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Abstract
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal
Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle
input meshes containing “bad” triangles on boundaries. In the current work, we present an
integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth
(improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by
analytically minimizing the  error between a paraboloid function and its piecewise linear
interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-
preserving property, the proposed algorithm can be readily adapted to preserve sharp features in
the original mesh. A number of experiments are included to demonstrate the performance of our
method.
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1. Introduction
In scientific and engineering applications, partial differential equations (PDEs) are often
used for modeling the development and evolution of the underlying phenomena. In most
cases, however, it is difficult and sometimes impossible to find the exact analytic solutions
of the PDEs so that numerical approaches have to be employed to approximate the desired
solutions. The finite element analysis (FEA) is one of the most useful tools for this purpose.
In the FEA, the domain over which the PDEs are defined is partitioned into a mesh
containing a large number of simple elements, such as triangles and quadrilaterals in 2D
cases and tetrahedra and hexahedra in 3D cases (Djidjev, 2000; Phillippe and Baker, 2001;
Ohtake et al., 2001; Knupp, 2002, 2003; Brewer et al., 2003). The quality of the mesh,
typically measured by the minimum and maximum angles, can significantly affect the
interpolation accuracy and solution stability of the FEA (Babuska and Aziz, 1976;
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Shewchuk, 2002). Therefore, improving the mesh quality has been an active research area in
computational mathematics and computer science. Due to the great popularity in the FEA,
3D tetrahedral meshes will be the focus of our present work.

The methods of mesh quality improvement can be classified into three categories as follows.
(1) topology optimization, which modifies the connectivity between mesh vertices while
keeping vertex positions unchanged. The edge- or face-swapping methods are commonly
used in topology optimization (Freitag and Ollivier-Gooch, 1997; Klingner and Shewchuk,
2008). (2) vertex insertion/deletion, which inserts/deletes vertices to/from the mesh (Chew,
1997; Nave et al., 2004; Escobar et al., 2005; Klingner and Shewchuk, 2008). (3) vertex
smoothing, which repositions the coordinates of the vertices while keeping the connectivity
unchanged (Bank and Smith, 1997; Freitag, 1997; Canann et al., 1998). Generally speaking,
mesh quality improvement is best achieved when all the three methods are properly
combined in the mesh smoothing scheme (Klingner and Shewchuk, 2008). In our method
described below, we shall focus on the vertex repositioning strategy, i.e. vertex smoothing.

One of the most popular vertex smoothing method is Laplacian smoothing, which moves a
mesh vertex to the weighted average of its incident vertices (Herrmann, 1976; Field, 1988;
Hansbo, 1995). If the neighborhood of the vertex is not a convex polyhedron, the Laplacian
smoothing may not lead to a well-positioned mesh. Some angle-based methods were
proposed for smoothing 2D triangular and 3D surface meshes (Zhou and Shimada, 2000; Xu
and Newman, 2006; Yu et al., 2008). However, these methods are difficult to extend to 3D
tetrahedral meshes. Du and Wang (2003) presented a method based on the Centroid Voronoi
Tessellation (CVT) concept that is restricted to inner vertices of a mesh. A peeling off
operation has to be taken to improve bad tetrahedra on boundaries. Freitag and Plassmann
(2001) proposed a method of smoothing planar quadrilateral meshes. Some researchers
presented methods for smoothing hexahedral mesh (Li et al., 1999; Knupp, 2001, 2000b;
Delanaye et al., 2003; Menédez-Díaz et al., 2005). More recently, some new techniques of
vertex smoothing were proposed. Vartziotis et al. (2008, 2009) presented methods of
stretching the vertices of a tetrahedron at one time. The methods were extended by
Vartziotis and Wipper (2010) to hexahedral mesh. Xu et al. (2009) assigned a quality
coordinate for every vertex and calculated the new position by maximizing the combined
quality of tetrahedra incident to it. Sirois et al. (2010) used a metric non-conformity driven
method to smooth hybrid meshes such as a mesh with hexahedral and tetrahedral elements.

