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Introduction
The analytical methods in proteomics can be roughly
divided onto statistical and “functional” approaches.
Some statistical methods are applied for identification
and quantization of proteins in complex individual pep-
tide profiles. Another set of tools (machine learning and
classification algorithms [1]) helps to evaluate perfor-
mance of selected proteins as descriptors in multi-sample
studies, for instance as prognostic biomarkers in disease
or drug response diagnostics. Technically, neither of
these applications requires any knowledge of the protein
relevance to disease pathology. Statistical analysis alone
could be sufficient for most clinical applications of pro-
teomics-derived biomarkers - provided their high enough
performance on large populations (accuracy, sensitivity
and specificity).
However, human (and mammalian in general) biology

is too complex to be handled by statistical approaches
alone. For one (just it is the case with other OMICs tech-
nologies like global gene expression or SNP genotyping),
proteomics profiles in different samples are highly het-
erogeneous for the same clinical phenotype (e.g., disease
survival rate or drug response). The best performing clin-
ical protein biomarker, PSA, is elevated in less than 50%
of prostate cancer patients, and variability of individual
proteins in multi-variant proteomics profiles is usually
substantially higher. Secondly, protein profiles derived
either from bodily fluids or solid tissues biopsies are not
sufficiently selective for most phenotypic endpoints and
its statistical association with different diseases and drug
responses can be misleading. For example, almost any of
>5,000 human diseases is associated with inflammation.
However, statistically processed proteomics profiles
usually do not allow to distinguish between them. In
order to deconvolute these complexities, one needs tools
and databases for functional, or “pathway”, analysis.
Functional analysis utilizes accumulated knowledge
about relationships between proteins in a living cell to

interpret the experimental data instead of relying on data
only.
There are two important technical aspects for biologi-

cal interpretation of proteomics data. First, proteomics is
“high-throughput”, or OMICs, technology, meaning that
the outcome of proteomics experiments is a list of pro-
teins differentially modified or abundant in a certain phe-
notype. The mere size of proteomics datasets requires
specialized analytical tools, which deal with large lists of
objects, rather than individual proteins, one at a time.
Second, proteomics profiles are usually “global” in terms
of sample source, i.e. they represent snapshots of a whole
blood profile or tissue biopsies, which defines a very
complex temporal, cell type- and tissue-specific biological
context for protein activity. On average, a human protein
has over 20 physical interactions of different types with
other proteins, nucleic acids and metabolites and partici-
pates in dozens of biological pathways and processes
(MetaCore database, Thomson Reuters). Furthermore,
alterations in the same protein/gene (mutations, epige-
netic changes, RNA splice variants, phosphorylated pro-
teins, isoforms etc.) can be associated with dozens of
diseases and conditions. In most cases, the mechanisms
of such associations are unknown. On the other hand,
there are a huge number of facts and findings about dif-
ferent aspects of functionality of these proteins in differ-
ent tissues, cell lines and conditions, scattered in
hundreds of thousands of experimental articles. What is
the value and relevance of this “accumulated knowledge”
for the analysis of an individual proteomic profile and
how could it be applied in meaningful way?
The first step is to assemble all relevant published

data in a computer-readable form, then index and struc-
ture this content to make it accessible for automated
search and analysis applications. Over the last decade, a
variety of text mining algorithms and manual annotation
techniques have been developed to extract primary and
meta-data from experimental literature, patents and
other written sources (MedScan by Ariadne Genomics
[2]; I2E by Linguamatics [3]). In addition, several large-
scale annotation or editorial projects in the public
domain have been initiated, monitored and completed
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by the industry, and have lead to comprehensive
“knowledge” databases. These knowledge bases include
MetaCore (Thomson Reuters), IPA (Ingenuity), KEGG
[4] and HPRD [5], to name a few. The main types of
data stored in these databases deal with protein func-
tionality represented as physical and functional protein
interactions of different types (often assembled into
multi-step pathways) and gene/protein - phenotype
associations linking genes and protein variants to the
diseases, toxic effects, drug responses and other “end
points”. Manually curated “knowledge” databases have
rich semantics in a form of functional ontologies and
controlled vocabularies of terms and synonyms. Genes,
proteins, metabolic compounds and drugs are assigned
to different entities, or terms, in multiple ontologies, for
instance cellular processes or standardized protein func-
tions as it is done by GeneOntology consortium [6].
Sub-categorization of proteins and genes into ontologies
and representation of protein functionality as binary
interactions (please see “network analysis tools” section
for a definition on an interaction) and multi-step path-
ways are the two pre-requisites needed for applying
tools of functional, or “knowledge-based” analysis.
Functional analysis of proteomics data can be divided

