
Introduction

A spinal motion segment is the smallest functional unit
of the spine. It consists of two adjacent vertebrae, an
intervertebral disc, a number of ligaments as well as
facet joints. Facet joints provide stability to the spine by
restricting the physiological range of motion of superior
vertebrae with respect to inferior vertebrae. In particu-
lar, the contribution to spinal stability and load-bearing
characteristics was studied experimentally in [12] and
[15] among others. It was shown that the facets protect
the motion segments of the spine from high-extension
rotations and large shear displacements in the anterior
direction [15]. The role of the facets in the biomechanics

of the spine has been described previously in a general
context by [6] among others.

With regard to facets, there exist a number of clinical
treatments whose mechanisms are not yet completely
understood. For example, graded facetectomy or lam-
inectomy are techniques for decompressing lumbosacral
spinal stenosis. Resections of posterior bony or liga-
mentous parts may lead to a decrease in stability. The
degree depends on the extent of the resection, the
condition of the intervertebral discs and the loading
situation. Although (graded) facetectomy has been
thoroughly studied experimentally (see for example [2]),
the correlation between the involved parameters is
not well understood [22]. However, a finite element
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Abstract The curvature of vertebral
facet joints may play an important
role in the study of load-bearing
characteristics and clinical interven-
tions such as graded facetectomy. In
previously-published finite element
simulations of this procedure, the
curvature was either neglected or
approximated with a varying degree
of accuracy. Here we study the effect
of the curvature in three different
load situations by using a numerical
model which is able to represent the
actual curvature without any loss of
accuracy. The results show that
previously-used approximations of
the curvature lead to good results in
the analysis of sagittal moment/
rotation. However, for sagittal
shear-force/displacement and for the
contact stress distribution, previous
results deviate significantly from our

results. These findings are supported
through related convergence studies.
Hence we can conclude that in order
to obtain reliable results for the
analysis of sagittal shear-force/dis-
placement and the contact stress
distribution in the facet joint, the
curvature must not be neglected.
This is of particular importance for
the numerical simulation of the
spine, which may lead to improved
diagnostics, effective surgical plan-
ning and intervention. The proposed
method may represent a more reli-
able basis for optimizing the bio-
medical engineering design for tissue
engineering or, for example, for
spinal implants.
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simulation may help to provide essential insight into this
correlation. Accordingly, numerical simulations of
facetectomy and laminectomy have been carried out,
e.g., in [22].

Furthermore, the finite element method (FEM) has
great potential in understanding the load-bearing
mechanism within the spine in normal and pathologic
conditions. In [15] the FEM was used to identify the role
of ligaments and facets in lumbar spine stability. Con-
tact interaction between the facet joints has been studied
in particular in [7] and [16].

The complex geometry of the facet joints seems to be
a major issue for a reliable analysis of spinal mechanics.
In particular, a large variation of facet load has been
reported by several authors: for example, in [3] a facet
load ratio for segment L4-L5 of 0–5% was reported,
whilst [11] specifies 14–24% and [12] obtained 8–24%.

With regard to the geometrical accuracy of modeling
the facet joints, the existing literature on this topic can
be divided into three groups. To this end, we consider
the number n of plane surfaces, which describe the facet-
joint contact surface:

– Group 1 utilizes a single plane surface (n=1) (see for
example [13], [15] and [16]).

– In group 2, the facet-joint contact surface is described
as n=2 intersecting planes (see, e.g., [20]). Interest-
ingly, this higher level of accuracy was applied in
1982, but obviously considered to be able to be ne-
glected in the publications in group 1 which were
published later—between 1995 and 2003.

– In group 3, the curvature is considered by describing
the facet-joint contact surface geometry as a number
of planar contact surfaces where n>2 (see for example
[7], [17] and [22]).

In the present study, we take the analysis to the
next level by using curved contact surfaces. By ana-
lyzing in particular (1) the contact pressure in the joint,
and (2) the overall behavior of lumbar segments, the
study will reveal how important it is to model the ac-
tual curvature of the facet joints in order to obtain
meaningful results. When comparing with previous
studies, it should be taken into account that due to the
curved facet geometry used here, it is not reasonable to
specify angular orientations of the facets as for flat
facet approximations.

