
Introduction

Accurate determination of load distribution among
passive and active components of the human trunk in
various activities—such as sports, exercises or manual
materials handling—is of prime importance for per-
formance-enhancement programs, determination of

optimal posture, and effective prevention, evaluation
and treatment of spinal disorders. In vivo studies have
been carried out to estimate spinal muscle forces and
internal loads indirectly by measuring intradiscal pres-
sure [26, 56] or load on fixation systems [36, 37]. Due to
the absence of noninvasive techniques, biomechanical
models have become indispensable in determination of
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Abstract This work aimed to evalu-
ate trunk muscle forces, internal
loads and stability margin under
some simulated standing postures,
with and without external loads,
using a nonlinear finite element
model of the T1–S1 spine with real-
istic nonlinear load-displacement
properties. A novel kinematics-
based algorithm was applied that
exploited a set of spinal sagittal
rotations, initially calculated to
minimize balancing moments, to
solve the redundant active–passive
system. The loads consisted of upper
body gravity distributed along the
spine with or without 200 N held in
the hands, either in the front of the
body or on the sides. Nonlinear and
linear stability/perturbation analyses
at deformed, stressed configurations
with a linear stiffness-force relation-
ship for muscles identified the system
stability and critical muscle stiffness
coefficient. Predictions were in good
agreement with reported measure-
ments of posture, muscle EMG and
intradiscal pressure. Minimal chan-
ges in posture (posterior pelvic tilt

and lumbar flattening) substantially
influenced muscle forces, internal
loads and stability margin. Addition
of 200 N load in front of the body
markedly increased the system sta-
bility, global muscle forces, and
internal loads, which reached ante-
rior shear and compression forces of
�500 N and �1,200 N, respectively,
at lower lumbar levels. Co-activation
in abdominal muscles (up to 3%
maximum force) substantially in-
creased extensor muscle forces,
internal loads and stability margin,
allowing a smaller critical muscle
coefficient. A tradeoff existed be-
tween lower internal loads in passive
tissues and higher stability margins,
as both increased with greater mus-
cle activation. The strength of the
proposed model is in accounting for
the synergy by simultaneous con-
sideration of passive structure and
muscle forces under applied postures
and loads.
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muscle forces and internal passive loads. To overcome
the presence of kinetic redundancy in the system
equations, various approaches based on reduction
method, EMG-assisted models, optimization methods
or a combination of these have been proposed in the
literature [12, 15, 19].

One major shortcoming of these biomechanical
models is in the verification of static or dynamic equi-
librium for the balance of external moments at only a
single cross section along the spine (often at the lower
lumbar levels). To overcome this deficiency by satisfy-
ing the equilibrium in different directions at all lumbar
levels, and accounting for the passive ligamentous
resistance, a linear finite element model has been re-
ported to evaluate muscle recruitment and internal
lumbar loads during maximum and sub-maximum ef-
forts [13, 14, 52, 54]. Recently, we introduced and ap-
plied a novel iterative, kinematics-based approach, in
which the a priori known kinematics of the spine at
different levels under given external loads, along with
passive properties, were exploited in a nonlinear finite
element model to evaluate unknown muscle and inter-
nal loads, resulting in a synergistic solution of the entire
active–passive system [21, 22, 49]. The relative validity
of various models and the accuracy in their predictions
under various loading and postural conditions, though
naturally dependent on their assumptions (e.g., the
choice of cost functions or strategies to distribute
reactive moments amongst spinal muscles), need yet to
be established.

Apart from the solution of a redundant system of
equations to calculate muscle forces and internal loads,
the stability of the spine in compression has attracted
a considerable amount of attention in recent years.
The passive ligamentous thoracolumbar and lumbar
spines are known to exhibit large displacements or
hypermobility (i.e., instability for an imperfect system
such as the spine) under compression loads <100 N
[10, 22, 41, 42, 43]. Bearing in mind that these forces
are only a small fraction of those carried by the spine
in activities of daily living; the question thus arises as
to how then the system is stabilized in vivo? Various
stabilizing mechanisms have been proposed and
investigated in the literature: wrapping compression
loading that follows the curvature of the spine to re-
main normal to disc mid-planes [1, 30, 46], changes in
the posture (pelvic tilt and lordosis) [20, 21, 41–45, 49],
intra-abdominal pressure [8] and muscle activation/co-
activation [2, 5–7, 9, 10, 13, 14, 16, 22, 33, 55]. The
role of muscular reflexive activities in the stabilization
of the spine and in spinal injuries has been suggested
[18, 50, 51].