into two types, dealing with proteins as objects and protein
interactions, correspondingly. The first one, known as
“ontology enrichment analysis” shows how different ontol-
ogy terms (pathways, processes, disease biomarkers etc.)
are relatively represented in the proteomics profiles (i.e.
lists, or sets of proteins revealed by proteomics experi-
ments) [7]. The second type of analysis evaluates protein’s
functionality represented as silos of its interactions with
the proteins on the list of interest. The core assumption is
that relative connectivity of a protein reflects its functional
importance for the phenotype [8]. Relative connectivity
can be calculated as a number of interactions between the
given protein with the proteins on the list of interest nor-
malized to the number of interactions it has with all pro-
teins. Relative connectivity with a given protein list of
interest can be calculated for every protein in the organ-
ism’s “proteome” (human proteome is defined as about
24,000 proteins with experimentally determined function)
(interactome tools) and for the subsets of proteins and
interactions represented as networks.
Here, we present the main statistical tools for enrich-

ment and interactions-based network analysis applied in
the MetaCore/MetaDrug analysis platform (Thomson
Reuters) with demonstrated examples of proteomics stu-
dies analyzed with the system.

Enrichment analysis in functional ontologies
Principle
Ontology enrichment is the most ubiquitous type of func-
tional analysis, which evaluates relative representation of

biological functions, or ontology terms, such as pathways
and cell processes, for the proteomics profile of interest.
Enrichment analysis (EA) consists of “mapping” (matching
identifiers) of experimental data (proteomics list or pro-
files) onto terms of functional ontologies (pathways, dis-
ease biomarkers etc.) followed by ranking the resulting
ontology terms based on the size of the identifier’s (ID)
intersection between the term and the experimental data.
“Enrichment” is thereby calculated as a probability of the
observed overlap between the genes/proteins from the
experiment and the selected ontology term. There are two
main types of enrichment analysis algorithms. One, a
“whole set” approach, ranks proteins by evidence of differ-
ential abundance only (without a decision of abundance
cut-offs). Another set of algorithms requires a pre-calcu-
lated set of proteins, usually selected by abundance fold
change and statistical significance thresholds. The former
“whole set” approach is implemented in Gene Set Enrich-
ment Analysis (GSEA) [9] or Parametric Analysis of Gene
Set Enrichment (PAGE) [10] algorithms. Gene set
approach is realized in several algorithms, such as hyper-
geometric test [11]. In the whole data set approaches, the
pathways and other ontology terms are ranked according
to their association with the protein or gene expression
changes between two sample groups for every protein/
gene in the set. On the contrary, gene (protein) list based
algorithms work only with a subset of proteins and, there-
fore, require pre-selection of significance threshold for
expression change at the protein level. The algorithms
then use only information about protein content of the
list, regardless of protein expression values. A list of differ-
entially abundant proteins identified by t-test between two
groups of samples in the whole data set is an example of
input data in this approach.
The hypergeometric test evaluates significance of an

association between the two kinds of categorical classifica-
tion for a set of objects (for example, presence of a protein
in the list of interest and its belonging to a pathway or any
other ontology term). In the case of enrichment analysis,
the intersection between a protein list of interest and a list
of proteins involved in a certain pathway is calculated.
Under the null hypothesis of no association, the probabil-
ity of occurrence of an intersection of a given size by
chance follows the hypergeometric distribution.