The consideration of the curvature of facet joints in a
simulation leads to more reliable (and different) results
than simulations would provide from planar surface
models of facet joints. Hence, the proposed method is of
particular importance for improved and more reliable
numerical simulations of the spine. Clinical applications
of the proposed method may lead to improved diag-
nostics, effective surgical planning and intervention.
Refined computer models of the complex contact

mechanism between the facet joints may be introduced
into training tools for surgical procedures performed on
a virtual patient, with virtual reality-based simulators.
Most importantly, however, the proposed method may
represent a more reliable basis for optimizing the bio-
medical engineering design for tissue engineering or, for
example, for spinal implants.

Material and methods

Geometrical modeling

The geometry of the human vertebrae, and, in particu-
lar, the curvature of the facet joints, is highly complex.
For our study we did not achieve the desired accuracy
with CT-image-based analyses. Hence, we used slices
from the Visible-Human-Data project [1]. The slices
were available in intervals of 1 mm. The accurate con-
sideration of the facet geometry in finite element simu-
lation requires a special technique for mesh generation
and surface description. Therefore, the geometry of L2
to L5 was traced with so-called subdivision surfaces [4].
They help to model smooth biological surfaces up to any
level of accuracy, similarly to NURBS, Bézier or Her-
mite splines. However, their advantage is that they can
deal with arbitrary mesh topologies, i.e. more or less
than four quadrilaterals can meet in one node. Such a
geometrical situation is encountered quite frequently,
and cannot be treated easily with NURBS, Bézier or
Hermite splines.

In contrast, previous studies represented the facet
joints as planar surfaces, which are described by their
angular alignment in space ([13], [15], [16]). However,
this approach has the major drawback of not being able
to accurately describe the facet surface (which is not
planar). This is now possible with the presented novel
approach using subdivision surfaces. We do not present
the detailed data set associated with the subdivision
surface description of the facet joints here; instead we
refer to the Visible Human Project [1], from which our
model geometry is originated. The gap size was 0.4 mm
for all motion segments.

Continuum mechanical modeling
and material properties

The two vertebral bodies are connected with the fol-
lowing ligaments: intertransverse ligament (ITL), sup-
raspinous ligament (SSL), interspinous ligament (ISL),
ligamentum flavum (LF), anterior longitudinal ligament
(ALL), posterior longitudinal ligament (PLL) and cap-
sular ligament (CL). They are modeled as a transversely
isotropic material (i.e., there is a single fiber family) with
an isotropic matrix material, assumed to be incom-
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pressible and defined to be by the strain-energy function
(i.e. in analogy with [9], see also [8])

WðC;AÞ ¼ wmð�CÞ þ wf ð�C;AÞ þ LðJÞ; ð1Þ

where

wm ¼
c
2
ð�I1 � 3Þ ð2Þ

represents the energy stored in the matrix material,

wf ¼
k1
2k2

exp k2 �I� � 1ð Þ2
h i

� 1
n o

ð3Þ

represents the contribution from the collagen fibers, and

LðJÞ ¼ j
2
ðJ � 1Þ2 ð4Þ

is a scalar-valued function—with the property
L(1)=0—which is motivated mathematically. It serves as
a penalty function enforcing the incompressibility con-
straint. Therein, C=F

T
F is the right Cauchy-Green ten-

sor, �C ¼ J�2=3C is its modified counterpart, F is the
deformation gradient and J=det F>0 the local volume
ratio. The invariants are defined as �I1 ¼ Trð�CÞ and
�I� ¼ �C : A. Therein,A ¼ a� a is a structural tensor, and a
the vector characterizing the direction of the fibers. In
view of the wavy collagen structure, it is reasonable to
consider that collagen is not able to support compressive
stress. We therefore assume that the fibers support stress
only under extension [9]. Consequently, the anisotropic
term Eq. 3 contributes only when the fibers are extended,
i.e. when �I� > 1:

This requirement is also consistent with the condition
of strong ellipticity [10]. The symbols c>0 and k1>0 are
material parameters with the dimension of stress, and k2
is a dimensionless material parameter. For this model to
predict physically reasonable response, these parameters
must be positive (see [10]). The parameters are to be
obtained by fitting the strain-energy function to the data
from [15] (see Table 1). Since the material properties
were only available for motion segment L3-L4 (adopted
from [15]), we used them throughout all modeled motion
segments. The value for j >0 (considered as a positive
penalty parameter) was chosen to be 250.0 MPa for all
ligaments. For additional information about the model,