The objectives of this work are to examine if:

– The posture in standing position can be minimally
adjusted so as to minimize the required moments for

equilibrium under various load conditions. This
should support and quantify the compensatory role of
posture in influencing both the equilibrium and sta-
bility of the spine

– The kinematics-based approach can be applied for the
evaluation of muscle forces and subsequent investi-
gation of system stability while accounting for the
preceding optimal postures

System stability is examined using both linear buck-
ling and nonlinear analyses, assuming various muscle
stiffness values. The former is performed using the up-
dated geometry and stressed condition of the spine at the
final configuration. These analyses of such an imperfect
system are more accurate and reliable than the linear
stability analyses often performed on the un-deformed
and unstressed system. Finally, the effect of prescribed
co-activation in abdominal muscles on extensor muscle
forces, internal loads and stability margin in standing
postures is quantified. The novel aspects of this work
are:

– The representation of the ligamentous thoracolumbar
spine with realistic nonlinear material properties (both
load- and direction-dependent)

– Application of a kinematics-based algorithm to cal-
culate muscle forces

– Accurate analysis of system stability for the cases with
or without abdominal co-activities

– Various loads are considered

Methods

Thoracolumbar finite element model

A sagittally symmetric T1–S1 beam-rigid body model
[21, 22, 32, 43] is used. It is made of six deformable
beams to represent T12–S1 discs and seven rigid ele-
ments to represent T1–T12 (as a single body) and lum-
bosacral vertebrae (L1 to S1). The beams model the
overall nonlinear stiffness of T12–S1 motion segments
(i.e., vertebrae, disc, facets and ligaments) at different
directions and levels. The nonlinear load-displacement
response under single and combined axial/shear forces
and sagittal/lateral/axial moments, along with the flex-
ion vs extension differences, are represented in this
model, based on numerical and measured results of
previous single- and multi-motion segment studies [27,
32, 38, 49, 57]. The insertion points of beams to rigid
vertebrae are shifted posteriorly from the end-plate
centers by 4 mm, to account for the posterior movement
in the disc axis of rotation observed under loads in dif-
ferent directions [47, 48]. This nonlinear beam–rigid
body model is employed to preserve both accuracy and
cost-efficiency in subsequent computations. To account
for the upper body weight, a total of 397.1 N gravity
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load is distributed anteriorly at T1–L5 vertebral levels
[21, 31] (Fig. 1). In some cases, a 200 N load is also
added at the T4 level, either in front (114.6 mm anterior
and 269.6 mm distal to the S1 simulating weights carried
in extended arms in front) or on sides (29.1 mm pos-
terior and 241.3 mm distal to the S1 simulating dumb-
bells held in extended arms on sides) (Fig. 1). These
loading conditions represent our on-going in vivo mea-
surements.

Optimal posture

The kinematics-based algorithm requires as much a
priori known data on posture as available. Therefore,
under each of three loading conditions (i.e., gravity load
alone or with 200 N held in front or on sides), two
optimal postures are initially sought, in which the pelvic
tilt and segmental sagittal rotations are altered so as to
minimize the sum of required equilibrating moments,
either at all the T12–L5 levels or only at the lumbar L1–
L5 levels. This division is in accordance with that as-
sumed in muscle groups (i.e., global vs local); the
equilibrating moment at T12 is carried by global mus-

cles, while local muscles support moments at L1–L5
levels. Six optimal postures are, hence, evaluated (two
for each load case). The MATLAB SQP algorithm (The
MathWorks, Natick, MA, USA) is employed using
segmental nonlinear moment-rotation curves as input in
the search for the optimized posture [32, 38].