In addition to the above methods, approaches using numerical optimization to compute the
new position of a vertex has been an important branch of the vertex smoothing category.
The new position of a vertex is computed by optimizing a function that measures the local or
global quality of the mesh (Parthasarathy and Kodiyalam, 1991; Canann et al., 1993; Chen
et al., 1995; Zavattieri et al., 1996; Freitag Diachin and Knupp, 1999; Knupp, 2000a; Freitag
and Plassmann, 2000; Freitag and Knupp, 2002; Escobar et al., 2003; Mezentsev, 2004). In
particular, the optimal Delaunay triangulation (ODT) approach (Chen and Xu, 2004) tries to
minimize the  error between a paraboloid function and its piecewise linear interpolation
over the neighborhood of a vertex. This idea has been extended to 3D tetrahedral mesh
smoothing in Tournois et al. (2009). Despite its great success in mesh quality improvement,
the original ODT method was derived to optimize the positions of inner vertices only. In
other words, the tetrahedral mesh to be smoothed must possess quality triangles on
boundaries. In many real mesh models, however, “bad” tetrahedra often occur near or on the
boundaries of a domain (Labelle and Shewchuk, 2007; Zhang et al., 2010). Therefore, how
to handle the boundary vertex smoothing is an important yet unsolved problem in the
original ODT method.
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In the present work, we shall provide an analytical method named boundary-optimized
Delaunay triangulation (B-ODT) to find the optimal positions of all mesh vertices, including
those on boundaries, by minimizing an  error function that is defined in the incident
neighborhood of each vertex. The minimization is an unconstrained quadratic optimization
problem and has an exact analytic solution when the coefficient matrix of the problem is
positive definite. As mentioned above, the quality improvement is often limited if we only
perform one method of the three categories (Klingner and Shewchuk, 2008). For this reason,
the vertex insertion operation is utilized prior to the vertex repositioning technique.

The remainder of the present paper is organized as follows. Section 2 is focused on the
details of the B-ODT mesh smoothing algorithms. The original ODT as well as the vertex
insertion schemes are also discussed in this section. We present some experimental results
and quality analysis in Section 3, followed by our conclusions in Section 4.

2. Boundary-Optimized Delaunay Triangulation
The framework of our mesh quality improvement method is shown in Fig. 1. The vertex
insertion operation is performed prior to the vertex repositioning. We try to insert as few
vertices as possible in order to maintain the size of the original mesh. The detail of vertex
insertion is described in Subsection 2.3. As for vertex smoothing, three algorithms are
summarized below and the details will follow.

Algorithm 1. The original ODT algorithm for smoothing inner vertices

Algorithm 2. The basic B-ODT algorithm for smoothing boundary vertices. This
algorithm is guaranteed to preserve the volume of the mesh.

Algorithm 3. The advanced B-ODT algorithm for smoothing boundary vertices. This
algorithm preserves both the volume and sharp features of the mesh.

Since the advanced B-ODT algorithm can preserve both the volume and sharp features of
the original mesh, in the rest of this paper, we will refer to B-ODT algorithm as the
advanced B-ODT algorithm, unless otherwise specified.

2.1. Original ODT algorithm
For an inner vertex x0 in a tetrahedral mesh , suppose the neighborhood of x0 is Ω0
consisting of a set of tetrahedra {τ}. Let x* be the smoothing result of x0 and Ω* the
neighborhood of x* (or the union of tetrahedra incident to x*) in , then x* can be computed
by the following original ODT formula (Chen and Xu, 2004):

(1)

where xτ,i are the (three) vertices except x0 of the incident tetrahedron τ. Theoretically, (1)
is the unique solution of an optimization problem in which the objective function is the 
interpolation error between the paraboloid function f(x) = ||x − x0||2 and its linear
approximation fI (x) over Ω*. fI (x) is constructed by lifting the the vertices of Ω* onto f(x).
The  error between f(x) and fI (x) is:

(2)

We would point out that for an inner vertex x0, the neighborhoods Ω0 and Ω* are identical
but it is not true when x0 is a boundary vertex, which explains why the original ODT
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approach cannot be directly used to optimize boundary vertices. Another important property
of (2) is that, if all vertices are fixed, the solution of (2) is proved to be the Delaunay
triangulation of these vertices (Chen and Xu, 2004). However, Delaunay triangulation does
not guarantee high quality – the positions of the vertices are sometimes more important. In
(2) we restrict the optimization problem to the neighborhood of x* with the assumption that
all other vertices are fixed. The optimization problem hence becomes finding the optimal
position of x* to minimize the error in (2).

