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Experimental errors as determined by data-processing algo-

rithms in macromolecular crystallography are compared with

the direct error estimates obtained by a multiple crystal data-

collection protocol. It is found that several-fold error inflation

is necessary to account for crystal-to-crystal variation. It is

shown that similar error inflation is observed for data

collected from multiple sections of the same crystal, indicating

non-uniform crystal growth as one of the likely sources of

additional data variation. Other potential sources of error

inflation include differential X-ray absorption for different

reflections and variation of unit-cell parameters. The under-

estimation of the experimental errors is more severe in lower

resolution shells and for reflections characterized by a higher

signal-to-noise ratio. These observations partially account for

the gap between the expected and the observed R values in

macromolecular crystallography.
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1. Introduction

Knowledge of experimental error is essential in order to put

scientific results into a probabilistic context, i.e. to define

whether or not an observed effect results from random factors.

While the error of a primitive measurement (e.g. the deter-

mination of the width of this page using a ruler) can be defined

directly, in almost any realistic scenario the experimental error

of a single measurement is essentially unknown. A reliable

practical approach to this problem is to repeat the experi-

mental measurements a reasonable number of times to obtain

the standard uncertainty.

In macromolecular crystallography, the experimental data

consist of the intensities of individual reflections which form

the X-ray scattering pattern. To evaluate the uncertainty of an

individual measurement, certain assumptions are made with

respect to the properties of the detector in addition to the

counting statistics. Fortunately, the very nature of crystallo-

graphic data allows estimation of the level of variability based

on repeated measurements of the same quantity, since

multiple instances of the same reflection and its symmetry-

related copies are measured during data collection.

The a priori expectation is that a theoretical model

predicting the intensities of X-ray scattering should bring the

calculated values within the limits of experimental uncertainty.

This, however, is not the case in macromolecular crystallo-

graphy, as demonstrated by the R values that far exceed the

expectation based on experimental errors. It is often presumed

that this discrepancy is mainly a consequence of inadequacy

of the theoretical models, such as poor modeling of the bulk-

solvent contribution (Jiang & Brünger, 1994; Glykos, 2011)

and atomic disorder (Vitkup et al., 2002; Levin et al., 2007).

Most importantly, the experimental errors are thus only a
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small fraction of the overall model error, perhaps to such an

extent as to render them irrelevant. It appears as if the

experimental errors are much smaller than those originating

from our limited ability to model the content of the unit cell.

In fact, a major crystallographic refinement program imple-

ments a maximum-likelihood refinement target that makes no

use of experimental errors (Lunin et al., 2002; Lunin &

Skovoroda, 1995), while others incorporate experimental

error through variance inflation (Bricogne & Gilmore, 1990;

Pannu & Read, 1996; Murshudov et al., 1997; Cowtan, 2005).

In this work, we explore the alternative possibility that the

experimental errors are underestimated by data-processing

programs, particularly in lower resolution shells. To evaluate

the adequacy of the error estimates, we extended the concept

of repeated measurements to a single data set which contains

thousands of individual reflections. Using multiple crystals

grown and prepared for data collection using an identical

protocol, we determine values of the experimental uncertainty

that include crystal-to-crystal variation and compare them

with those predicted for individual experiments by data-

processing programs.

2. Materials and methods

2.1. Protein crystallization

Glycerol dehydrogenase from Thermotoga maritima

(TmGldA) was expressed as described previously (Lesley et

al., 2002; the cell line was received from the Joint Center for

Structural Genomics). The protein was purified using a

combination of metal-affinity and gel-filtration chromato-

graphy. Hen egg-white lysozyme (HEWL) was purchased

from USB (Cleveland, Ohio, USA) and used without further

purification. Human fatty-acid binding protein 4 (FABP4) was

expressed and purified as described by Bai et al. (2010).

For crystallization, TmGldA was concentrated to 5–

10 mg ml�1 in storage buffer composed of 10 mM Tris pH 7.5,

150 mM NaCl. Crystals were grown by the sitting-drop

vapour-diffusion method using 35% MPD, 0.1 M sodium/

potassium phosphate pH 6.2 as precipitant. The classic method

was used to obtain tetragonal HEWL crystals by mixing

protein dissolved in 0.1 M sodium acetate buffer pH 4.6 at

50 mg ml�1 and 8%(w/v) NaCl, 0.1 M sodium acetate pH 4.6.

FABP4 crystals were grown using protein concentrated to

5–10 mg ml�1 in 10 mM Tris pH 7.5, 150 mM NaCl, 5 mM

�-mercaptoethanol, 1.6 M sodium citrate pH 6.5 as precipi-

tant.

TmGldA and FABP4 crystals were harvested directly from

the drop, while HEWL crystals were first transferred into

2.5 M sodium malonate pH 5.0 for cryoprotection (Holyoak

et al., 2003). Crystals were flash-cooled and stored in liquid

nitrogen for data collection.