Muscle model and muscle force calculation

A sagittally symmetric muscle architecture with 46 local
muscles (attached to the L1–L5 vertebrae) and ten
global muscles (attached to the thoracic cage T1–T12)
are used (Figs. 2 and 3): iliopsoas (IP), iliocostalis (IC),
longissimus (LG), multifidus (MF) and quadratus lum-
borum (QL) as local muscles attaching the pelvis to
lumbar vertebrae (except the IP that originates from the
proximal femur); and iliocostalis (IC), longissimus (LG),
rectus abdominis (RA), external oblique (EO) and
internal oblique (IO) as global muscles attaching the
pelvis to the thoracic cage. The architecture (Figs. 2 and
3) and physiological cross-sectional areas (Table 1) are
taken based on published works [3, 11, 17, 24, 25, 35,
51]. The QL and IC are not attached at the L5 level. For

Fig. 1 Sagittal profile of the
model, T1–S1 consisting of
seven rigid bodies and six
deformable beam elements. The
segmental stiffness is presented
by deformable beam elements
with nonlinear load-displace-
ment properties in different
directions at each T12–S1 disc
level. The positions of distrib-
uted gravity load (total of
397.1 N) and concentrated
200 N load (held in front or on
sides) are also shown. The rib
cage and vertebral outlines are
provided schematically for
visualization (not to scale)
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Fig. 3 Representation of global
and local musculature in the
sagittal plane used in the T1–S1
model (IC iliocostalis, IP ili-
opsoas, LG longissimus, MF
multifidus, QL quadratus lum-
borum, RA rectus abdominis,
EO external oblique, IO inter-
nal oblique muscles)

Fig. 2 Representation of global
and local musculature in the
coronal plane used in the T1–S1
model (IC iliocostalis, IP ili-
opsoas, LG longissimus, MF
multifidus, QL quadratus lum-
borum, RA rectus abdominis,
EO external oblique, IO inter-
nal oblique muscles)
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the global muscles, since the entire T1–T12 range is ta-
ken as a rigid body, each muscle is represented by a
single element, with insertions placed nearly at the center
of different fascicles of the same muscle.

A novel algorithm—a kinematics-based muscle force
evaluation, coupled with optimization—is employed to
solve for the redundant active–passive system subjected
to prescribed kinematics (previously evaluated optimal
postures) and applied external loads. In general, under
given gravity ± external loads, the rotations and
translations at various levels (as many displacements at
as many levels as are available) are prescribed. Subse-
quently, the required moments and forces (correspond-
ing to prescribed displacements) are evaluated by the
nonlinear finite element model. These moments and
forces are subsequently fed into a separate algorithm
that partitions them among muscles at each level, based
on the equilibrium considerations and instantaneous
configuration of muscles. The axial compression penal-
ties of these muscle forces (i.e., the axial component of
muscle forces that may not yet have been considered) are
then fed back into the finite element model as additional,
updated external compression loads. This iterative ap-
proach is continued at each load step until convergence
is reached (i.e., the magnitude of muscle forces in two
consecutive iterations remains almost the same). If the
horizontal translational (and/or rotational) degrees of
freedom are not prescribed, the shear loads (and/or
moments) of the muscle forces should also be applied in
their respective directions, along with the compression
penalties. In this manner, calculated muscle forces at
each instance of loading are compatible with the pre-
scribed kinematics (i.e., posture) and external/internal
loading, while accounting for the nonlinear stiffness of
the passive system.

As can be seen, such an approach exploits kine-
matics data to generate additional equations at each
lumbar level, in order to alleviate the kinetic

redundancy of the problem. If an insufficient number
of prescribed displacements are available at a level to
solve for unknown muscle forces at the same level, then
an optimization approach should also be used. In the
current study, since only sagittal rotations are
prescribed, an optimization approach is needed. The
cost function of the minimum sum of muscle forces is
considered. For the optimization, the inequality equa-
tions of muscle stresses remaining positive but smaller
than 0.5 MPa [12] (taking physiological cross-sectional
areas given in Table 1) are considered. In order to
evaluate the effect of co-activation in abdominal
muscles on the response, additional cases are also
studied, in which the abdominal muscles (RA, EO and
IO) are each individually or as a group assigned with
forces of 2% or 3% of their respective maximum value.
Moreover, the cost function of the minimum sum of
cubed muscle stresses is considered in a few loading
cases, for the sake of comparison. The finite element
program ABAQUS, version 6.2 (Hibbit, Karlsson &
Sorensen, Pawtucket, RI, USA) is used to carry out
nonlinear structural analyses, while the optimization
procedure is analytically solved using an in-house
program based on the Lagrange multipliers method.