Calculation of an enrichment distribution of ontology
terms
Let us consider a set of size N, representing all nodes
(proteins and complexes) in MetaCore database, which
we consider as the “universe” (Figure 1). The “marked”
subset R of the universe N defines the proteins of inter-
est. There are two notable points: 1) generally not all the
proteins from the list of interest can be associated with
nodes in the network of protein interactions; 2) some
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proteins may correspond to multiple nodes and some
nodes may correspond to multiple proteins (i.e. protein
complexes). n is another subset N which defined func-
tionally determined set of nodes Subset n can be either
pre-established (known pathway, cellular processes or
disease biomarkers) or built “on the fly” using a content
of a protein interaction database.
There may be some marked nodes among the n nodes

of the module. The probability of a subset of size “n” to
include “r” marked ones provided that n and R are unre-
lated follows the hypergeometric distribution:

p(r, n, R, N) =

(
R
r

) (
N − R
n − r

)
(

N
n

)

It is essential that these equations are invariant in
terms of exchange of n for R, which means that the
“subset” and “marked” are equivalent and symmetrical
sets.
The null hypothesis of the enrichment test is that the

node list of interest is not associated with an ontology
term. The p-value of the test is calculated as cumulative
probability of observing ’r’ or more nodes in the inter-
section under the null hypothesis:

pVal(r, n, R, N) =
min(n,R)∑

i=max(r, R+n−N)

p(i, n, R, N)

If the p-value is sufficiently small (conventionally, less
than 0.05), the null hypothesis is rejected and the ontol-
ogy term is called significantly enriched with the

Figure 1 P-value based ranking in ontology enrichment analysis. Subset N represents a complete human proteome (all proteins and
complexes in MetaCore database). The subset n of these nodes corresponds to the experiment. Light green ellipse depicts the set of ontology
categories, which can be hierarchically ordered, (as is the case for GO processes or MeSH disease classification). R-set is the union of all the
proteins tied to the particular characteristic or category (e.g., proteins associated with at least one GO processes).
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proteins of interest. The test is repeated for all terms in
a given ontology, and all significant terms are returned,
ordered by p-value of enrichment.
As ontologies typically contain many terms, some of

them may turn out to be significant for particular list of
interest and given p-value threshold just by chance.
Thus, proper false discovery rate (FDR) control of
enrichment analysis findings is required. In MetaCore,
the FDR is controlled using Benjamini & Hochberg
approach [12], which ensures that no more than 5% of
significant terms are false positives.

Selection of the background list for enrichment analysis
The null hypothesis of the hypergeometric test can be
viewed as ‘competitive’ null hypothesis [7]. Comparing
the intersection of those assesses the association of an
ontology term with the node list of interest and the
expected intersection of the same list with random node
sets sampled from the same background ‘universe’ of
nodes. Therefore, the test result strongly depends on the
choice of the ‘universe’.
Selection of an appropriate background ‘universe’ is

often challenging in the high-throughput studies and
may cause misleading results. The most conservative
approach is to define the ‘universe’ as the complete set
of genes or proteins measured by a particular high-
throughput assay. For example, a subset of genes differ-
entially expressed in breast cancer has to be tested for
enrichment using the gene content of the microarray it
was generated on, not the whole set of human genes. In
proteomics, the background list can be defined as a
complete set of proteins known to be expressed in an
organ/tissue/body liquid/cell line of sample origin. This
is important, as only a fraction (about 10%) of human
protein-encoding genes are noticeably expressed in any
given tissue [13], and only a subset of the expressed
genes can be detected in a proteomics experiment. In
MetaCore, the gene content of commercial microarrays,
custom gene/protein sets, species and orthologs, cell
processes and other functional groups can be selected as
the background lists.
The background list is limited by the protein content