2.2. Data collection and processing

X-ray diffraction data were collected at Stanford Synchro-

tron Radiation Lightsource (SSRL). To minimize radiation

damage, the shortest possible sweep yielding the complete

data set was used, taking advantage of the relatively high

symmetry of the TmGldA, HEWL and FABP4 crystals (space

groups I422, P43212 and P212121, respectively).

Nine TmGldA crystals were used that were harvested from

two simultaneously prepared crystallization drops. All of the

crystals were of approximately the same size (�0.3 mm) and

diffracted to roughly the same resolution (�1.8 Å).

A tetragonal HEWL crystal was used to collect 16 data sets

using identical protocols (the same starting angle, oscillation

width and number of frames). Furthermore, 13 individual

crystals were used to collect data at three levels of diffraction

intensity. The lowest resolution data were generated by

centering the minimally sized and maximally attenuated beam

on the tip of a crystal (owing to the excellent quality of lyso-

zyme crystals, this still produced data of fairly high resolution:

�1.55 Å). The ‘medium-resolution data’ were collected by

simply reducing the degree of beam attenuation. The ‘high-

resolution data’ were collected by increasing the size of the

unattenuated beam to the maximum and centering on a thick

section of the crystal.

In another experiment, a HEWL crystal was intentionally

shattered in the drop and seven crystal fragments were used

for data collection. Furthermore, three crystals were used to

collect multiple data sets by focusing the X-ray beam on

different parts of the crystal, twice using a 20 � 50 mm beam

and once using a microbeam (SSRL beamline 12-2).

The rod-shaped FABP4 crystals were used to collect

multiple data sets from different sections of the same crystal

using a small-sized beam (20 � 50 mm). Single data sets were

also collected from seven crystals.

Data were processed using DENZO/SCALEPACK

(Otwinowski & Minor, 1997), MOSFLM/SCALA (Evans,

2006; Leslie & Powell, 2007) and XDS/SCALA (Evans, 2006;

Kabsch, 2010) combinations for integration and scaling. To

minimize possible bias in the data-processing protocol, an

automated procedure was implemented for DENZO/

SCALEPACK. Specifically, autoindexing was followed by

integration with fixed mosaicity. An automated procedure was

implemented in which the integrated intensities were scaled

together and error-model parameters were iteratively adjusted

to achieve values of �2 between 0.9 and 1.1 whenever possible

and was interspersed with multiple rounds of scaling and

outlier rejection until no further outliers were identified. The

mosaicities determined for individual frames by SCALE-

PACK were then used to reintegrate the intensities with

DENZO. The whole process was iterated until it converged

with the best possible error-model parameters and mosaicity

values assigned to individual frames that were no more than

0.05� higher than the corresponding values obtained from

SCALEPACK. The Python scripts used to implement this

protocol are available from http://pyhkl.sourceforge.com.

For processing with MOSFLM/SCALA, iMOSFLM (Battye

et al., 2011) was used with default parameters followed by

space-group identification with POINTLESS (Evans, 2006)

and scaling in SCALA (mis-identification of the space group,

e.g. P43212 versus P41212, was corrected as necessary). Auto-

matic processing scripts developed by Ana Gonzalez and
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Yingssu Tsai (autoxds; http://smb.slac.stanford.edu/facilities/

software/xds/) were used to integrate diffraction images with

XDS and scale the integrated intensities with SCALA.

2.3. Estimation of the experimental errors from multiple data
sets

The multiple data sets for each case were scaled together

using a single reference data set and the following equation

[similar to Wilson scaling (Wilson, 1942), but applied here to

individual reflections since the crystals are expected to be

isomorphous],

ln
I

I0

¼ ln k� 2�B
sin �

�

� �2

: ð1Þ

The effect of the low-resolution cutoff on scaling parameters

was negligible and �I values were used for weighted regression

{specifically, the weights were defined as w = 1/[(�I/I)2 +

(�ref/Iref)
2] and only positive intensities were used in regres-

sion}. For every reflection, the weighted arithmetic mean

intensity was determined as follows (summation over

instances of the reflection in multiple data sets),

hIhi ¼

P
Ih=�

2
hP

1=�2
h

: ð2Þ

The unbiased weighted sample variance can be estimated,

�̂�2
h ¼

P 1

�2
h

P ðIh � hIhiÞ
2

�2
hP 1

�2
h

� �2

�
P 1

�4
h

: ð3Þ

To obtain the weighted variance estimate from the set of �h

values, we observe that the variance of a sample variance is

proportional to the square of the variance itself and therefore

the correct weights are 1/�h
4,

h�2
hi ¼

P 1

�2
hP 1

�4
h

: ð4Þ

To compare the variation of the observed intensities in the

multiple data sets with the averaged �h, we introduce the

following parameter:

