only (1 mL of
10/90% ethanol/saline). The treatment protocol consisted of a single intraperitoneal injection
of BCNU or control injection immediately following the initial imaging session (day 0).

2.3 In vivo imaging
The protocol is described in detail in (Colvin et al., 2011) here we present only the salient
features. Approximately eleven days following tumor inoculation, MR images were
obtained using a Varian 4.7T Inova imaging system (Palo Alto, CA, USA). Animals were
anesthetized with a 2%/98% isoflurane/oxygen mixture, and kept at a constant body
temperature of 37° C. The animals were positioned using a rigid bite bar and head restraints.
Images were acquired using a quadrature 63 mm radiofrequency coil. On the first day of
imaging for each animal, a multi-slice, T2-weighted fast spin echo scan with 4 echoes (TR =
2000 ms, 16 ms echo spacing, 256×128 matrix, 48×32 mm2 FOV, 1 mm slice thickness)
was acquired in the coronal plane for locating the tumor region. A 2 mm single axial slice
with the same timing parameters, but with a FOV = 32×32 mm2 through the central portion
of the tumor was acquired. The same slice was then imaged using a pulsed gradient spin
echo diffusion-weighted scan with b-values of 0 and 400 s/mm2, TR/TE = 2300/75.4 ms,
64×64 matrix size, 2 mm slice thickness, 32×32 mm2 FOV, NEX = 10, gradient duration δ =
3 ms, and diffusion interval Δ = 30 ms. An additional pulsed gradient spin echo diffusion-
weighted scan at the b = 400 s/mm2 value was also obtained with reversed gradient polarity,
and averaged with the first to eliminate the presence of gradient cross-terms when the
apparent diffusion coefficient (ADC) is computed as described below (Neeman et al., 1991).
The diffusion gradients were placed along all three imaging coordinate axes at the same time
to maximize the diffusion weighting with the available gradient amplitudes.

As the ADC measurements will be compared at multiple time points in order to facilitate
modeling, it is imperative that the selection of the imaging plane is consistent. The co-
localization of the central portion of the tumor from the pre- to post-treatment time points
was achieved by registering the data obtained at the last two time points to that acquired at
the first time point. More specifically, on each day of scanning, a 3D gradient echo image
dataset (TR/TE = 25/2.2 ms, FOV = 48×32×32 mm3, matrix = 128×96×96, NEX = 8)
encompassing the whole brain was collected. On days 1 and 3 following treatment, these 3D
images were co-registered, via a mutual information based rigid registration algorithm
(Wells Iii et al., 1996), to the initial 3D image collected on day 0 in order to derive the
translation and rotation matrices of the animal’s position with respect to the animal’s pre-
treatment position in the laboratory reference frame. That is, on imaging sessions 2 and 3
(days 1 and 3 after treatment, respectively), the 3D data were acquired and exported to
Matlab, while the animal was still in the scanner, to determine the translation and rotation
transformations needed to register these data to the initial imaging day data. After the
transformations were applied, it allowed for the determination of the lab coordinates needed
to acquire the DW-MRI data from the same slice of tissue acquired at the initial time point.
More details on the registration procedure are provided in (Colvin et al., 2011)
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2.4 Image analysis
ADC values were obtained by fitting the attenuated signal in each voxel, S, to Eq. (1):

(1)

where S0 is the signal in the absence of diffusion weighting, and b represents the amount of
diffusion-weighting imparted to the sample (Stejskal and Tanner, 1965). Whole tumor ROIs
were drawn and segmented from the pre-treatment scan and then copied onto the images
obtained at subsequent time points. The voxels within the ROI were then used for
mathematical modeling.