of the ontology applied for enrichment; for instance, a
non-redundant union of all human “canonical” path-
ways. Proper selection of the ontology is very important,
as the enrichment p-values vary depending on the size
of the examined protein list and the selection of the
background. The most complete ontology of human
canonical pathways (1200 pathway maps in MetaCore)
has about 9,000 proteins, as compared with >24,000
human proteins with experimentally determined func-
tion which have at least one interaction each.
The ontology term “n“ can represent a number of pro-

teins selected based on some common property, for

instance, belonging to the same ontology term and sharing
the same annotation. Therefore, enrichment is only as
informative as the ontology behind it. Analysis with only
one ontology (e.g., GO processes) provides a “one dimen-
sional” overview of a dataset. Ideally, the ontologies should
be specifically designed for an application. A toxicoproteo-
mics dataset should be evaluated against ontology of
organ-specific histopathology and prostate cancer datasets
against an annotated ontology of prostate cancer biomar-
kers and pathology pathways.

Ontologies for enrichment analysis
On average, human proteins have over 20 direct inter-
actions and can participate in dozens of pathways, cel-
lular processes and complexes, depending on context.
Moreover, several “hub” proteins such as p53 and NF-
kB, are much more ubiquitous and have over 1,000
interactions. In order to deal with such complexity,
each protein has to be well functionally annotated, i.e.
its function assigned to certain ontology terms by
experimental evidence. This can be achieved by expert
manual curation of full text experimental literature, a
time consuming and tedious process. There are hun-
dreds of biologically relevant ontologies available,
although only some of them are sufficiently populated
with proteins for enrichment analysis. Arguably, the
best-known public ontologies are the ones developed
by Gene Ontology (GO) consortium [6] for cellular
processes, protein functions and cellular localizations.
KEGG [4] is a popular public ontology and database of
metabolic and signalling pathways from multiple
organisms including human. In general, ontologies are
not well standardized, they often apply poorly overlap-
ping ID systems. Currently, an industry-academy
incentive known as Pistoia consortium, intends to unify
and standardize public ontologies [14]. Commercial
functional analysis platforms typically use a combina-
tion of publically available and proprietary ontologies
and run enrichment analysis in each separately, one at
a time. Below, we summarize the functional ontologies
featured in the MetaCore database, where each ontol-
ogy corresponds to a certain “dimension” of biological
functionality.

• Signaling pathways. Multi-step chains of consecu-
tive signaling interactions, typically consisting of a
ligand-receptor interaction, an intra-cellular signal
transduction cascade between receptor (R) and tran-
scription factor (TF) and, finally, TF - target gene
interaction. Signaling pathways are mainly used by
network generation tools and for enrichment by
direct access to the database.
• Metabolic pathways. Multi-step chains of metabolic
reactions, linked into functionally self-sufficient linear
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chains and cycles. Fragments of metabolic pathways
are shown as static images reachable from the protein
pages. Metabolic pathways are also used for network
generation and visualized on the networks.
• Canonical pathways maps. Pathway maps, or wire
diagrams, is the most popular ontology for enrich-
ment and the main type of pathway visualization in
MetaCore. Pathway maps are interactive images
drawn in a proprietary Java-based editor and typically
contain 3-6 pathways. There are over 1200 pathway
maps in MetaCore, comprehensively covering human
signaling and metabolism, selected diseases and some
drug targets mechanisms.
• Canonical pathway maps folders. All canonical
maps are assembled into a hierarchical tree folder
structure. The folders typically correspond to higher-
level processes, such as “apoptosis”, “cell cycle”, or
“amino acid metabolism”. The folder structure can be
visualized in a Browser mode and from enrichment
analysis distributions.
• Cell process network models. This ontology repre-
sents Thomson Reuters’ reconstruction of main sig-
naling and metabolic processes in the cell, such as a
“cell cycle checkpoints” or “innate immune response”.
The manually built process networks typically have
over 100 nodes (proteins) belonging to a certain nor-
mal cellular processes. The edges are selected from
MetaCore content.
• GO processes. These are a GUI-supported repre-
sentation of the Gene Ontology (GO) collection of
cellular processes, which is supported by GO tree
structure and access to proteins and interactions
within a process. This ontology is updated with GO
standard updates. GO processes are mostly used in
enrichment analysis and for prioritization of genes on
the built networks.
• GO molecular functions. A GUI-supported ontol-
ogy of standard protein functions from GO. Mostly
used in enrichment analysis.
• Disease biomarkers. These are a collection of genes
genetically linked to over 500 diseases and condi-
tions, supported by the hierarchical disease tree and
GUI for gene retrieval. Disease biomarkers are
mostly used in enrichment analysis.
• GeneGo disease network models. GeneGo recon-
struction of disease mechanisms in a form of manu-
ally built networks. These are mechanistic networks
linking the disease-associated genes via physical and
functional protein interactions.
• GeneGo toxicity networks. GeneGo reconstruction
of toxicity mechanisms in a form of manually built
networks. These are mechanistic networks linking
genes associated with a particular toxicity endpoint
via physical and functional protein interactions.