�h ¼
�̂�2

h

h�2
hi

� �1=2

¼

P 1

�4
h

P Ih � hIhið Þ
2

�2
hP 1

�2
h

� �2

�
P 1

�4
h

2
6664

3
7775

1=2

: ð5Þ

The results described below were not sensitive to the choice

of the reference data set, while the inter-data-set scaling itself

always substantially reduced the overall average �h. This

parameter is further referred to as the variance ratio. It is used

to characterize our empirical observations and its use does not

imply any specific mechanism or source of the additional error

or its reduction. The relative contribution of the ‘additional’

error can easily be derived from the variance ratio as

(�h
2
� 1)1/2.

Alternatively, the observed values from individual data sets

may be averaged without weighting, given that the error

estimates are in fact questionable. The variance ratio is then

represented by the simplified formula

�h ¼
N

N � 1

P
ðIh � hIhiÞ

2P
�2

h

� �1=2

: ð6Þ
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Figure 1
Comparison of error correction for reflection intensities and amplitudes.
(a) The variance ratio in resolution shells. In higher resolution shells �h’ 1
for the intensities, but it declines below unity for the amplitudes. (b) The
variance ratio versus the relative strength of a reflection. For the
intensities �h ’ 1 for I/�I < 2, whereas for the amplitudes the variance
ratio decreases rapidly for the weaker reflections. This indicates that the
conversion algorithm introduces additional variation for the weaker data.
The example shown uses TmGldA data processed with MOSFLM/
SCALA; identical behavior was observed for all other reported data.



We have found that both approaches produce very similar

results, with the simple averaging producing slightly lower

variance ratios. The weighted �h was used in all of the analyses

presented below.

3. Results and discussion

3.1. Converting intensities to amplitudes produces
overestimated errors

The analysis described below can be applied to both the

intensities of individual reflections and the structure-factor

magnitudes derived from these using various algorithms

(French & Wilson, 1978; Sivia & David, 1994). It appears

reasonable to expect that the variance ratio should not change

upon such a conversion. Our observation, however, is that this

does not hold in higher resolution shells and further analysis

indicates that this effect occurs mostly for the weak reflections,

offering a clue to its origin (see Fig. 1; results are shown for the

nine TmGldA data sets). Conversion of negative and inflation

of weak intensities results in some increase in the variation

across multiple data sets and this effect is obviously most

pronounced in the higher resolution shells. To avoid this

complication, the subsequent analysis applies to intensity

measurements.

3.2. Multiple crystals

In this experiment, several crystals obtained using an

identical crystallization protocol were used to collect multiple

data sets. Three different protein crystal forms were utilized as

described in x2. Similar observations were made in all cases,

namely that the variance ratio was consistently above unity.

The resolution and amplitude dependence followed the same

pattern (an example is shown in Fig. 1), clearly indicating that

the observed behavior is not unique to a particular protein

crystal form but rather reflects some general contribution to

the experimental errors that is not accounted for by modern

data-processing algorithms.

Specifically, the variance ratio generally approaches unity

in higher resolution shells, indicating that the errors of the

weaker reflections are determined more accurately. This

is perhaps because the statistical error then exceeds the

systematic error of the crystal-to-crystal variation. In contrast,

in the lower resolution shells the errors are significantly

underestimated. Naturally, it is not expected that the absolute

values of the error inflation will be universal for different

protein crystals, only the general form of the resolution

dependence of the variance ratio.

Given that the average signal-to-noise ratio (I/�I) of a

reflection generally decreases in higher resolution shells, we

also analyzed its influence on the variance ratio. Generally,

we found that better estimates are obtained for the weaker

reflections, which is likely to be because counting error then

exceeds crystal-to-crystal variation. The exact relationship

between the variance ratio and the reflection strength was

very similar for the three crystal forms studied here and is

approximated well by the following empirical relationship:

�h ¼ �0 þ
��

1þ
scrit

I=�I

� �� : ð7Þ

For the three crystal forms studied here the optimization

resulted in fairly similar values for the empirical parameters:

�0 ’ 1.0, scrit ’ 15 and � ’ 1.5. ��, on the other hand, varies

significantly (from �2.2 for the low-resolution HEWL data to

�6.5 for the FABP4 data) and provides overall scaling of the

variance ratio.