see [8]. In order to model cortical and cancellous bone,
the material parameters were adopted from [5]. For
completeness, they are given in Table 2. Similarly, for
modeling the intervertebral discs, the material parame-
ters were adopted from [5], which are based on analyses
of the L2–L3 motion segment of a 22-year-old male
spine. Consequently, the annulus fibrosus (AF) is mod-
eled as a composite of a ground substance with
embedded collagen fibers. For the fibers we used the
following orientations: ±25� ventrally and ±50� dor-
sally (measured to the horizontal plane, see [5]). The
associated material parameters are given in Table 3.
These parameters were used uniformly for all motion
segments in this study. Since the nucleus pulposus has in
general a very high water content, it is modeled as an
incompressible fluid. For more information about the
intervertebral disc model which was used, the interested
reader is referred to [5] and references therein. The
articular cartilage was modeled as a 0.2 mm thick layer
[6] of neo-Hookean material [8], with parameters
adopted from [15]. Throughout all simulations per-
formed there was no bony contact.

To model the contact interaction between each mo-
tion segment, the superior body was chosen as the slave
surface, whilst the inferior body was treated as the
master surface. For the contact-penalty parameters eN
and eT, the value 1,000.0 was chosen, and the frictional
coefficient l was taken to be 0.06, i.e., an average value
under the assumption of 90% load support by intersti-
tial fluid, which was adopted from [21]. The contact
interaction between the motion segments (1) L2–L3, (2)

Table 1 Material parameters for the ligaments: the ligaments are
abbreviated in the following way; ITL, SSL, ISL, LF, ALL, PLL
and CL (see section above entitled ‘Continuum mechanical
modeling and material properties’)

ITL LF PLL SSL, ISL, ALL, CL

k1 (MPa) 13.1 6.0 6.0 1.5
k2 [1] 21.0 0.11 0.1 0.1
c(MPa) 1.3 1.0 1.0 1.0

The values were obtained by fitting model 2 and 3 to the curves
documented in [15]

Table 2 Material parameters for cortical and cancellous bone
(adopted from [5])

Materials Elastic modulus
(MPa)

Poisson
ratio

Cortical bone Exx=11,300 vxy=0.484
Eyy=11,300 vxz=0.203
Ezz=22,000 vyz=0.203
Gxy=3,800
Gxz=5,400
Gyz=5,400

Cancellous bone Exx=140 vxy=0.450
Eyy=140 vxz=0.315
Ezz=200 vyz=0.315
Gxy=48.3
Gxz=48.3
Gyz=48.3

Table 3 Material parameters for the AF of the intervertebral discs
(adopted from [5])

Ventral AF Dorsal AF

k1 (MPa) 2.0 190.0
k2 [1] 5.0 10.0
c(MPa) 0.5 0.5
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L3–L4 and (3) L4–L5 was simulated separately, because
respective results from other researchers to compare
with our simulations were not available uniformly for a
single motion segment.

Contact modeling

Due to the nature of the FEM, smooth surfaces are
represented by a mesh consisting of small piecewise
planar surfaces, which are the facets of the finite ele-
ments. If a facet-based mesh is used for the formulation
of the contact problem, then decreased numerical accu-
racy is expected. Furthermore, a number of numerical
difficulties may occur during the simulation of contact
interaction, which are due to the discontinuous surface
normal vector, when contact points pass from one ele-
ment to the other.

The numerical difficulties can be avoided with a
smoothing technique, as described for the geometrical
modeling in the related section on ‘‘Geometrical Mod-
eling’’. However, an arbitrary smoothing technique will
not recover the original smooth geometry of the facet
joint. To avoid the associated loss of accuracy of contact
modeling, an identical representation paradigm is em-
ployed. This means that the same mathematical surface
representation is used during the modeling stage and the
finite element simulation. Such a technique was pre-
sented recently in [19]. It is based on subdivision sur-
faces, which were also used for the geometrical modeling
of the vertebrae (see the section on ‘‘Geometrical
Modeling’’).

Loading

We simulated three different loading conditions:

1. Axial load: applied at the lower endplate of the
inferior vertebra, which was fixed during loading,
while the upper endplate of the superior vertebra was
exposed to a total force of 294 N for the segment L4-
L5 (value adopted from [7]), as shown in Fig. 1a.

2. Pure flexion or extension: applied as a pair of con-
centrated axial loads, which produce pure flexion or
extension (shown in Fig. 1b). The applied moment
ranges from 0 to 25 Nm.