Examples of ontology enrichment in proteomics studies
An example of ontology enrichment of proteomics data
was demonstrated by Pitterri et al. [15]. Authors identi-
fied a subset of secreted proteins from a K-Ras/Pten
ovarian cancer mouse model, using quantitative high-
resolution mass spectrometry and shotgun LC-MS/MS
analysis to identify potential early ovarian cancer bio-
markers. A total of 58 plasma proteins with altered
expression level during tumour development were sub-
jected to enrichment analysis using MetaCore to deter-
mine their involvement in a functional, pathways
context (Figure 2). The most prevalent processes across
GeneGo ontologies and Gene Ontology included cell
adhesion, proliferation, development and extracellular
matrix remodelling as significant represented processes.
This example demonstrates two valuable messages. The
first is the ability to carry out quantitative analysis of
the functions (in this example, canonical pathways) of
the secreted serum proteins. The results are listed
according to the -log p-value determined by the hyper-
geometric calculation, allowing an analyst to not only
assess the represented functions but also determine
which functions are more represented than others. The
distribution of pathways or the top scored pathway can
be applied as phenotype descriptors, for instance for
patient stratification of disease sub-clustering (reviewed
in [16]). The second point is the use of multiple functional
ontologies (pathways, cell processes, disease biomarkers
etc.) provides different viewpoints of functional represen-
tation of the proteomics set, based on the context of the
ontology. In this example, both GO ( Figure 2, A) and
GeneGo’s proprietary GeneGo Process Network ontology
( Figure 2, B) support the observation of the role of inflam-
mation in early ovarian tumorigenesis. However, the more
descriptive GeneGo Process Network Ontology further
delineates specific cell function in the inflammatory pro-
cess to include extracellular matrix remodelling.

Protein interaction - based analysis
Ontology enrichment is a “low resolution” analysis,
which is useful for an overall description of functionality
in the proteomic dataset and for functional focusing of
the dataset by exporting proteins hitting a certain path-
way or a process. However, relative distribution of path-
ways or other ontology terms cannot directly pinpoint
the most important proteins on the pathway or in the
dataset, i.e. ontology enrichment is not a self-sufficient
hypothesis-generation tool. Ontology enrichment cannot
rank individual proteins based on significance and
answer questions such as “what is the most important
protein kinase for my dataset?” or “what is the ‘master
switch’ transcription factor to be knocked out in an ani-
mal model?” In order to answer such questions, one
needs to consider the “local interactome” for each
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protein in the dataset and compare it with the global
human interactome. The main assumption behind
“knowledge-based” analysis is that it is the set of inter-
actions, which defines protein functionality. One can
identify the set of interactions between all 24,000
human proteins of known function with all the proteins
in the dataset of interest and evaluate relative enrich-
ment in interactions space for each human protein. The
proteins which are statistically significantly “overcon-
nected” with the given proteomics profile can be consid-
ered as the most important. Interactions enrichment can
be carried out by two sets of tools, i.e. interactome and
network analysis. The main difference between the two
is that interactome methods calculate general enrich-
ment of binary interactions around each object, and net-
work methods apply rules (network building algorithms)
for connecting binary interactions into multi-step
modules.
It is important to note that the term “interaction”