3.3. Data-processing algorithms

Several modern software packages are available for the

integration of raw diffraction images and subsequent scaling

of the integrated reflection intensities. We examined the three

most common scenarios encountered in data processing for

the combination of the integration and scaling algorithms:

(i) DENZO/SCALEPACK, (ii) MOSFLM/SCALA and (iii)

XDS/SCALA. The variance ratio is shown versus the reflec-

tion strength in Fig. 2. All three algorithms show the same

behavior, with the errors being largely accurate for the weak

reflections and being substantially underestimated for the

stronger reflections and, correspondingly, in lower resolution

shells. It is noteworthy that the MOSFLM/SCALA combina-

tion appears to provide the most accurate prediction of the

experimental error, while XDS/SCALA underestimates the

errors for stronger reflections the most. It is quite conceivable

that this picture may be significantly altered if ‘more careful’

data processing is employed and it may vary for different

crystal forms. However, for all three algorithms the data-

processing statistics as reported by the corresponding

programs were clearly acceptable as judged by standard data-

quality indicators.
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Figure 2
Comparison of error correction for the same nine TmGldA data sets
processed using different programs. The variance ratio is shown versus
the reflection strength. MOSFLM/SCALA processing provided the most
accurate error estimates and the XDS/SCALA combination tended to
underestimate the variability of the stronger reflections the most. The
inset shows the same data in resolution shells.



3.4. HEWL data sets collected at different resolutions/beam
intensities

Data for HEWL crystals were collected using different

incident-beam intensities, resulting in correspondingly

stronger/weaker data overall. At all three signal levels studied

in this work the magnitude of the error inflation consistently

declined in higher resolution shells; however, the absolute

values differed, suggesting that the degree to which errors

need to be inflated are not uniquely defined by the scattering

angle (see Fig. 3). The variance ratio is much more consistently

reproduced as a function of the reflection amplitude. More-

over, the amplitude dependence is consistent when different

proteins are compared in addition to HEWL at three signal

levels. This suggests the possibility that the error inflation can

be modeled as a universal function of the relative amplitude of

a reflection. It is noteworthy that the highest resolution data

sets are characterized by higher error inflation. These data sets

were collected using the larger beam size, which may explain

the increase in error inflation because a higher variation may

be observed over larger illuminated crystal volume.

3.5. Multiple data sets collected from a single crystal

Whilst every precaution was taken to ensure that the

multiple crystals used for data collection were as similar as

possible, it cannot be completely excluded that the observed

variations arise from differences in both the crystal-growth

conditions and the cryoprotection protocol. To minimize such

crystal-to-crystal variations, two approaches were utilized.

Firstly, a single HEWL crystal was intentionally shattered

with a metal needle. Multiple smaller chunks were cryopro-

tected and used for data collection. The crystals thus obtained

have been subjected to identical growth conditions in the same

drop and their cryoprotection protocols were as identical as

possible. Most interestingly, the observed error inflation

remained essentially at the same level and exhibited the same

resolution/amplitude dependence that was observed when

multiple independently grown crystals were employed (see

Fig. 4).

Secondly, multiple data sets were collected from a single

rod-shaped FABP4 crystal by exposing different non-

overlapping areas. These crystals mostly grew in the form of

long rods with a cross-section of approximately 50 � 50 mm

and a length of up to 1 mm. Using a 50 mm X-ray beam, up to

16 data sets could be collected by shifting the beam along a

crystal oriented collinear with the stem of the cryoloop. Large

HEWL crystals were also utilized in a separate set of experi-

ments which included the use of a microfocused beam. The

spatial gap between illuminated volumes was at least 10 mm,

thus preventing the spread of radiation damage (Sanishvili et

al., 2011).

In all cases, the behavior of the variance ratio remained the

same as that obtained using the multi-crystal approach (see

Fig. 4). This clearly demonstrates that subtle differences in

crystal-preparation protocols are not the main source of the

additional error that we observe. Apparently, the extra fluc-

tuations of this amplitude in diffraction properties occur

between different illuminated volumes. The exact nature of

such variations remains beyond the scope of this report, but

we can say with confidence that sufficient variations in crystal

packing, shape etc. occur on the scale of tens of micrometres to
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Figure 4
Resolution and amplitude dependence of the variance ratio for data sets
collected using fragments of a shattered HEWL crystal (red) and using
independent illumination volumes of a HEWL crystal (green) and an
FABP4 crystal (blue).

Figure 3
Resolution and amplitude dependence of the variance ratio for three
groups of data sets of low (red), medium (green) and high (blue)
resolution/beam intensity.



produce the observed inflation in experimental errors. The

overall level of error inflation was only slightly reduced, with

the lowest values being obtained from the set of experiments

utilizing the microfocused beam. This again indicates that the

error inflation is likely to originate from spatial crystal varia-

tions.