2.5 Mathematical Modeling
We start with the simple logistic model that describes growth of the number of tumor cells
which asymptotically approaches the limiting cellular carrying capacity for a given region of
space. This model is explained in detail in (Byrne, 2003) and the relevant equation is

(2)

where N(r,t) is the number of cells per voxel at position r and time t, N(r,0) is the number of
cells present at t = 0 and position r, k(r) is the cell proliferative rate at position r, and θ is the
cell carrying capacity of the population. The carrying capacity is assumed to be the
maximum number of cells that can be contained in a voxel. This was calculated by dividing
the voxel volume by the average 9L cell volume which we computed by assuming a
spherical shape and a nominal radius of 10 μm.

To estimate the number of cells in each voxel in each day, we assumed a linear relationship
between the ADC values of the voxels obtained from Eq. (1). This is a fairly conservative
assumption because there is substantial literature evidence supporting it. For example,
several studies have shown a strong negative correlation between ADC and cellularity
(Sugahara et al., 1999; Chenevert et al., 2000; Hayashida et al., 2006; Anderson et al., 2000;
Lyng et al., 2000). In particular, it has been shown that ADC decreases linearly with cell
volume fraction (Anderson et al., 2000) and cell density (Lyng et al., 2000; Hayashida et al.,
2006; Kono et al., 2001) .We therefore used this relationship to convert ADC values to cell
number. To do this conversion, we assumed that the maximum number of cells in a voxel, θ,
will occur in the voxel with the minimum ADC value, while the voxel with ADC value of
free water ADCw will contain no tumor cells. This allows us to define the following
mapping between ADC and cell number:

(3)

By rearranging Eq. (3), we get Eq. (4):

(4)

Eq. (4) can be simplified to Eq. (5) by rearranging terms:

(5)

where
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(6)

Combining Eqs. (2), (5) and (6) gives Eq. (7) as previously described (Yankeelov et al.,
2010):

(7)

The ADC data from days 0 and 1 were used with Eq. (7) to extract the proliferation rate k(r)
of the tumor cells in each voxel position r. Since the half-life of BCNU in vivo is less than
15 minutes (Lee et al., 2005), we assumed that the concentration of the drug was negligible
after a few hours and, therefore, the effect on tumor cell proliferation was (essentially)
instantaneous. The ADC values from days 1 and 3 were then converted to cell number using
Eqs. (5) and (6) to yield an estimate of the number of cells on days 1, Nestimated(r,1) and
Nestimated(r,3), respectively. The number of cells within the tumor on day 3 was then
calculated, Ncalculated(r,3), via Eq. (2) using the calculated proliferation rates and the number
of cells in each voxel at day 1 as inputs. The estimated and calculated values were then
compared as described below.

In addition to the voxel-by-voxel comparison between the estimated and calculated values,
we also performed ROI based comparisons. To do this, the mean ADC values for each
tumor ROI for each rat and for each day were calculated. The mean ADC values for days 0
and 1 were then used to calculate the mean proliferation rate kmean using Eq. (7).
Nestimated_mean(1) and Nestimated_mean(3) (i.e., the mean number of cells on days 1 and 3,
respectively) were then calculated using Eqs. (5) and (6). Finally, kmean was used with
Nestimated_mean(1) to calculate Ncalculated_mean(3) using Eq. (2) which was then compared to
Nestimated_mean(3).

2.6 Effects of smoothing on voxel level analysis
In order to explore the effects of signal-to-noise (SNR) on the results of the modeling, we
convolved the voxel level ADC values from days 0, 1 and 3 with a mean filter of varying
kernel sizes to reduce the noise in the images. This has the effect of eliminating spurious
voxel values which are not representative of their surroundings and increasing the SNR of
the image. We hypothesized that an increase in SNR achieved by smoothing the ADC
images before modeling would increase the correlation between the calculated and the
estimated number of cells at day 3. We used three different kernel sizes [2×2], [4×4], and
[8×8] with the degree of smoothing increasing with increasing kernel size. The ADC values
obtained after smoothing were used to calculate new k(r), Nestimated(r,3), and Ncalculated(r,3)
values for all data sets as described in section 2.5.