Linear and nonlinear stability analyses

Once the muscle forces are calculated, the model is
modified with uniaxial elements introduced to directly
represent muscles between their insertion points, and
the nonlinear analysis is repeated under the same
external loads but with no prescribed segmental rota-
tions (with the exception of the pelvic tilt that remains
prescribed). The stiffness of each uniaxial element, k, is
assigned using the well-known linear stiffness–force
relation k=q F/L [2, 10], in which the muscle stiffness
is proportional to the muscle force, F, and inversely
proportional to its current length, L, with q as a con-
stant, unit-less muscle stiffness coefficient that is taken
to be the same for all muscles. Nonlinear analyses are
performed for different q values, thus identifying the
critical q value above which a convergent solution in a
force-controlled loading environment exists—i.e., the
structure remains stable. The predicted results (i.e.,
kinematics, muscle forces, internal loads) remain iden-
tical to those computed in the earlier phase, irrespective
of the q value. In addition to nonlinear stability anal-
yses, linear stability and perturbation analyses of the
deformed, loaded configurations are also performed,
and the stability margins (e.g., first eigenvalues) are
evaluated as a function of q. The effect of co-activation
in abdominal muscles at different levels (2% or 3% of
their maximum force) and the optimization algorithm
of the sum of cubed muscle stresses on the q value and
stability are also investigated.

Table 1 Physiological cross-sectional areas (PCSA) for muscles on
each side of the spine given for individual fascicles identified by
their insertion levels (mm2) (IP iliopsoas, MF multifidus, QL
quadratus lumborum, LG longissimus, IC iliocostalis, RA rectus
abdominis, EO external oblique, IO internal oblique)

Local
muscles

Lumbar vertebra Thoracic
cage

Global
muscles

L1 L2 L3 L4 L5 T1–T12 –

IP 252 295 334 311 182 – –
MF 96 138 211 186 90 – –
QL 88 80 75 70 - – –
LG 79 91 103 110 116 1,000 LG
IC 108 154 182 189 - 600 IC
– – 567 RA
– >– 1,575 EO
– – 1,345 IO
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Results

For all optimal postures (Fig. 4 and Table 2), the pelvis
rotated posteriorly (i.e., horizontalization of the pelvis)
from as low as 0.1� to as high as 5.3�. The lumbar cur-
vature (i.e., lordosis) flattened by 1.5� to 10.4�, except in
one case (optimization with T12 under 200 N load held
in front) in which the lordosis increased by 9.1� in an
apparent posterior movement of the trunk. As expected,
incorporation of the T12 level in the minimization along
with the L1–L5 levels substantially diminished the sag-
ittal moment to be balanced at this level (Table 2).

As expected, the addition of 200 N, especially when
held in front, markedly increased internal loads at all
levels and the muscle force at the T1–T12 level (Tables 3
and 4). The compression loads slightly increased from
the upper vertebral levels to lower ones, while the shear
forces were largest at the bottom and changed direction
from being posterior-wise at the upper levels to become
anterior at the lowest L5–S1 level. The postures with
T12 excluded in the optimization (Table 4) yielded much
larger forces in global muscles, resulting, therefore, in
substantially greater internal loads. In this case, under a
200 N load held in front, the lower lumbar spine expe-
rienced compression loads of �1,200 N and anterior

Fig. 4 Optimal postures com-
puted for the six cases (three
load cases of gravity alone or
with 200 N load held in front or
on the sides for two optimiza-
tion cases ± T12). These pos-
tures (pelvic tilt and sagittal
rotations) are predicted by
minimizing the sum of balanc-
ing moments at different levels

Table 2 Computed optimized posture (total rotation) and required moment at various levels (Rot rotations, M moments)

Level Optimal posture—with T12 Optimal posture—without T12

P=0 N P=200 N P=200 N P=0 N P=200 N P=200 N

On sides In front On sides In front

– *Rot� *M(Nm) *Rot� *M(Nm) *Rot� *M(Nm) *Rot� *M(Nm) *Rot� *M(Nm) *Rot� *M(Nm)

T1–T12 )4.0 0.3 )5.3 0.9 5.3 5.4 -8.4 7.8 -10.9 15.5 )11.1 38.4
L1 )0.4 0.4 )1.4 0.8 10.3 0.1 )5.5 )0.2 )8.0 0.0 )6.8 0.0
L2 3.0 0.4 1.9 0.3 14.2 )0.1 )2.8 )0.1 )5.6 0.0 )3.0 )0.1
L3 5.1 0.3 2.7 0.4 13.5 0.6 )0.8 )0.1 )4.8 0.4 )1.4 0.1
L4 5.2 0.2 1.2 1.0 9.8 0.7 0.2 1.0 )4.8 1.3 )2.5 0.1
L5 4.7 0.7 )0.8 1.0 4.9 0.8 2.2 1.5 )1.8 1.4 )0.1 0.6
S1 5.3 1.4 0.1 2.6 1.2 )6.9 4.2 4.2 1.4 9.5 3.6 12.5