The data sets collected from multiple spots on a single

crystal were scaled together as described above prior to

analysis of the error inflation. A small trend in the relative

temperature factor derived from (1) was observed upon

scaling (see Fig. 5). Together with equally obvious small

changes in the unit-cell parameters, this provides a clear

indication that some discernible differences exist throughout

the crystal. To determine whether the discrepancy among the

data sets correlates with the spatial separation of the corre-

sponding illumination volumes, the cross-data-set R value,

Rcross ¼
2hjF1 � F2ji

hF1 þ F2i
; ð8Þ

was normalized by its expected value (see Appendix A),

Rcross;ideal ’
2h ~��Fi

	1=2h ~FFi
;

~FF ¼
F1 þ F2

2
; ~��F ¼

�2
F1
þ �2

F2

2

� �1=2

; ð9Þ

and is shown in Fig. 5(b). The analysis clearly shows that the

independently collected data sets differ less when collected

from nearby areas of the crystal. Importantly, even within a

single crystal sufficient variation is present to produce signif-

icantly larger differences than expected from the predicted

experimental errors.

3.6. Same crystal, same orientation (redundant data
collection)

In this experiment, data sets were collected repeatedly using

the same starting orientation and exactly the same parameters

of data collection. For the data sets scaled to the reference h�hi

was reduced to �0.8, indicating that the experimental errors

are slightly overestimated by the data-processing programs. In

Fig. 6 the �h in individual resolution shells is shown. It levels

off below unity in the higher resolution shells, and it is

important to emphasize that the worst inconsistency is

observed in the lower resolution shells, in which the errors are

overestimated the most. This correlates with the effect of

relative amplitude. Fig. 6 also shows �h versus the I/�I ratio.

It is clear that for high-precision reflections the errors are
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Figure 5
(a) An example of the trend observed in unit-cell volume (squares) and
the relative scaling B factor (circles) for data sets collected from adjacent
non-overlapping sections of the same HEWL crystal. (b) The relative
increase in the Rcross value compared with its expectation Rcross,ideal is
shown for pairwise comparisons of individual data sets.

Figure 6
Resolution and amplitude dependence of the variance ratio for data sets
collected using the same HEWL crystal (single-crystal redundant data
collection).



overestimated the most. Coincidentally, most such reflections

are observed in lower resolution shells, so it is not immediately

obvious which of the two variables influences the variance

ratio the most.

This is dramatically different from what is observed for data

sets collected from multiple crystals. Most importantly, the

errors appear to be much better estimated for the redundant

data collection. Arguably, this is what the data-processing

algorithms are designed to do and thus we conclude that

modern programs are quite adequate for the task. The errors

are slightly overestimated, but this is acceptable for an

experimentalist as it sufficiently guards against reaching

unjustified conclusions owing to an overly optimistic view of

the experimental uncertainties. The additional error identified

by collecting data from multiple crystals can be characterized

as the systematic error, which cannot be readily estimated

from a single data set. Our observations suggest that the

systematic error varies with the strength of a reflection in a

universal way (although the overall error inflation varies with

a crystal form) and an error-correction algorithm based on (7)

can be proposed.

3.7. Cross-data-set R values

Are the R values in protein crystallography too high given

the range of predicted experimental errors? It appears so since

if the calculated structure-factor magnitudes are brought to

within the experimental precision from the measured inten-

sities the R value is expected to be (see Appendix A)

Rideal ¼
hjFo � Fcji

hFoi
¼

2

	

� �1=2
h�Fi

hFoi
’

0:8

hFoi=h�Fi
¼

0:4

hIoi=h�Ii
:

ð10Þ

For most crystallographic data the hIi/h�Ii ratio is in the range

10–50 and thus the expected R values should be as low as 1–

4%. The fact that the actual R values are systematically higher

by an order of magnitude leads to the widely accepted notion

that modern macromolecular crystallographic models do not

capture some as yet unknown property of protein molecules in

the crystalline state, with anharmonic motions and proper

bulk-solvent modeling considered to be the prime suspects.

Similarly, it is expected that the corresponding measure of

the discrepancy between two independently collected data

sets, Rcross, should be close to the predicted value Rcross,ideal

(see equations 8 and 9 above). For all three studied crystal

forms the Rcross values are systematically higher than the

expectation (see Table 1). In fact, the corresponding values are

similar to the R values encountered in refinement. This hints

at the possibility that the higher than expected R values

in macromolecular crystallography are a consequence of

systematic errors in the experimental data rather than the

inadequacy of the ‘standard model’.

The availability of multiple data sets allows determination

of the fraction of the difference between the observed and

the calculated structure-factor magnitudes that arises from

systematic errors (e.g. those originating from the inadequate

nature of the crystallographic models). The structures of

TmGldA, FABP4 and HEWL were all refined against multiple

data sets. For every model the Fo � Fc difference was calcu-

lated for every reflection and normalized by the �F. When the

original experimental errors were used, the corresponding

distribution was much broader than the expectation based on

normally distributed errors. With errors adjusted by the

variance ratio the distribution was significantly narrowed,

indicating that the largest discrepancy mostly occurs for

reflections that have a significant error contribution from

crystal-to-crystal variation (see Fig. 7).