defined here is not restricted to physical binding between
proteins, but include any relationships between proteins
(and other objects) described by the following mechan-
isms: binding, cleavage, covalent modifications, phosphor-
ylation, dephosphorylation, transformation, transport,
catalysis, transcriptional regulation and microRNA bin-
ging. An “object” then can be any type of nucleic acid
(mRNA, miRNA, DNA), gene, protein (with separate
objects for a fusion protein or protein complex), com-
pound or reaction (metabolic or transport). Each network
object with at least one interaction is manually curated
and the interactions retrieved from full text peer-reviewed

literature. Each interaction is annotated with the following
attributes:

- A causative effect for the interaction (positive,
negative)
- A mechanism associated with this effect (binding,
catalysis, transcriptional regulation etc.
- Direction
- Species (human, mouse or rat)

For each network objects, the information is derived
from high quality experimental data. The collection of
network objects and their relationships (edges) are pro-
vided in the underlying database.

Interactome analysis
In MetaCore, “interactome” tools evaluate relative connec-
tivity of each protein in a dataset of interest with every
other human protein (within dataset or entire “global”
human interactome). Since proteins work in groups (com-
plexes and pathways), which are defined by interactions, it
is assumed that relative connectivity reflects relevance, or
importance, of a protein for a given dataset. For example,
if a transcription factor has significantly more interactions
than expected by chance with its targets in a proteomics
profile from a primary prostate tumour, it is likely to be an
important “master regulator” of cancerogenesis in this par-
ticular tumour. Identification of the whole set of over-con-
nected proteins can help to reconstruct the biological
mechanism the proteomics profile. The interactome meth-
ods are well suited for deducing signalling and regulation

Figure 2 Enrichment analysis of plasma proteome from an ovarian cancer mouse model. A. Top 10 significant biological processes from
GO ontology. Bar length reflects the significance and equals to the negative logarithm of enrichment p-value. B. Top 10 significant maps from
MetaCore canonical pathway map ontology.
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proteins which activation would lead to a phenotype that
are connected to the proteomics dataset but undetectable
by proteomics profiling. Proteomics datasets are often
enriched in “effector” proteins, such as metabolic enzymes
or structure proteins which encoding genes are constitu-
tively expressed in a given sample and presented in higher
abundance. Such functional bias is evident when proteo-
mics profiles are compared with gene expression profiles
from the same sample. On the contrary, regulatory genes
are usually expressed transiently; many signalling proteins
tend to degrade fast and are regulated on post-transla-
tional level leaving this subset of proteins undetectable. At
the same time, signalling pathways are quite important as
the source of conditional “triggers” (for instance, GPCRs,
signal transduction protein kinases) and are often prime
candidates for drug target development. Two “topology”
methods described below help to deduce proteins, which
are usually not present in proteomics datasets but closely
connected with them by protein-protein interactions of
different mechanisms.
Calculation of protein connectivity in interactome analysis
Connectivity between proteins is carried out as follows:
At least 2 protein populations are considered: 1) the
proteins in the uploaded dataset (i.e. proteomics list) of
interest (local interactome) and 2) the proteins in a
background list (global interactome). The algorithm cal-
culates the relative connectivity between the local inter-
actome and compares it to the general interactome.
First, one-step (interaction) neighbours are identified
around individual proteins. Then, the procedure calcu-
lates the main properties of the “local” interactome for
the proteomics dataset of interest. The “local” interac-
tome is defined either as the compilation of all interac-
tions between the genes/proteins within the uploaded
list/experiment or as a set of all direct network neigh-
bours of the proteins from the uploaded list and interac-
tions between them. The interactome properties include:
Degree , the average number of protein interactions

per protein from a given set [17]. Since the interactions
are directed, the nodes can be characterized by IN and
OUT-degree, i.e. the average number of outgoing and
incoming interactions.
Clustering coefficient. This captures the density of con-

nectivity between the protein’s neighbours [17]. It is

defined as: Ci =
2ni

ki(ki − 1)
, where Ni is the number of

interactions between the ki neighbours of node I. As Ki

(ki-1)/2 is the maximum number of such interactions,
the clustering coefficient is a number between 0 and 1.
The average clustering coefficient for a list of genes is
obtained by averaging over the clustering coefficient of
individual nodes. A network with a high clustering coef-
ficient is characterized by highly connected sub-graphs.