A more direct way to compute the optimal position of x* is (Chen, 2004):

(3)

Here Sτ and nτ are the area and unit normal vector of tτ, which is the opposite triangle of x0
in τ, nτ points to the inside of τ.

The following is the algorithm of smoothing inner vertices based on the original ODT
method:

2.2. B-ODT algorithms
Let x* be the smoothing result of a boundary vertex x0 using the method described below.
Ω0 and Ω* are the neighborhoods of x0 and x* respectively (since x0 is a boundary vertex,
the two neighborhoods are not identical any more). The basic idea of our B-ODT algorithms
is to minimize the error in (2). According to (Chen and Xu, 2004), (2) can be rewritten in the
following form:

(4)

where xk denotes one of the vertices of Ω*, ωk is xk’s neighborhood restricted in Ω*, and |ωk|
is its volume.

Note that x* is also a vertex in Ω*, we rewrite (4) into the following equation:

(5)

Since x0 is a boundary vertex, we let x* move on the tangent plane of the boundary surface
at x0. Specifically, let x* − x0 = us + vt, where s and t are two orthogonal vectors on the
tangent plane and u and v are the corresponding shifting distances. Furthermore, we prove in
Appendix B that the tangent plane constraint guarantees that the volumes of Ω* and Ω0 are
equal.

By using the constraint x* = x0 + us + vt, we have:

(6)
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(7)

where Sτ and nτ are defined the same as in (3). cτ is any vertex in the triangle tτ. Here we
take cτ as the barycenter of tτ. < ·, ·> is the inner product operation.

Now we represent the integral ∫Ω*||x − x0||2dx in (5) by x* in order to compute the gradient
of the objective function. The details are given in Appendix A. Suppose  are the
neighboring vertices of x0 on the boundary of the tetrahedral mesh . The order of yi is

determined in the following way: for any i = 1, · · ·, m, the cross product between  and

 points to the outside of Ω0 (let ym+1 = y1). Thus the integral ∫Ω*||x − x0||2dx has the
following form:

(8)

Here X* = x* − x0, Yi = yi − x0, det(·) is the determinant operation. Note that x* is limited on
the tangent plane at x0, (8) can be rewritten as:

(9)

(9) appears as a cubic function of u, v. However, we prove in Appendix C that the
coefficients of all cubic terms are actually zero. Therefore, (9) reduces to a quadratic
function of u, v.

Now we can safely say that the objective function in (5) is in fact a quadratic function of u,
v. By setting the gradient of (5) as zero, we get a linear system and the solution of this
system gives rise to the minimization of (5). In Appendix C, we prove that the coefficient
matrix of this linear system is identical to the Hessian matrix of (5). According to the
optimization theory, (5) has a unique solution as long as the Hessian matrix is positive
definite.

The algorithm of smoothing boundary vertices based on the above discussion is given
below.

Besides keeping x* on the tangent plane at x0, we further restrict x* moving along the
features of the mesh to preserve the sharp features. Here, we refer to the feature direction at
x0 as the line that passes through x0 and has the minimal curvature value among all the
directions. This line is on the tangent plane; thus the volume is still preserved when x*
moves along this feature line. The direction of the feature line is found by computing the
eigenvalues of the following tensor voting matrix at x0:

(11)
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Here Si is the area of surface triangle x0yiyi+1 and ni = (nix, niy, niz)T is the unit normal
vector of x0yiyi+1. The matrix M is a positive definite matrix and has three orthogonal
eigenvectors. The feature line is determined in the following way. Suppose that the three
eigenvalues of M are μ0, μ1, μ2 with μ0 ≥ μ1 ≥ μ2 and e0, e1, e2 are the corresponding
eigenvectors. If μ0 ≫ μ1 ≈ μ2 ≈ 0, then the neighborhood of x0 corresponds to a planar
feature. In this case, the above Algorithm 2 is used to smooth x0. If μ0 ≈ μ1 ≫ μ2 ≈ 0, then
x0 lies on an edge (linear) feature and the direction of the edge is e2. In this case, the
following Algorithm 3 is used to smooth x0. If μ0 ≈ μ1 ≈ μ2 ≫ 0, then x0 is at a corner
which should not be changed during the vertex smoothing process.