4. Concluding remarks

Despite all of the advances in macromolecular crystallography

in recent years, only the primitive form of model-error analysis

in direct space is routinely utilized; namely, various estimates

of the overall error of positional refinement (Luzzati, 1952;

Murshudov & Dodson, 1997; Cruickshank, 1999). Obviously,

this does not reflect the complexity of modern crystallographic

models, in which different elements are likely to be deter-

mined with variable accuracy, and more detailed model-error

analysis has been proposed and implemented (Sheldrick, 2008;

Schneider, 2000). One of the reasons for this deficiency is the

generally accepted notion that the systematic errors origi-

nating from the inadequacies of the standard crystallographic

model (which includes multiple stereochemically restrained

atoms undergoing harmonic oscillations around average

positions and uniform electron density modeling the bulk

solvent) far exceed the statistical errors in the experimental

determination of the diffraction intensities. The presented

work addresses the possibility that modern data-processing

algorithms significantly underestimate the experimental

errors, especially in lower resolution shells. Indeed, we have

found that the variation in experimental data observed upon

repetitive collection using multiple crystals produces signifi-

cant error inflation. This does not mean that the data-

processing algorithms are inadequate, but rather that they do

not completely capture the larger variation associated with
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Table 1
Various R values for the three crystal forms.

Rcross,ideal, Rcross and Rideal were calculated using (9), (8) and (10), respectively.
The reported values for the cross-data-set measures are averages over all
possible pairwise data-set combinations; Rideal is averaged over all of the data
sets. Rinflated is the Rideal calculated using errors adjusted by the variance ratio.
Rcryst is the average R value obtained by refining corresponding structural
models against individual data sets using REFMAC (Murshudov et al., 2011)
for minimization and Coot (Emsley et al., 2010) for manual rebuilding as
necessary. The relative standard deviation of the unit-cell volume (�V/V)
among the crystals used in each case is also shown.

Rcross,ideal Rcross Rideal Rinflated Rcryst �V/V (%)

TmGldA 0.057 0.079 0.039 0.054 0.16 0.37
FABP4 0.048 0.127 0.026 0.068 0.15 0.51
HEWL

Low resolution 0.095 0.113 0.066 0.081 0.17 0.36
Medium resolution 0.061 0.096 0.037 0.065 0.12 0.33
High resolution 0.019 0.071 0.012 0.049 0.11 0.17



crystal inhomogeneity (Kriminski et al., 2002; Nave, 1998; Hu

et al., 2001).

Simple estimates suggest that the target lower limit of the R

values in macromolecular crystallography may be closer to

5–10%. For instance, for the multiple crystal experiments the

expected R values given that the model predictions can be

brought within experimental error were 5.4, 6.8 and 6.5% for

the TmGldA, FABP4 and HEWL crystals, respectively (see

Table 1). The corresponding characteristic R values obtained

from refined protein structures were �16, �15 and �12%.

While these are still significantly higher than the expected

values, the gap between the two is greatly reduced and this

indicates that the model error may be comparable to the

experimental error.

Our finding that the variation of the measured intensities of

X-ray diffraction by macromolecular crystals is significantly

higher than the variation predicted by the modern data-

processing algorithms begs the next question: what is the

origin of the additional variation? This is an important ques-

tion in order to consider possible ways of improving the error

determination and perhaps even the data quality. Equation (7)

provides a simple empirical way to evaluate the amplitude of

the additional variation. For a strong reflection determined

with about 10% error level, it predicts that the additional

variation is at least�15% of the measured intensity (assuming

the relatively low value for �� of �2.5). Several possibilities

consistent with the experimental data are discussed below.

4.1. Changes in intensity owing to crystal shape

An X-ray photon has to travel through the crystal, and the

longer the distance it has to travel the more likely it is to be

absorbed. Hence, the shape of the diffracting object (including

the surrounding solvent) will affect individual reflections non-

uniformly depending on the path traveled by both the incident

and the diffracted beams. Another contributing factor is the

change in the crystal volume that is illuminated. Most of the

variation arising from crystal shape is accounted for during

scaling. In our tests, using different absorption-correction

options as implemented in SCALA did not result in any

significant reduction of the overall error inflation, indicating

that either non-uniform absorption contributes little to the

additional variation in intensities or that the existing methods

are still unable to capture it correctly.

Given that an X-ray beam is attenuated by �1% when

passing through 10 mm of a protein-crystal-like material, the

15% of additional variation in intensities would require about

a 150 mm difference in beam-path length that cannot be

accounted for by scaling. This is comparable to the size of the

incident X-ray beam used in most experiments and such a

large unaccounted variation in illuminated volume and

absorption appears to be unlikely. It must be noted, however,

that for the data sets collected using multiple sections of the

rod-shaped FABP4 crystals the variance ratio was the lowest

that we observed, which would be consistent with expected

differential illumination/absorption. However, this may also

reflect the more homogeneous nature of these crystals, and

the variance ratios were significantly higher when the same

experiment was performed using brick-shaped HEWL

crystals.