*Positive rotations (Rot) and moments (M) are in extension direction
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shear forces of �500 N. Under identical postures,
presence of co-activity in abdominal muscles (Tables 5
and 6) caused a considerable increase in extensor muscle
forces as well as internal compression and shear loads.
Minimization of the sum of cubed muscle stresses, as
compared with that of the sum of muscle forces, resulted
in activation of more muscles at different levels and
greater internal loads (Table 5).

Identical results (displacements, muscle forces and
internal loads) were obtained in the stability phase of the
study when the model was modified by direct incorpo-
ration of muscles as uniaxial elements with different
stiffness values (q parameter) and the segmental rota-
tions as the unknown of the problem. Convergence in
the nonlinear analysis at different load levels in this case
proved the stability of the system. These nonlinear
analyses and subsequent linear buckling analyses at de-
formed final configurations provided the critical q value,
below which the system was no longer stable and the
eigenvalues (i.e., stability margin) (Table 7). The cases
without optimization of moments at T12 yielded much

more stable configurations, due to greater muscle forces.
Abdominal co-activity, by generating larger forces in
abdominal and extensor muscles, significantly increased
the stability margin, allowing, under the computed
postures considered in this study, to reach a minimum
value of q=35, while maintaining the system stability
under applied loads.

Discussion

The redundancy in the trunk active system could serve to
balance the varying external moments along the spine,
enhance the stiffness and stability of the system by ade-
quate activation levels, and control posture in order to
minimize active muscle forces and passive tissue stresses
and strains. Minimal changes in the posture were dem-
onstrated to substantially influence the equilibrating
moments and, hence, muscle forces, internal loads and
stability margin in standing postures. The kinematics-
based formulation was proven as a powerful tool in the

Table 3 Internal disc loads at disc mid-heights and muscle forces (on each side) at different levels for the optimal posture with T12
(minimum sum of muscle forces, no abdominal co-activity) (IC iliocostalis, LG longissimus, MF multifidus muscles)

Level P=0 N P=200 N

– Held on sides Held in front

*Passive segmental load Muscle force *Passive segmental load Muscle force *Passive segmental load Muscle force

Comp (N) Shear
(N)

Moment
(Nm)

Comp Shear Moment Comp Shear Moment
(N) (N) (N) (Nm) (N) (N) (N) (Nm) (N)

T12 301 )70 )8.0 5 (IC) 506 )107 )9.7 12 (IC) 537 )206 )15.0 73 (IC)
L1 323 )77 )5.5 5 (MF) 533 )119 )5.3 12 (MF) 549 )227 )7.4 2 (MF)
L2 344 )88 )2.6 6 (LG) 556 )126 )0.9 6 (LG) 566 )233 1.0 –
L3 376 )23 )0.1 4 (LG) 594 )16 1.2 7 (LG) 622 )110 5.9 1 (LG)
L4 400 7 0.4 3 (MF) 625 59 2.5 16 (MF) 662 )2 10.8 14 (MF)
L5 404 147 )0.8 9 (MF) 599 273 )1.3 12 (MF) 638 268 8.2 10 (MF)

*Shear force: positive in anterior direction; Moment: positive in extension direction

Table 4 Internal disc loads at disc mid-heights and muscle forces (on each side) at different levels for the optimal posture without T12
(minimum sum of muscle forces, no abdominal co-activity) (IC iliocostalis, LG longissimus, MF multifidus muscles)

Level P=0 N P=200 N

Held on sides Held in front

*Passive segmental load Muscle force *Passive segmental load Muscle force *Passive segmental load Muscle force

- Comp Shear Moment Comp Shear Moment Comp Shear Moment
- (N) (N) (Nm) (N) (N) (N) (Nm) (N) (N) (N) (Nm) (N)