2.3. Removing bad tetrahedra by vertex insertion
There are several types of tetrahedra that can cause very large and/or small dihedral angles
(Cheng et al., 1999) (see Fig. 2). One of the most important properties of ODT and B-ODT
is the circumsphere property (Tournois et al., 2009), i.e., the lengths of edges incident to
vertex x0 tend to be equal after ODT or B-ODT smoothing. Therefore, the ODT and B-ODT
algorithms can automatically improve the quality of spire, spear, spindle, spike, splinter and
wedge, as the bad angles in these tetrahedra are caused by one or more short edges. For the
spade, cap and sliver types of tetrahedra, we shall insert one or two vertices in order to make
some short edges, which are then improved by the ODT or B-ODT algorithms, thereby
improving the quality of the entire mesh. The details are given below.

For a spade in Fig. 3(a), we first compute the projection of A onto the edge BC, i.e. E. Thus
the edge BC is split into two new edges BE, CE and the tetrahedron ABCD is split into two
new tetrahedra ABDE, ACDE (Fig. 3(b)). Because AE is a short edge, we smooth A using
the ODT or B-ODT method according to the type of A (Fig. 3(c)).

For a cap in Fig. 4(a), we first compute the projection of A on face BCD, i.e. E. Then we
split the face BCD into three new faces BCE, CDE and DBE, and split the original
tetrahedron ABCD into three new tetrahedra ABCE, ACDE and ADBE (Fig. 4(b)). Finally,
the ODT and B-ODT methods are applied to the new tetrahedra to improve the quality of the
mesh (Fig. 4(c)).

For a sliver in Fig. 5(a), we insert two vertices E and F on the edge AC and BD
respectively. The two new vertices are selected such that the distance between E and F is the
minimum between AC and BD. Then AC and BD are both split into two edges, and the
tetrahedron ABCD is split into four new tetrahedra (Fig. 5(b)). By performing the ODT or
B-ODT methods on E and F, the quality of the new tetrahedra can be improved (Fig. 5(c)).

3. Results
The proposed B-ODT algorithms were tested on several tetrahedral meshes generated from
triangular surface meshes that serve as the boundaries of the domains. For every mesh, the
smoothing process shown in Fig. 1 is repeated for 20 times. The mesh smoothing results are
summarized in Table 1. The comparisons between the B-ODT algorithm (Algorithm 3) and
several other approaches, including the original ODT algorithm, topology optimization and
the Natural ODT algorithm (Tournois et al., 2009), are also provided in Tab. 1. In Fig. 6–12,
the original and smoothed meshes are compared and from the histograms we can see
significant improvement of dihedral angles in these meshes.

The main motivation of extending the original ODT method to the B-ODT algorithms is to
find the optimal positions for boundary vertices such that the quality of the entire tetrahedral
mesh is improved. To illustrate the quality improvement, we compare the smoothing results
by using the B-ODT and ODT algorithms. In Table 1, all the minimum and maximum
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dihedral angles by using the B-ODT algorithm are better than those by the original ODT
algorithm, especially on the Retinal model. Note that the minimum dihedral angle in Retinal
model is very small and likely occurs on the boundary of the model. Therefore, the proposed
B-ODT algorithm can perform much better than the original ODT method.

Although the topology optimization is utilized in many mesh smoothing algorithms, this
technique alone may not always improve the quality of a mesh. To show this, we smooth all
the meshes in Tab. 1 using only the topology optimization and compare the results with
those obtained by using our B-ODT algorithm. From Tab. 1, we can see that the ability of
improving mesh quality by using topology optimization alone is limited, compared to the B-
ODT algorithm.