4.2. Radiation damage

Precautions were taken to minimize the radiation damage

experienced by crystals. In all cases, no significant increase in

the scaling B factors or significant changes in unit-cell para-

meters during data collection were observed as would be

expected in the presence of radiation damage (Sliz et al., 2003;

Shimizu et al., 2007). It is also expected that additional

variation resulting from minor radiation damage would be

correctly captured by data-processing algorithms (from the

discrepancies among symmetry-related reflections measured

at different points during data collection). Another important

observation is that the variance ratio did not exceed unity

when multiple data sets were collected from the same crystal

in an identical orientation (x3.6). Given that the same crystal

was exposed 16 times and therefore absorbed a much higher

dose, the lack of error inflation indicates that the variation

introduced by radiation damage is either small in our

experiments or is effectively accounted for by the data-

processing programs.

4.3. Variation of unit-cell parameters

It has been estimated that a 0.5% change in the unit-cell

parameters may produce a 10–15% change in the intensities of

individual reflections (Crick & Magdoff, 1956). In all cases
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Figure 7
Distribution of the differences between the observed and the calculated
structure-factor magnitudes normalized by the experimental errors
(original, red; inflated, blue). The expected distribution for the normally
distributed errors is shown in green. The inset shows the cumulative
distribution function. The sample data shown were obtained for seven
independent FABP4 crystal data sets.



studied in this work, the effective relative unit-cell parameter

variation [calculated from the relative unit-cell volume

variation as (1 + �V/V1/3
� 1 ’ �V/3V)] was close to 0.1%

(see Table 1). This indicates that unit-cell changes alone would

not be able to account for the observed variance ratio in

multiple data sets. It must be noted, however, that ‘crystal

inhomogeneity’ as discussed below would also result in

variation of the unit-cell parameters. Importantly, the unit-cell

parameter variation was about an order of magnitude smaller

when redundant data sets were collected using the same

crystal in the same orientation (see x3.6).

4.4. Crystal inhomogeneity

This phenomenon may be understood fairly broadly and we

do not suggest any specific mechanism resulting in the addi-

tional variation of the diffraction intensities. For instance, both

static disorder and acoustic diffuse scatter (Glover et al., 1991)

may contribute to our observations. Some of the sources of the

variation discussed above may fall under this definition (e.g.

variation of unit-cell parameters). As shown in Fig. 5(b), the

Rcross for the data sets collected from different sections of the

same crystal increases with the spatial separation of the illu-

minated regions of the crystal. This suggests the possibility of

non-uniformities present even within the same protein crystal.

Importantly, the contributions of all of the potential sources

of additional variation discussed above are expected to be

proportional to the intensity to some degree, making it diffi-

cult to distinguish between them. It is also most likely that

several factors contribute to the increased variation simulta-

neously. However, no matter what the origin of the additional

error in the intensities of the X-ray diffraction exhibited by

macromolecular crystals as measured by modern methods, it is

much larger than the error predicted from a single data set and

appears to explain at least to some extent why the R values in

macromolecular crystallography are higher than one expects.

APPENDIX A
Estimation of ideal R values

We assume that a perfect model is available and therefore the

only remaining source of discrepancy between Fo and Fc is the

experimental error in the observed diffraction intensities. The

simplest estimate can be obtained by assuming that the Fos are

normally distributed with a standard deviation of �F around

the true value of the structure-factor magnitude Fc. Fo is a

positive number and the distribution function is appropriately

scaled. The expectation of the absolute value of the discre-

pancy between the observed and predicted structure-factor

magnitudes can then be calculated as follows:

EðjFo � FcjÞ ¼
R1
0

jFo � FcjpðFojFcÞ dFo: ð11Þ

After normalizing by �F, this can be presented as (Fo = x�F,

Fc = 
�F),

EðjFo � FcjÞ ¼ �F

R1
0

jx� 
jpðxj
Þ dx: ð12Þ

Specifying t = x � 
 and using the scaled normal distribution,

pðxj
Þ ¼
ð2=	Þ1=2

1þ erf



21=2

� � exp �
ðx� 
Þ2

2

� �
; ð13Þ

we obtain

EðjFo � FcjÞ ¼
�Fð2=	Þ

1=2

1þ erf



21=2

� � R1
�


jtj exp �
t2

2

� �
dt

¼ �F

2

	