3. Flexion with anterior shear or extension with pos-
terior shear: applied by a horizontal force acting in
the center of the superior vertebra (shown in Fig. 1c).
The applied force ranges from )600 to +600 N.

Analyses

We performed three analyses of the motion segments,
which are associated with the three load cases:

1. Contact stress distribution: with load case 1, we
performed a convergence study of our discretization
by means of successive mesh refinement. This also
helps to justify the reliability of the results obtained
for analyses 2 and 3. In addition, these results are
comparable to those presented in [7] (see the sections
‘‘Results’’ and ‘‘Discussion’’).

2. Rotation under a sagittal moment: with load case 2,
we recorded the sagittal rotation a (according to
Fig. 2a) due to the applied sagittal moment. We do
not analyze the sagittal displacements due to this load
case, because they were shown to be relatively small
when compared with displacements due to shear
forces in the paper [15].

3. Displacement under a sagittal shear force: with load
case 3, we recorded the sagittal displacement
according to Fig. 2b.

Analyses 2 and 3 can be compared directly with the re-
sults presented in [15], [18] and [20].

Results

Contact stress distribution

The motion segment L4-L5, represented by subdivision
surfaces, is shown in Fig. 3a. Here we used, in particu-
lar, the Catmull-Clark subdivision surface [4], which
offers C2—continuity in the regular mesh domain—and
C1—continuity at irregular nodes. The contact stress
distribution along the white dashed path starting from
the inferior position ‘A’ (see Fig. 3a) is plotted in
Fig. 3b. Therein, we compare the results for piecewise
planar contact elements and for subdivision surfaces,
both for different mesh densities.

Shear
force

Sagittal
moment

a b c
Axial
force

Fig. 1 Application of loads for
the cases 1–3: axial load
(a), pure flexion or extension
(b), flexion with anterior shear
or extension with posterior
shear (c)
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Sagittal moment and rotation

During pure flexion, the facets provide resistance only
by their capsular ligaments, i.e., when considering the
motion segment L3–L4, the inferior facets of L3 can
move upward freely without coming into (compressive)
contact with the superior facets of L4. The results are
shown in Fig. 4 on the right half of the diagram.

In extension, the facets come into (compressive)
contact. This is reflected by the more pronounced stiff-
ening behavior when compared with pure flexion. The

results are shown in Fig. 4 on the left half of the dia-
gram.

Sagittal shear force and displacement

The value of sagittal displacement due to shear force is
almost two times as large for extension than for flexion.
Both curves show a marked stiffening effect. The results
for sagittal displacement as a function of the applied
shear force are provided in Fig. 5.

Discussion

Contact stress distribution

From the results shown in Fig. 3 it is clear that by rep-
resenting the contact surface of the facet joints with only
seven elements and C2 -continuous subdivision surfaces,
the distribution of the contact stress is much smoother
than for C0-continuous piecewise planar surfaces. To
assess the quality of the solutions, we considered a

α

sa b

Fig. 2 Measurements of rotation angle a (a) and sagittal displace-
ment s (b)

Fig. 3 Contact interaction be-
tween lumbar vertebral bodies
L4 and L5 for load case 1, i.e.,
axial load (compare with
Fig. 1a): a representation of
both bodies by means of sub-
division surfaces, and b contact
stress distribution along the
white dashed path starting from
A(indicated in a) for different
mesh densitites and contact
surface continuities. The liga-
ments and the intervertebral
disc are not shown in a
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vconvergence study which utilizes a uniform mesh
refinement, using twice as many elements (i.e., 14 ele-
ments along the white dashed path in Fig. 3a instead of

seven). It shows that the solution with only seven sub-
division surface elements is already a very good
approximation. The model using piecewise planar ele-
ments also seems to converge to the smooth solution, but
it shows strong discontinuities even for the refined mesh.

The present simulation of contact stress (see Fig. 3)
can only be qualitatively compared with the results
documented in [7], because therein only an average von
Mises stress distribution is plotted from the inferior to
the superior end of the facet joint. However, a similar
wavyness of the stress distribution can be observed for
the results presented in [7] and our results, when using a
C0 -continuous piecewise planar surface. Based on these
observations and the results from our convergence
study, one can conclude that the present strategy leads
to more accurate results in analyzing the contact stress
distribution. Furthermore, piecewise planar contact
surfaces may only yield reliable results at very high mesh
densities, which is an inefficient approach.