The tetrahedral mesh in Fig. 6 is generated by tetrahedralizing randomly-sampled point set
on a unit sphere (Si et al., 2010). There are 642 points on the sphere and 87 inner vertices
are inserted by the tetrahedralization algorithm. The minimum and maximum dihedral
angles of this Random Sphere model are 5.86° and 164.70° respectively. After 20 times of
running the B-ODT algorithm, the minimum and maximum dihedral angles are improved to
15.20° and 150.25° respectively. Note that the distribution of the boundary vertices of the
smoothed mesh is much more uniform than that of the original mesh, demonstrating that the
B-ODT algorithm can smooth both inner and boundary vertices in a tetrahedral mesh.

The B-ODT algorithm is also tested on tetrahedral meshes generated from several
biomedical molecules: 2CMP molecule in Fig. 7, Retinal molecule in Fig 8 and Ryanodine
receptor (RyR) in Fig. 9. The quality of 2CMP and RyR meshes reaches the best after only 3
B-ODT iterations although all the models in Tab. 1 are processed 20 times. We can also see
from Tab. 1 that there are no new vertices introduced in 2CMP and RyR models and only 27
new vertices are inserted in the Retinal mesh. In Fig. 10, we demonstrate the convergence of
minimum and maximum dihedral angles with respect to the number of iterations on the
Retinal model using the B-ODT algorithm.

The 2Torus (Fig. 11) and FanDisk (Fig. 12) models show the feature-preserving property of
the B-ODT algorithm. In order to measure the difference between the original and smoothed
meshes, we compute the relative Hausdorff distances between the surface meshes of the
original and smoothed models, as shown in Tab. 2. Here, the Hausdorff distance is first
computed using the standard definition and then scaled as follows. Let h be the absolute
Hausdorff distance between the original and smoothed meshes, and L be the largest side
length of the bounding box of the original mesh. The relative Hausdorff distances is defined
by , which measures the difference of the original and smoothed models relative to the size
of the original model. From Tab. 2 we can see that the relative Hausdorff distances between
the original and smoothed models are very small showing that our B-ODT algorithm
preserves the shape of the original models quite well.

The original ODT has also been extended by Tournois et al. (2009) to 3D tetrahedral mesh
smoothing and the method is called Natural ODT (NODT). The NODT method computes
the new position of a boundary vertex x0 in a tetrahedral mesh  by adding a certain amount
of compensation to the weighted centroid of the neighborhood of x0. The compensation is a
weighted sum of the normal vectors of the boundary triangles around x0. Although boundary
vertices are considered in the NODT method, the new positions calculated have to be
projected onto the boundary of  to preserve the volume and shape of the original mesh.
Therefore, the NODT method does not optimize the positions for boundary vertices. The
smoothing results by using the afore-mentioned NODT method are shown in Table 1, where
we can see that our B-ODT algorithm significantly outperforms the NODT method.
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Sometimes the results obtained by the NODT method are even worse than the original
meshes. The running time of B-ODT and NODT is compared in Tab. 3.

4. Conclusions
We described a method of simultaneously smoothing both inner and boundary vertices of a
tetrahedral mesh under a unified optimization framework. The B-ODT algorithm presented
can preserve sharp features very well and is guaranteed to preserve the volume of the
original mesh. For every boundary vertex, the optimal position is computed by solving a
linear system. The algorithm is numerically robust and easy to implement because the order
of the linear equation system is only degree 2. Although the vertex insertion operation is
integrated into the B-ODT approach to further improve the quality of the mesh, the number
of new vertices added is very small compared to the size of the original mesh. The
experimental results have shown the effectiveness of the proposed method.
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Appendix A. Integral over Ω*
An important observation is that Ω0 and Ω* contain almost the same set of vertices except
that x0 ∈ Ω0 and x* ∈ Ω*. There is an exact relationship between Ω0 and Ω*:

(A.1)

where τi is a tetrahedron with vertices x0, x*, yi, yi+1 and the definitions of {yi, i = 1, · · ·, m}
are given in Section 2.2. ni is the normal vector of triangle Δx0yiyi+1 pointing outside of Ω0.
(·)z is the z coordinate of a vector. We call τi a boundary tetrahedron. Thus, the integral
∫x∈Ω*||x − x0||2dx can be rewritten as:

(A.2)

Without loss of generality, we only consider computing the integral of ||x − x0||2 over the
first boundary tetrahedron, τ1. For any point x in τ1, we represent x with respect to the four
vertices of τ1 using the barycentric transformation:

(A.3)

with λi ≥ 0 and λ0 + λ1 + λ2 ≤ 1. Then we have:
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(A.