T12 413 )56 )5.3 113 (IC) 717 )79 )5.5 217 (IC) 1,121 )126 )12.3 437 (IC)187 (LG)
L1 431 )57 )3.9 - 735 )75 )3.2 0.1 (MF) 1,136 )149 )7.6 -
L2 448 )63 )2.3 - 754 )72 )0.9 0.5 (LG) 1,152 )169 )2.0 -
L3 471 4 )0.6 - 780 60 0.0 6.3 (LG) 1,184 34 0.8 2 (LG)
L4 502 43 )1.6 15 (MF) 807 121 )2.7 18.3 (MF) 1,195 150 )2.2 1 (MF)
L5 504 195 )3.3 18 (MF) 778 346 )7.9 16.6 (MF) 1,134 478 )10.3 6 (MF)

*Shear force: positive in anterior direction; Moment: positive in extension direction
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calculation of muscle forces, internal loads and sub-
sequent stability analysis. Co-activity in abdominal
muscles markedly increased muscle forces and internal
loads, as well as the stability margin of the system under
different loads. A tradeoff existed between lower internal
loads in passive tissues and higher stability margins, as
both increased with greater muscle activation. The
computed muscle forces represented the total required
forces as the sum of both active and passive components,
though the latter component should be negligible in
neutral postures. The computation of identical results in
the stability phase of the study, in which the muscles were
represented by uniaxial elements, further confirmed the
model and its predictions. As for the assumptions in the

model, the response was limited to occur in the sagittal
plane, thus neglecting out-of-plane motions. The pre-
scribed postures (Fig. 4) used in the kinematics-based
method were based on optimization of segmental bal-
ancing moments rather than direct in vivo measurements.
The transverse abdominal muscle was neglected, whereas
the oblique abdominal muscles were presented each by a
straight single line at their geometric center, rather than a
curved sheet of muscle. The intersegmental muscles were
also neglected. Moreover, the likely mechanical effects of
the intra-abdominal pressure and fascia on equilibrium
of the system and in stabilization of the spine were not
considered. The calculated muscle forces naturally
depended on the utilized optimization algorithm. The

Table 6 Internal disc loads at disc mid-heights and muscle forces (on each side) at different levels for the optimal posture with T12 under
(P=200 N held on sides, minimum sum of muscle forces) (IC iliocostalis, LG longissimus, MF multifidus, QL quadratus lumborum, RA
rectus abdominis, EO external oblique, IO internal oblique muscles)

Level No abdominal co-activity 2% abdominal co-activity 2–3% abdominal co-activity

(RA=11 N, EO=32 N, IO=27 N) (RA=11 N, EO=47 N, IO=40 N)

*Passive segmental load Muscle force *Passive segmental load Muscle force *Passive segmental load Muscle force

- Comp Shear Moment Comp Shear Moment Comp Shear Moment
- (N) (N) (Nm) (N) (N) (N) (Nm) (N) (N) (N) (Nm) (N)

T12 506 )107 )9.7 12 (IC) 635 )129 )9.9 81 (IC) 684 )138 )9.9 105 (IC)
L1 533 )119 )5.3 12 (MF) 650 )139 )5.4 - 699 )149 )5.4 -
L2 556 )126 )0.9 6 (LG) 667 )145 )0.9 - 761 )155 )0.9 -
L3 594 )16 1.2 7 (LG) 701 )16 1.2 - 751 )22 1.2 -
L4 625 59 2.5 16 (MF) 734 74 2.5 19 (MF) 784 76 2.5 20 (MF)
L5 599 273 )1.3 12 (MF) 707 322 )1.3 22 (MF) 757 344 )1.3 26 (MF)

*Shear force: positive in anterior direction; Moment: positive in extension direction

Table 5 Internal disc loads at disc mid-heights and muscle forces (on each side) at different levels for the optimal posture without T12
(P=0 N, with abdominal co-activity) (IC iliocostalis, LG longissimus, MF multifidus, QL quadratus lumborum, RA rectus abdominis,
EO external oblique, IO internal oblique muscles)

Level 2% abdominal co-activity 3% abdominal co-activity 2% abdominal co-activity

(RA=11 N, EO=32 N, IO=27 N) (RA=17 N, EO=47 N, IO=40 N) (RA=11 N, EO=32 N, IO=27 N)

Sum of muscle stresses Sum of muscle stresses Sum of cubed muscle stresses

*Passive segmental load Muscle force *Passive segmental load Muscle force *Passive segmental load Muscle force

- Comp Shear Moment Comp Shear Moment Comp Shear Moment
- (N) (N) (Nm) (N) (N) (N) (Nm) (N) (N) (N) (Nm) (N)