2.7 Proliferation value ratio (PVR)
We hypothesized that tumors that were treated with BCNU would display a larger number
of negative k values than the control group. To test this hypothesis, we constructed a simple
measure we term the proliferation value ratio (PVR):

(8)

where number(k<0) are the number of proliferation values that are less than zero and
number(k>0) are the number of proliferation values that are greater than zero in a particular
ROI. The PVR was calculated for both the tumor ROI and an ROI in the healthy appearing
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contralateral brain. The ROI in the healthy appearing contralateral brain was an identical
size as the one used to circumscribe the tumor, and placed symmetrically across from where
the tumor was located (an example is seen in Figure 1 below). The PVR was calculated from
different combinations of ADC data: days 0 and 1, days 1 and 3, and days 0 and 3. The
mean ADC value was also calculated for the tumor ROI and healthy appearing contralateral
brain for days 0, 1 and 3.

2.8 Statistical Analysis
Six different statistical analyses were performed on the data sets:1) the Pearson correlation
coefficient was used to compare voxel based Ncalculated(r,3) and Nestimated(r,3) values for
each rat; 2) the concordance correlation coefficient (Lin, 1989) was used to compare voxel
based Ncalculated(r,3) and Nestimated(r,3) values for each rat; 3) the Pearson correlation
coefficient was calculated for the ROI based Ncalculated_mean(3) and Nestimated_mean(3) values
for all animals grouped together; 4) the concordance correlation coefficient was calculated
for the ROI based Ncalculated_mean(3) and Nestimated_mean(3) values for all animals grouped
together; 5) the Wilcoxon test was used to assess the statistical differences between the PVR
of the control and treated groups for both the tumor and the contralateral ROIs for each
animal; and 6) the Wilcoxon test was used to assess the statistical differences between the
ADC of the control and treated groups for both the tumor and the contralateral ROIs for
each animal. These tests were then repeated for the smoothed data.

3. Results
Figure 1 shows the experimental and the calculated ADC maps at day 3, Nestimated(r,3) and
Ncalculated(r,3), and the proliferation parametric maps superimposed on the corresponding
T2-weighted anatomical MR image. Panel A is the experimentally measured ADC value at
day 3 obtained from the DW-MRI data, panel B is the calculated ADC value at day 3
obtained by converting the Ncalculated(r,3) to ADC values using Eq. (5), and panel C is the
experimental versus the calculated ADC values with the 95% confidence interval shown.
(Panel A also contains the outline of the ROI used to calculate the contralateral brain tissue
parameters.) The correlation coefficient between the experimental and the calculated ADC
values is 0.65. Panel D is the experimentally derived estimate of the number of cells at day
3, Nestimated(r,3), panel E is the calculated number of tumor cells at day 3, Ncalculated(r,3),
and panel F is a plot of the estimated versus the calculated number of cells with the 95%
confidence intervals displayed. Panel G is the T2-weighted MRI at day 3 for anatomical
reference, and Panel H is the map of the proliferation rate k(r) obtained using Eq. (7) in
conjunction with the ADC values from days 0 and 1. Panels D and E show that although the
absolute values for the data do not precisely match, the calculated and the estimated data
follow a similar spatial distribution and relative values. For example, trends such as the
necrotic core and regions of higher cell values are in similar positions in the calculated and
the estimated maps. The individual Pearson’s and concordance correlation coefficients
between Ncalculated(r,3) and Nexperimental(r,3) for all tumor voxels within each rat were
calculated and these are shown in Table 1. The Pearson correlation coefficient ranged from
−0.06 to 0.65 and the concordance correlation coefficient ranged from −0.06 to 0.58.