4)

The integrated function is a quadratic polynomial on λi and thus can be exactly computed.

Let X* = x* − x0, Y1 = y1 − x0, Y2 = y2 − x0 and the integral becomes:

(A.5)

Note that the det(X*, Y1, Y2) has the same sign as ((x* − x0) × n1)z, yielding the final
formula as follows:

(A.

6)

Appendix B. Volume preservation by tangent plane constraint
We shall prove that the constraint of limiting x* on the tangent plane can guarantee the
volume preservation of the neighborhood of x0, i.e. |Ω*| ≡ |Ω0|. We take the following
commonly-used formulae to compute the normal of the tangent plane at x0:

(B.1)

where n is the normal vector of the tangent plane at x0, Si and ni are the area and unit normal
vector of the boundary triangle Δx0yiyi+1, respectively. Again, refer to Section 2.2 for the
definitions of {yi, i = 1, · · ·, m}.

Given x*, the volume of Ω* can be computed by adding all the volume of tetrahedra in Ω*.
For any tetrahedron τ in Ω*, , x* − xτ >, where Sτ and nτ are the area and
unit normal vector of the triangle ττ opposite to x* in τ and xτ is the barycenter of tτ. Thus,
we have the following formula for the volume of Ω*:

(B.2)

where  is a constant independent of x*. According to (B.2), if |Ω*| is constant (independent
of x*), then we must have

(B.3)
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That means x* must be on a plane that passes through x0 with  being the normal
vector. Therefore, we only need to prove that the normal vector of this plane is identical to
that of the tangent plane at x0 given in (B.1). Note that Sτ and nτ are independent of x*, we
only need to prove the follow equation (the coefficient  is omitted):

(B.4)

For any tetrahedron τ, suppose si and mi are the areas and unit normal vectors of the four
triangles of τ, we have

(B.5)

Putting together all the tetrahedra in Ω0, we have

(B.6)

Note that the triangles shared by two adjacent tetrahedra in Ω0 are cancelled in (B.6) because
of the same area but opposite normal vectors in the two tetrahedra. The remaining triangles
in (B.6) exactly give rise to (B.4).

Appendix C. Simplification of the optimization problem
We have the following coefficients for the cubic items in (9):

Note that Yi = yi − x0 and Yi × Yi+1 = 2Sini, hence  is orthogonal to the tangent

plane at x0. Therefore, the inner products of  and s, t are zeros, which means that
u3, v3, u2v and uv2 are all zeros.

We rewrite the objective function in (5) as:

where the coefficients E, F, G, H, I have the forms as given in Algorithm 2. The gradient of