� �1=2
2� expð�
2=2Þ

1þ erf



21=2

� � : ð14Þ

A more accurate estimate can be obtained from the condi-

tional probability given by a �F-inflated Rice distribution

(Murshudov et al., 1997),

pcentricðFojFcÞ ¼
2

	ð�2
F þ �

2
�Þ

� �1=2

exp �
F2

o þD2F2
c

2ð�2
F þ �

2
�Þ

� �

� cosh
FoDFc

�2
F þ �

2
�

� �
;

pacentricðFojFcÞ ¼
2Fo

2�2
F þ �

2
�

exp �
F2

o þD2F2
c

2�2
F þ �

2
�

� �
I0

2FoDFc

2�2
F þ �

2
�

� �
:

ð15Þ

For a perfect model �� = 0 and D = 1 and we obtain for the

corresponding probabilities of the observed amplitudes

pcentricðFojFcÞ ¼
2

	�2
F

� �1=2

exp �
F2

o þ F2
c

2�2
F

� �
cosh

FoFc

�2
F

� �
;

pacentricðFojFcÞ ¼
Fo

�2
F

exp �
F2

o þ F2
c

2�2
F

� �
I0

FoFc

�2
F

� �
: ð16Þ

After normalization by �F these distributions take the

following shape:

pcentricðxj
Þ ¼
2

	

� �1=2

exp �
x2 þ 
2

2

� �
coshð
xÞ;

pacentricðxj
Þ ¼ x exp �
x2 þ 
2

2

� �
I0ð
xÞ: ð17Þ

For the centric reflections,
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EðjFo � FcjÞcentric

¼ �F

2

	

� �1=2R1
0

jx� 
j exp �
x2 þ 
2

2

� �
coshð
xÞ dx

¼
�F

ð2	Þ1=2

�R1
0

jx� 
j exp �
ðx� 
Þ2

2

� �
dx

þ
R1
0

jx� 
j exp �
ðxþ 
Þ2

2

� �
dx

	

¼
�F

ð2	Þ1=2

R1
�


jtj expð�t2=2Þ dt þ
R1



jt � 2
j expð�t2=2Þ dt

� �

¼
�F

ð2	Þ1=2
�
R0
�


t expð�t2=2Þ dt þ
R1
0

t expð�t2=2Þ dt

� �

þ
�F

ð2	Þ1=2

�R2




ð2
� tÞ expð�t2=2Þ dt

þ
R1
2


ðt � 2
Þ expð�t2=2Þ dt

�

¼
�F

ð2	Þ1=2

�
expð�t2=2Þ






0

�


� expð�t2=2Þ






1

0

�

þ
�F

ð2	Þ1=2

�

ð2	Þ1=2erfðt=21=2Þ






2





þ expð�t2=2Þ






2





� expð�t2=2Þ






1

2


� 
ð2	Þ1=2erfðt=21=2
Þ






1

2


�

¼ �F

2

	

� �1=2�
1� expð�
2=2Þ þ expð�2
2

Þ

þ 


�
	

2

�1=2

½2erfð
21=2Þ � erfð
=21=2Þ � 1�

	
: ð18Þ

For the acentric reflections there is no analytical expression

for the corresponding integral,

EðjFo � FcjÞacentric ¼ �F

R1
0

xjx� 
j exp �
x2 þ 
2

2

� �
I0ð
xÞ dx;

ð19Þ

which can be estimated numerically. A comparison of esti-

mates based on the normal distribution and the Rice distri-

bution for the centric and acentric reflections is shown in Fig. 8.

A trivial approach that would ignore the absence of negative

structure-factor magnitudes and the fact that the calculated

structure factors are governed by the Rice distribution would

produce a horizontal line at unity, since in such a simplified

approach E(|Fo � Fc|) = (2/	)1/2�F. As expected, for the

stronger reflections (F/�F > 2) the trivial estimate is accep-

table, since the Rice distribution then resembles the normal

distribution. To verify that the trivial estimate of the Rideal

works well, we have compared it with the Rice-distribution-

based estimate for �250 data sets from the PDB. We found

that the two estimates differed by �0.01% of the predicted

Rideal value. Thus, (10) provides a sufficiently accurate esti-

mate of the expected R value.

To obtain an estimate of Rcross,ideal, we assume that the

structure-factor magnitudes from two data sets are normally

distributed. Taking into account that the R value is defined by

the absolute value of the difference between two measure-

ments, one can demonstrate that

Rcross;ideal ¼
2h ~��Fi

	1=2h ~FFerfð ~FF= ~��FÞi þ h ~��F expð� ~FF2= ~��2
FÞi
’

2h ~��Fi

	1=2h ~FFi

~FF ¼
F1 þ F2

2
; ~��F ¼

�2
F1
þ �2

F2

2

� �1=2

: ð20Þ

Again, we find that the correction introduced by the more

complicated formula is negligible and that the simplistic esti-

mate is sufficiently accurate.
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