For the ROI analysis, the mean number of cells on day 3 for both the calculated,
Ncalculated_mean(3), and the estimated, Nestimated_mean(3), number of cells are shown in
Figure 2. The 95% confidence interval is also shown. The Pearson’s correlation coefficient
between Ncalculated_mean(3) and Nestimated_mean(3) for all the rats is 0.88 (p = 0.0001) with a
95% confidence interval of (0.63,0.96). This indicates that there is a strong correlation
between the calculated and the estimated number of cells on day 3. The concordance
correlation coefficient between Ncalculated_mean(3) and Nestimated_mean(3) across all animals
is 0.80 with a 95% confidence interval of (0.49,0.93). This also indicates that there is a
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strong agreement between the Ncalculated_mean(3) and Nestimated_mean(3) and that this
relationship nearly falls along the line of unity.

The effect of applying a smoothing filter on the ADC values at days 0, 1 and 3 is shown in
figure 3. Column A is the estimated number of cells at day 3, column B is the calculated
number of cells at day 3, and column C is a scatter plot of the calculated versus the
estimated number of cells at day 3. Panel D is the T2-weighted image of the rat at day 3.
Each row increases the kernel size and therefore the degree of smoothing. The Pearson’s and
the concordance correlation coefficients between the estimated and the calculated number of
cells increases as the kernel size increases (see tables 2 and 3). The Pearson’s correlation
ranged from (−0.06 to 0.65) for no filtering, and then (0.12 to 0.88), (0.18 to 0.94) and (0.60
to 0.99) for kernel sizes of 2×2, 4×4 and 8×8, respectively. The concordance correlation
ranged from (−0.06 to 0.58) for no filtering, and then (0.11 to 0.79), (0.14 to 0.88) and (0.36
to 0.95) for kernel sizes of 2×2, 4×4 and 8×8, respectively. This indicates that the weak to
moderate correlation found in the voxel level data may be due to the relatively low SNR in
the acquired DW-MR images and small errors in coregistration between images. We return
to this point in the Discussion section.

The proliferation value ratio (PVR) and the mean ADC value were calculated for the tumor
ROI and the healthy appearing contralateral brain for each rat and are summarized in tables
4 and 5. The PVR was calculated for the control and treated rats using the data from days 0
and 1, 1 and 3, and 0 and 3. Using the data from days 0 and 1, the average tumor PVR for
the control and treated rats were 0.33 and 0.55, respectively; this represented a statistically
significant difference (p = 0.045) that grew more significant using the day 1 and 3 data (p =
0. 003) or the day 0 and 3 data (p = 0.006). Conversely, the average ADC values (in units of
×10−3 mm2/s) for the control and treated rats on day 0 were 0.83 and 0.87, respectively, and
0.78 and 0.88, respectively, for day 1; importantly, neither of these represented a statistically
significant difference. It was not until day 3 when the average ADC of the two groups were
0.79 and 1.00, respectively, that a statistically significant difference appeared (p = 0.002).

Using the data from days 0 an 1, the average PVR for the healthy appearing contralateral
brain for the control and treated rats were 0.50 and 0.32, respectively; similar values were
found using the day 1 and 3 (0.65 and 0.45, respectively) or day 0 and 3 (0.54 and 0.38,
respectively) data. The average ADC values (again, in units of ×10−3 mm2/s) for the healthy
appearing contralateral brain for both the control and treated rats were 0.83 and 0.87,
respectively, for day 0, with very similar values for days 1 and 3. Neither the mean ADC nor
the PVR of the contralateral brain could be used to separate the control and treated animals
at day 1 (p = 0.354 and 0.524, respectively), or day 3 (p = 0.622 and 0.435, respectively).
These data show that the separation of the rats into control and treated rats is due to the
characteristics of the tumor and not those of the healthy appearing brain. Table 6
summarizes these results of the Wilcoxon tests.