Sagittal moment and rotation

Flexion

Very similar behavior to our simulation of flexion due to
a sagittal moment (see Fig. 4, right half) was already
observed in [15] (for facets without considering the
curvature). The consideration of the curvature of facets
does not change this behavior, because the curvature is
mainly present in the axial plane, but is very small in the
coronar plane.

Extension

The more pronounced stiffening in extension than in
flexion (see Fig. 4) was observed also in [15], [18] and
[20]. It may be attributed to a combined effect of the
facet joints coming into compressive contact and the
nonlinear stiffness of ALL.

Validation

A complete validation of the finite element model would
require in vivo or in vitro measurements. Unfortunately,
these measurements were not available. However, it can
be compared to the experimental (see [20]) and numerical
results (see [15] and [18]) of other researchers. It should
be noted that [15] analyzed the motion segment L3–L4,
while [18] and [20] analyzed the segment L2–L3. Our
results between motion segments L2-L3 and L3-L4 differ
less than 0.5%, so they are represented just by one line in
Fig. 4. They show very good agreement with the results
presented in the other studies. Only in the region between
)1.6� and 2.5� are our results not within the range of
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Fig. 4 Rotation due to an applied moment in the sagittal plane for
an intact L3–L4 motion segment. Comparison of our results (which
consider the curvature) with those obtained by (1) other numerical
models using a flat geometry for the facet joints (i.e., ignoring the
curvature) (see [15] and [24]), and (2) experimental methods (see
[20])
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those obtained by the other researchers. There are two
possible reasons for this: either it is due to missing data
points in this region from the other studies, or the effect
can be attributed to the small curvature of the facets in
the coronar plane, which was not considered in [15].

Sagittal shear force and displacement

Flexion

It was demonstrated in [15] (using flat facet joints) that
anterior shear forces are resisted mainly by the facets
(with only a small contribution from the vertebral liga-
ments and the intervertebral disc). Due to the flat surface
of the facets, which were used to obtain the numerical
results in [15], this load-displacement curve is almost
linear (dotted line in Fig. 5). The consideration of the
curvature of facets changes this behavior to a more
progressive characteristic (thick line in Fig. 5).

Extension

When using flat facet surfaces, a posterior shear force
moves the articular surfaces away from each other. In
additon, the accompanying extension rotation moves the
surfaces together. However, the latter effect is much
smaller than the first one [15]. In consequence, the
resulting behavior is dominated by the ligaments. The
situation changes when curved facet surfaces are consid-
ered, because then the posterior shear force can bring the
facets into (compressive) contact. This is reflected by the
more pronounced stiffening, as shown in Fig. 5. Hence,
within the physiological domain, which accounts for a
sagittal shear force in the range between )400 N and
+400 N [14], the largest deviation of the solution using
plane facets from the one using curved facets is 36%.

Limitations

The current study is limited by the fact that only loads in
the sagittal plane were applied. Hence, the role of the
facet curvature for other loads remains to be analyzed.
Furthermore, the present study considers only a single

facet geometry. Therefore, in order to generalize our
findings, one has to consider the distribution of facet
curvature among a larger number of patients.

Conclusions

The vertebral bodies L2–L5 were modeled using subdi-
vision surfaces. By doing this, we focused attention on
modeling the curvature of the facet joints, because that
was approximated to a varying degree in previous
studies. For the contact interaction, an identical repre-
sentation paradigm was used, which helped to improve
the accuracy of the contact simulation. The finite ele-
ment model was used to perform an analysis of (1) the
contact stress within the facet joint, and (2) the behavior
of a whole motion segment. The results of approach (1)
were compared with those documented in [7], where the
facet joint was approximated with a number of planar
contact elements. A convergence study revealed that our
approach can significantly improve the quality of the
numerical results.

The results of case (2) were compared with those
obtained for plane facet joint approximations, published
in [15], [18] and [20]. They show that a plane facet joint
model is a very good approximation for loading situa-
tions leading to pure flexion and pure extension. How-
ever, for shear forces (leading to horizontal movements
in the sagittal plane), the contribution of the facet cur-
vature has a strong influence on the results. We obtained
a deviation of 36% within the physiological domain.

The present method may also be useful in studying
the desired level of graded facetectomy in order to re-
lieve compressed nerves due to spinal stenosis. In addi-
tion, the method might be helpful in the development of
spinal implants.
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