Error* is (2Eu + Gv + H, 2Fv + Gu + I) and the Hessian matrix of Error* is .
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Thus we can see that the optimization problem has a unique solution as long as 4EF > G2. In
all the examples we have experimented so far, this condition is always satisfied. But a more
theoretical analysis of whether or not this condition is guaranteed is part of our future work.
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Figure 1.
The framework of our mesh quality improvement method
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Figure 2.
Types of bad tetrahedron with too large and/or too small dihedral angles (Cheng et al., 1999)
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Figure 3.
Vertex insertion and smoothing for a spade
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Figure 4.
Vertex insertion and smoothing for a cap
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Figure 5.
Vertex insertion and smoothing for a sliver
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Figure 6.
The original mesh model (a) and the smoothed result (b). In both meshes, the outer and
cross-section views are shown. The minimum dihedral angles of these two meshes are 5.86°
and 15.20° respectively, and the maximum dihedral angles are 164.70° and 150.25°
respectively.
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Figure 7.
Original and smoothed 2CMP models. The minimum dihedral angles of these two meshes
are 5.57° and 18.10° respectively, and the maximum dihedral angles are 163.24° and
152.66° respectively.
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Figure 8.
Original and smoothed Retinal models. The minimum dihedral angles of these two meshes
are 1.25° and 15.10° respectively, and the maximum dihedral angles are 173.85° and
164.58° respectively.
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Figure 9.
Original and smoothed RyR models. The minimum dihedral angles of these two meshes are
6.19° and 18.52° respectively, and the maximum dihedral angles are 170.74° and 149.25°
respectively.
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Figure 10.
The convergence of minimum and maximum dihedral angles with respect to the number of
iterations on the Retinal model using the B-ODT algorithm. Note that on the left the curves
of ODT and topology optimization are almost identical.
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Figure 11.
Original and smoothed 2Torus models. The minimum dihedral angles of these two meshes
are 5.96° and 16.92° respectively, and the maximum dihedral angles are 164.92° and
152.05° respectively.
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Figure 12.
Original and smoothed FanDisk models. The minimum dihedral angles of these two meshes
are 6.04° and 16.80° respectively, and the maximum dihedral angles are 164.98° and
160.53° respectively.
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Table 1

Comparisons of Dihedral Angles using Different Methods

Model Vertex Number min Angle max Angle

Random Sphere

Original Mesh 729 5.86° 164.70°

B-ODT 731 15.20° 150.25°

ODT 729 6.28° 162.46°

Topology Optimization 729 5.86° 164.70°

NODT 729 6.21° 173.64°

2Cmp

Original Mesh 10415 5.57° 163.24°

B-ODT 10415 18.10° 152.66°

ODT 10415 11.64° 158.06°

Topology Optimization 10415 5.57° 163.24°

NODT 10415 10.70° 157.19°

Retinal

Original Mesh 14921 1.25° 173.85°

B-ODT 14948 15.10° 164.58°

ODT 14921 1.29° 168.13°

Topology Optimization 14921 1.25° 172.09°

NODT 14921 0.00° 179.99°

RyR

Original Mesh 18585 6.19° 170.74°

B-ODT 18585 18.52° 149.25°

ODT 18585 10.34° 158.32°

Topology Optimization 18585 6.19° 170.74°

NODT 18585 7.78° 162.74°

2Torus

Original Mesh 4635 5.96° 164.92°

B-ODT 4656 16.92° 152.05°

ODT 4635 9.46° 157.53°

Topology Optimization 4635 6.85° 164.75°

NODT 4635 0.01° 179.98°

FanDisk

Original Mesh 9131 6.04° 164.98°

B-ODT 9162 16.80° 160.53°

ODT 9131 9.59° 163.53°

Topology Optimization 9131 6.78° 164.98°

NODT 9131 0.08° 179.86°
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Algorithm 1

Original ODT for Smoothing Inner Vertices

for every inner vertex x0 do

1 For every adjacent tetrahedron τ do

Compute Sτ, nτ and ||xτ,i − x0||2

2

Sum up all the values of 

3 Compute the volume of Ω0, i.e. |Ω0|

4 Compute x* using (3)
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Algorithm 2

Basic B-ODT Smoothing for Boundary Vertices with Volume Perserving

for every boundary vertex x0 do

1 Compute the the normal vector of the tangent plane at x0, then select two orthogonal unit vectors s, t on the tangent plane.

2 Compute the following coefficients:

i.

ii.

iii.

iv.

v.

where , (· × ·) is the cross product operation.

3 Solve the following degree-2 linear equation system:

2E G

G 2F

u

v
=

-H

-I
(10)

4 The solution of (10) gives rise to the optimal solution of x* as x* = x0 + us + vt.
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Algorithm 3

Advanced B-ODT Smoothing for Boundary Vertices with Feature Preserving

for every boundary vertex x0 do

1 Compute the feature line of x0, suppose the unit vector of this line is d.

2 Compute the following coefficients:

i.

ii.

3
Compute x* as x* = x0 + f d with .
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