Smoothing filters of varying kernel sizes were also applied to the tumor ROI and the
contralateral brain. The smoothed data were then used to calculate the PVR and the mean
ADC values. A Wilcoxon test was used to separate the PVR and the mean ADC of the rats
into control and treated groups. The PVR can separate the control and the treated rats as
early as day 1 after treatment for all the kernel sizes except for the 8×8 kernel, while the
mean ADC cannot separate the rats until day 3 after treatment for all the kernel sizes except
for the 8×8 kernel. The lack of separation of the treated and the control rats when the 8×8
kernel filter is used may be due to the fact that the fine details in the tumor are lost as the
kernel size increases. The mean ADC and the PVR of the contralateral brain could not be
used to separate the control and the treated animals for all the different degrees of
smoothing. Again, this shows that regardless of the increase in SNR due to smoothing, the
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separation of the rats into the treated and control groups is due to the tumor characteristics
and not due to those of the healthy appearing brain. The results are summarized in table 7.

Figure 4 shows a box plot of the mean proliferation rate calculated from days 0 and 1 and
the mean ADC values from days 0, 1 and 3. These are represented by panels A, B, C and D,
respectively. The box plots show that the mean proliferation rate for the treated and the
control animals can be used to separate the rats into their respective groups. This is not
unexpected since the PVR can also be used to separate the rats into the two groups. The
mean ADC values cannot be used to separate the rats into the two groups until day 3.

4. Discussion
We have shown how ADC values computed from DW-MRI can be used to estimate tumor
cell proliferation values via the logistic model of tumor growth. The results of the
proliferation rates were then used to predict the tumor cell numbers at a later time point on
both the voxel and ROI levels. The proliferation values were also used to separate the
treatment and control groups early during the course of therapy. The proliferation value ratio
was calculated and used to separate the treated and control tumor cell lines before
differences in the mean ADC value could be used to separate the groups and before changes
in the tumor volume are observed. In general, the mean PVR was lower for the control
animals than the treated animals. This is because the treated animals have a lower
proliferation rate and/or a higher cell death due to the application of the drug. It is important
to note that the PVR of the contralateral brain with and without the application of a
smoothing filter could not be used to separate the rats into the treated and control groups,
thereby showing that the separation was due to the tumor and not brain characteristics. This
ratio offers the possibility to detect changes in tumor status as early as 24 hours after BCNU
treatment and shows the possibility of extending ADC measurements to predict treatment
response earlier than mean ADC changes.

The correlations between the calculated and the estimated number of cells on day 3 for the
voxel based analysis performed on individual rats show a range from very weak correlation
to moderately strong. However, using the mean value of the ADC in the tumor ROI resulted
in a strong and significant relationship between the simulated and estimated data. We
hypothesized that the combination of the modest relationship at the voxel level and the
strong relationship at the ROI level may be due to the relatively low SNR at which the data
were collected and, perhaps, subtle registration errors in the slice selection. To test this
hypothesis we smoothed the ADC values with a mean filter which resulted in a substantial
increase in the strength of correlation between simulated and estimated data, though the
process does erode intrinsic spatial heterogeneity within the tumors. Analysis of the data
with the mean ADC and the filtered ADC shows a much greater correlation between the
estimated and calculated number of cells at day 3. Even though the correlation is greater it is
not perfect as shown by the fact that the origin was not included in the 95% confidence
interval and also the fact that the line of best fit for the point cloud does not pass through the
origin (see Figure 3). Nevertheless, an increase in correlation when the smoothed ADC data
were used shows the possibility of using sequential ADC data as a way to model tumor
growth and treatment response if sufficient SNR can be achieved.

Some of the limitations in the work include the fact that we assume that the voxels are
comprised only of tumor cells thereby ignoring the loose packing of tumor cells in the voxel,
and the fact that each voxel contains healthy brain and associated supportive cells and
matrix. We also did not incorporate vascular characteristics in the tumor model. This may be
accomplished by, for example, adding measurements obtained using dynamic contrast
enhanced MRI (DCE-MRI) into the models. We also did not include the effects of cell
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motility in our model. However, given the length of time over which imaging data were
acquired (3 days), and that there were not any substantial changes in tumor volume or shape,
the importance of tumor cell motility on bulk tumor shape in our modeling exercise is,
perhaps, limited. We also assumed that the proliferation rate can be predicted from
comparisons separated by only two days and that this rate remains constant and does not
change significantly over the course of the experiment. For experiments of longer duration,
this will almost certainly require amendment. Another simplifying assumption is that we
assumed the change in ADC from the pre-treatment day to the first post-treatment day was
due entirely to the reduction in cellularity. This may be a gross oversimplification as there
are certainly other factors that may contribute to the change in ADC. Future improvements
to the modeling scheme here may need to incorporate such biologically relevant changes. Of
course, the approach presented here must ultimately be validated (or refuted) by direct
correlation with histological measurements.