Evaluation of one-step over (under)-connectivity between a
protein with the protein list of interest
It is widely accepted and shown in multiple studies that
the most critical proteins in a given dataset (drug targets,
disease-related proteins etc.) have more connections
within the dataset than expected at random [18]. In
MetaCore, we account for this observation in a statistical
tool that evaluates relative connectivity of proteins of dif-
ferent functions. Relative connectivity is calculated for
each protein as a ratio of an actual number of one-step
protein-protein interactions (unique to the dataset) to
the expected number of interactions, followed by sum-
marizing interaction data for the whole dataset. Expected
connectivity is dependent on the size of the dataset of
interest, the total number of interactions the protein has
and the total number of human proteins with at least one
interaction. The connectivity ratio is, therefore, a quanti-
tative measure of “functional relevance” of a protein for
the dataset of interest. “Overconnected” transcription fac-
tors, ligands, receptors, kinases, phosphatases, proteases
and metabolic enzymes are ranked based either on con-
nectivity ratio or p-values (probability to come up with
the observed connectivity ratio for a random dataset of
the same size). The degree of over- and under-connectiv-
ity can be also evaluated by z-score, which signifies the
difference between the obtained number of proteins and
the expected average number of proteins being expressed
in units of standard dispersion (Figure 3). Statistical sig-
nificance is assigned by using the hypergeometric test.
The null hypothesis is that a number of interactions of a
node with the node set of interest do not exceed the
number of interactions with a random set of nodes with
the same size. P-value is calculated as follows:

pVal(r, n, R, N) =
min(n,R)∑

i=max(r, R+n−N)

p(i, n, R, N), where

p(i, n, R, N) =

(
R
r

)(
N − R
n − r

)
(

N
n

) , and

N is the number of proteins (protein-based network
objects) in our global interactome extracted from Meta-
Core; n - number of proteins derived from the sets of
genes of interest; R - the degree of a given protein in
the global interactome database; r - the degree of a
given protein within the set of interest.
The probability of observing under-connected proteins

can be calculated by (1 - p), where p is p-value for over-
connection.
An example of overconnectivity analysis is demon-

strated in Table 1. The list of differentially abundant
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Figure 3 Interactome analysis of proteomics datasets and gene lists. A. The general schema of interactions inside the set, between the sets and
between the set and “global interactome”. B. The “over” and “under"-connectivity phenomenon. The hub (P21 protein from MetaCore database,
marked pink) is expected to be linked with five other proteins in the hypothetical dataset of 320 genes (purple circles), but in reality is can be linked
with nine genes (purple and green circles), or 3 genes (purple circles). In these cases, it will be considered as “over” connected or “under” connected.

Table 1 Interactome overconnectivity analysis of serum in ovarian cancer.