T12 540 )79 )5.3 180 (IC) 604 )91 )5.4 213 (IC) 566 )85 )5.4 136 (LG)
71 (IC)

L1 557 )79 )4 - 621 )91 )4 - 584 )86 )4.0 -
L2 574 )86 )2.3 - 638 )98 )2.3 - 601 )92 )2.3 -
L3 600 3 )0.6 - 664 2 )0.6 - 626 )1 )0.6 -
L4 631 51 )1.6 16 (MF) 696 56 )1.6 16 (MF) 659 45 )1.7 5 (IC)

- - - - - - - - - - - 3 (LG)
- - - - - - - - - - - 8 (MF)
- - - - - - - - - - - 1 (QL)

L5 632 240 )3.4 25 (MF) 696 262 )3.4 28 (MF) 665 247 )3.4 16 (LG)
- - - - - - - - - - - 15 (MF)

*Shear force: positive in anterior direction; Moment: positive in extension direction
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accuracy in predictions would further improve with an
increase in the number of input kinematics at various
segmental levels (i.e., horizontal translations in addition
to sagittal rotations).

In the current investigation, the segmental sagittal
rotations at different levels, along with the pelvic rota-
tion, were initially calculated in upright posture under
gravity load alone or with a 200 N load in a manner so
as to minimize the sum of required segmental moments.
Various postures were considered to cover a wider range
of possibilities in vivo. This was thought to yield the
most reasonable values to input into the model, given
the lack of available measured segmental displacements.
The results demonstrated posterior pelvic tilt in all cases
and flattening of the lordosis in all cases except one.
These postural changes are in agreement with our on-
going and earlier model and measurement studies [20,
21, 29, 42, 43, 44, 45, 49]. Incorporation of the rotation
at the T12 level in the minimization process substantially
reduced the required moments at this level. It is to be
noted that, although the considered loads simulated our
on-going in vivo measurements, the calculated postures
(i.e., rotations) were purely based on the algorithm to
minimize balancing moments and could be different
from those adopted by subjects under the same loading
conditions. Direct validation of predictions can be more
appropriate when, in future studies, in vivo postures are
applied as input data.

Due to the shortcomings in existing reduction, opti-
mization and EMG-driven models, and combinations
thereof, a novel kinematics-based finite element ap-

proach was used, utilizing the passive–active synergy.
Unlike the results of many reported models of the spine,
therefore, the computed solution satisfied simulta-
neously the kinematics and kinetics requirements at all
levels along the entire length of the spine, and not just
the equilibrium of loads and that at one level only. The
proposed model also allowed for the incorporation of
realistic nonlinear and direction-dependent load-dis-
placement behavior of spinal motion segments, satis-
faction of equilibrium at deformed configurations, as
well as subsequent verification of the stability of the
posture at any given load. In order to effectively perform
the incremental analysis, two modules were employed.
We used the finite element approach to solve the
nonlinear ligamentous response under muscle/external
forces and prescribed kinematics, while the other module
used the instantaneous musculature anatomy and re-
quired loads (in directions with prescribed displace-
ments) obtained from the first module to solve for the
updated muscle forces employing equilibrium consider-
ations and optimization algorithm. The iterative inter-
actions between these two modules in an incremental
nonlinear analysis yielded the converged solution of
deformation, internal loads, muscle forces and stability
margin at each step of the analysis.

The postures calculated based on the inclusion of the
T12 level in minimization of moments resulted in a more
posteriorly-placed T1 (Fig. 4), as well as much smaller
forces in global muscles and loads in passive structure
(Table 3). The predicted local compression and shear
forces, in various cases, varied, respectively, from lows

Table 7 System response to horizontal perturbation (1 N applied at the T1 in anterior direction) for various q (muscle stiffness coefficient)
values using linear perturbation analysis at deformed, stressed configurations (mm)

q Translation, mm (With T12) Translation, mm (Without T12)