5. Conclusion
Sequential ADC data can be used to predict tumor cell values and treatment response at later
time points. Prediction of growth based on early time points agrees with experimental
imaging measurements at least for large ROIs. The extension to single studies may require
further technical refinements in underlying image quality and coregistration.
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Figure 1.
The panels display an axial cross section through a rat brain with a tumor in the left
hemisphere. Panels A and B are the experimental and the calculated ADC values (×10−3

mm2/s), respectively. The white outline in panel A was used to calculate the parameters for
the contralateral tissue for comparison to the tumor values. Panel C compares these values
with the 95% confidence interval indicated by the dotted lines. Similarly, panels D and E
present the estimated and calculated number of cells at day 3, respectively, and Panel F
compares these values with the 95% confidence interval indicated by the dotted lines. As in
the case of the ADC values the Pearson’s correlation coefficient between the calculated and
the estimated number of tumor cells is 0.65. Finally, panels G and H depict an anatomical
T2 weighted image and the proliferation map calculated from ADC values on days 0 and 1.
While the absolute values of the two methods do not quite match, there is general agreement
in distribution between the estimated and calculated number of cells at day 3 and between
the experimental and the calculated ADC values at day 3.
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Figure 2.
The figure displays a graph of the ROI average NCakuiated_mean(3) versus Nestimated_mean(3)
for each rat with the 95% confidence interval displayed as dotted curves. Each point in the
image represents one animal. There is a strong correlation between the mean estimated and
the mean calculated number of cells in day 3 with a Pearson’s correlation coefficient of 0.88
(p = 0.0001) with a 95% confidence interval of (0.63, 0.96) for all the rats. The concordance
correlation coefficient between Ncalculated_mean(3) and Nexperimental_mean(3) for all rats is
0.80 with a 95% confidence interval of (0.49, 0.93).
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Figure 3.
Columns A and B display an axial cross section through a rat brain with the experimentally
determined number of cells at day 3 and the calculated number of cells at day 3,
respectively. Column C is the corresponding plot of the calculated and the experimental
number of cells at day 3 with the 95% confidence interval displayed. Panel D is the T2
weighted image at time 3.The different rows correspond to different degrees of smoothing
with row 1 corresponding to the original image with no smoothing with a Pearson’s
correlation of 0.61 between the experimental and the calculated number of cell at day 3; row
2 correspond to a convolution with a 2×2 averaging filter (r = 0.76); row 3 corresponds to a
convolution with an 4×4 averaging filter (r = 0.86); and the last row corresponds to a
convolution with an 8×8 averaging filter (r = 0.95). As the filter width increases, the
correlation between the experimental and the calculated number of cells at day 3 increases
which indicates that the weak correlation between the experimental and the calculated
number of cells without filtering may be due to the relatively low SNR at which the images
were acquired. However, as the smoothing increases, the fine details of the tumor are lost.
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Figure 4.
Panel A is a box plot of the mean proliferation rate estimated from days 0 and 1, while
panels B, C and D are box plots of the mean ADC from days 0, 1 and 3, respectively. The
mean proliferation rate can be used to separate the treated and the control animals (obtained
from days 0 and 1; panel A) while the mean ADC cannot separate the treated and the control
animals until day 3 (panel D).
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Table 1

The Pearson’s and concordance correlation coefficients between the Ncalculated(r,3) and Nexperimental(r,3) for
both the control and the treated rats.

Rats Pearson’s correlation
coefficient

Concordance correlation
coefficient

R1-C 0.08 0.08

R2-C 0.29 0.17

R3-C 0.61 0.58

R4-C 0.14 0.08

R5-C −0.06 −0.06

R6-T 0.59 0.30

R7-T 0.53 0.36

R8-T 0.17 0.11

R9-T 0.65 0.58

R10-T 0.20 0.09

R11-T 0.62 0.54

R12-T 0.36 0.15

R13-T 0.34 0.19

Mean ± 1.96·SE 0.35 ± 0.13 0.24 ± 0.11
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Table 2

The Pearson’s correlation coefficients of the treated and control animals.

Pearson’s correlation coefficient

Rats No filtering 2×2 4×4 8×8

R1-C 0.08 0.47 0.65 0.84

R2-C 0.29 0.66 0.83 0.96

R3-C 0.61 0.76 0.86 0.95

R4-C 0.14 0.37 0.58 0.84

R5-C −0.06 0.12 0.18 0.60

R6-T 0.59 0.71 0.78 0.93

R7-T 0.53 0.73 0.74 0.93

R8-T 0.17 0.50 0.73 0.91

R9-T 0.65 0.75 0.83 0.92

R10-T 0.20 0.78 0.88 0.93

R11-T 0.62 0.88 0.94 0.99

R12-T 0.36 0.82 0.89 0.96

R13-T 0.34 0.60 0.75 0.92

Mean ± 1.96·SE 0.35±0.13 0.63±0.12 0.74±0.11 0.90±0.05
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Table 3

The concordance correlation coefficients of the treated and control animals with different degrees of averaging
smoothing.

Concordance correlation coefficient

Rats No filtering 2×2 4×4 8×8

R1-C 0.08 0.41 0.51 0.67

R2-C 0.17 0.57 0.73 0.90

R3-C 0.58 0.74 0.84 0.93

R4-C 0.08 0.29 0.47 0.71

R5-C -0.06 0.11 0.14 0.36

R6-T 0.30 0.36 0.35 0.44

R7-T 0.36 0.71 0.71 0.90

R8-T 0.11 0.44 0.67 0.86

R9-T 0.58 0.71 0.78 0.89

R10-T 0.09 0.70 0.84 0.93

R11-T 0.54 0.75 0.78 0.80

R12-T 0.15 0.79 0.88 0.95

R13-T 0.19 0.41 0.52 0.66

Mean ± 1.96·SE 0.24±0.11 0.54±0.12 0.63±0.12 0.77±0.10
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Table 6

The p-values of the Wilcoxon tests for the PVR and the mean ADC values

Day 0–Day 1 Day 1 – Day 3 Day 0 – Day 3

Tumor PVR 0.045 0.003 0.006

Contralateral PVR 0.524 0.435 0.435

Day 0 Day 1 Day 3

Tumor ADC 0.622 0.127 0.002

Contralateral ADC 0.354 0.833 0.622
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Table 7

The p-values of the Wilcoxon tests for the PVR and the mean ADC values for the different sizes of the
smoothing kernel.

Day 0–Day 1 Day 1 – Day 3 Day 0 – Day 3

Tumor PVR

No Filter 0.045 0.003 0.006

2×2 0.045 0.006 0.006

4×4 0.030 0.006 0.006

8×8 0.065 0.006 0.006

Contralateral PVR

No Filter 0.524 0.435 0.435

2×2 0.524 0.435 0.555

4×4 0.452 0.376 0.458

8×8 0.331 0.342 0.653

Day 0 Day 1 Day 3

Tumor ADC

No Filter 0.622 0.127 0.002

2×2 0.833 0.222 0.006

4×4 0.943 0.171 0.030

8×8 1.000 0.524 0.127

Contralateral ADC

No Filter 0.354 0.833 0.622

2×2 0.622 1.000 0.435

4×4 0.724 0.943 0.524

8×8 0.833 0.724 0.354
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