P=0 N P=200 N (sides) P=0 N P=200 N P=200 N

No
co-activity

2%
co-activity

2–3%
co-activity

No
co-activity

2%
co-activity

3%
co-activity

2%
co-activity +
cubed muscle
stresses

Sides Front

2,500 2.46 0.589 - - 0.82 - - - 0.48 0.50
1,500 4.61 - - - 0.95 - - - - -
1,000 11.63 - - - - - - - - -
500 - - - - - - - - - -
250 * 1.49 0.33 0.26 4.51 0.79 0.37 0.38 0.93 0.70
150 - - - - * - - - 1.26 0.72
100 - - - - - - - - - -
75 - - - - - - - - - -
50 - - - - - 1.97 - 1.94 - -
40 - 6.02 - 1.43 - - - - 3.46 1.15
35 - - - - - 3.41 2.04 3.84 - -
30 - 8.94 2.60 1.92 - * 2.57 5.29 4.50 1.31
20 - * 4.04 2.93 * * * 1.69
15 - - * 3.98 - - - - - 2.00
5 - - - * - - - - - *

*System is unstable
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of �400 N and �150 N under gravity alone, to highs of
�1,200 N and �500 N under gravity and 200 N load
held anteriorly. Notwithstanding the effect of changes in
posture on predictions, these values agree very well with
our current and earlier EMG measurements in normal
subjects in upright position, indicating low muscle
activities when loads are held on the sides, whereas much
larger activities in extensor muscles when loads are held
in front [29]. Moreover, accounting for the computed
compression-disc pressure relation [40], the current
predictions are also in good agreement with in vivo in-
tradiscal pressure measurements reported under similar
load magnitudes and locations [26, 56].

The issue of structural stability remains an important
consideration in avoiding injury and functioning safely.
Considerable attention has recently been given to the
study of the stability of the spinal column [2, 5, 6, 7, 9,
10, 13, 14, 16]. These works have performed buckling
analyses of the often simplified system based on the
second variation of the potential energy. The farther
away a structure gets from its initial configuration (or
from a perfect idealized system), the greater the error
one should expect in evaluation of stability margin (e.g.,
eigenvalues) based on the linear buckling analysis. To
avoid this shortcoming, the gold standard is to perform
complete nonlinear analysis of the system under applied
forces. The system response can, in this case, be used to
establish safe load levels by examining the relative loss in
stiffness or hypermobility. The convergence at any given
load would naturally confirm the instantaneous stability
of the system when load-control option is used. Other
complementary approaches, also used in the present
study, would be to perform both linear stability and
perturbation analyses, though not on the initial config-
uration but, rather, on the deformed and stressed con-
figurations of the structure. In this case, the error
involved in the calculation of buckling loads is expected
to diminish as the applied loads and deformed configu-
rations approach the critical point.

By varying the stiffness coefficient, q, the critical
value was found, below which the system became
unstable—i.e., no convergent solution existed under
applied forces. These q values were further utilized in
linear buckling and perturbation analyses performed on
the system at deformed configurations. Larger muscle

forces and greater co-activity significantly increased the
system stability, allowing for larger loads or smaller q
values. There exists a tradeoff between lowering inter-
nal stresses/strains in spinal tissues (requiring smaller
muscle forces) and improving the stability margin of
the system (requiring greater muscle forces), an obser-
vation made by others as well [5]. The smallest stiffness
coefficient to maintain the system stability was �5. This
value, though in the range of 0.5–42 [10] and 36–170 [4]
reported in the literature, could alter for postures
different from those prescribed in this study. Indeed,
since the prescribed postures were computed based on
minimization of balancing moments and, hence, muscle
forces, other postures could require even smaller q
values associated with larger muscle forces. It should
be emphasized that the choice of linear force–stiffness
relation taken in this study for the muscles, i.e., k=q F/
L, rather than a nonlinear relation [4, 39] has abso-
lutely no bearing on muscle forces calculated. The
force-displacement slope or stiffness at a given muscle
force and length, however, influences the stability
margin of the system (Table 7).

Finally, the current work was the first to introduce
realistic nonlinear load-displacement properties in a
deformable beam-rigid body representation of the mo-
tion segments coupled with a novel algorithm to calculate
muscle forces, passive loads and stability margin. It
would, therefore, allow for the adequate consideration of
larger compression, shear and moment loads on the spine
expected during manual material-handling tasks. The
proposed model accounted for the synergy by simulta-
neous consideration of passive ligamentous structure and
muscle forces under given postures and loads. The pre-
dictions, therefore, satisfied kinematics, equilibrium and
stability conditions at all spinal levels during a particular
activity. The model proves to be promising for future
applications under different loads and postures, with the
aim of improving upon evaluation, prevention, rehabili-
tation and treatment of spinal disorders.
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