Object name Actual n R N Expected Ratio p-value z-score

Transcription factors

Nkx5-1 2 79 9 19603 0.036 55.14 5.668E-04 10.33

NFIC 4 79 104 19603 0.420 9.54 8.277E-04 5.56

USF2 7 79 183 19603 0.738 9.49 9.061E-06 7.34

Receptors

ITGB6 2 79 9 19603 0.036 55.14 5.668E-04 10.33

VLDLR 3 79 22 19603 0.089 33.84 9.180E-05 9.8

Glypican-1 2 79 16 19603 0.064 31.02 1.855E-03 7.64

Ligands

LAMA2 2 79 7 19603 0.028 70.9 3.324E-04 11.77

CCL17 2 79 11 19603 0.044 45.12 8.614E-04 9.31

Thrombospondin 2 2 79 15 19603 0.060 33.09 1.627E-03 7.91

Kinases

LRRK1 2 79 5 19603 0.020 99.26 1.591E-04 13.98

Proteases

CTRL 1 79 1 19603 0.004 248.1 4.030E-03 15.72

Mcpt8 1 79 1 19603 0.004 248.1 4.030E-03 15.72

CRIM2 1 79 2 19603 0.008 124.1 8.044E-03 11.07

Actual = number of network objects in the activated dataset(s) which interact with the chosen object listed in object name column; n= number of network
objects in the activated dataset( i.e. proteomics list); R=number of network objects in the complete database or background list which interact with the chosen
object; N= total number of gene-based objects in the complete database or background list; Expected= mean of hypergeometric distribution (n·R/N); Ratio=
connectivity ratio (Actual/Expected); z-score= (Actual-Expected)/s.d.(Expected), where s.d. - standard deviation of hypergeometric distribution, p-value= probability
to have the given or higher (lower for negative z-score) value of Actual by chance under null hypothesis of no over- or under-connectivity.
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proteins was obtained from serum of a mouse model of
ovarian cancer [9] and subjected to “interactome by pro-
tein function” analysis in MetaCore. Given that this
sample set is a profile of serum proteins, the prioritized
interactome list, particularly the readily detectable list of
ligands or receptors, was best suited for identifying
potential biomarkers for early detection of ovarian can-
cer. The number of experimentally validated direct
interactions is listed according to protein class (tran-
scription factor, receptor, ligand, kinase, and protease)
and in order of highest to lowest ratio in each category
(Table 1).
A one-step interactome analysis is also convenient for

assessing the relationship between multiple datasets or
data types, which poorly overlap at gene level. The
topology based interactome tool helps to determine
whether one data set is acting on another and in what
direction. It was found that a large percentage of the
1188 genes with somatic mutations in breast cancer
pooled from 11 exon-resequenced primary tumours
were frequently upstream of a subset of the 1747 genes
amplified in one of 30 breast cancer amplicons specifi-
cally in transcription regulation signalling. This finding
suggested that mutated genes are mainly regulators,
whereas gained genes are mostly regulated by physical
one-step interactions. Furthermore, proteomics analyses
are often paired with genomic or transcriptomics pro-
files to represent phenotypic changes across several
levels of biology. For instance, Nikolskaya et al [19]
reconstructed the molecular pathways of optic nerve
head astrocytes in glaucoma by combining transcrip-
tome interactome analysis with ontology enrichment
and network generation (see Network analysis section)
of well connected hubs defined by the proteomics analy-
sis, resulting in the representation of the complement
system by both data types (Table 2, Figure 4).
“Hidden nodes” topology analysis: algorithm for node
prioritization and reconstructing significant pathway modules
Analysis of relative connectivity described above is limited
to one-step interactions which define the local interaction

“neighbourhood” for each protein. This topology evalua-
tion procedure can be extended to encompass several
steps of signalling mechanisms, eventually covering all
human proteins with respect to the connectivity
(expressed as p-values) within the proteomics dataset. We
call this approach a “hidden nodes” analysis, as most of
the highly ranked proteins revealed by this method miss
from original proteomics data [20]. As in the case of one-
step interactome, the scoring is based on the role the pro-
tein nodes play in connectivity among genes or proteins of
interest relative to their role in the global network. The
method is neutral with respect to the node’s degree or
centrality, i.e., the role of nodes with a high degree of phy-
sical connections (such as p53 or NF-kB) is normalized on
the entire interactome. The scores for truly significant
nodes are enhanced, while the scores of those that appear
in the networks by chance are reduced. The output of
“hidden nodes” analysis is a set of prioritized proteins
divided onto functions along with their possible regulatory
effects on the proteins from a proteomics profile. A user
receives a series of scored and testable hypotheses asso-
ciating individual components of the identified molecular
network(s) with the phenotype of interest.

Topological scoring of nodes
The topological scoring algorithm starts with a set of
experimentally identified genes or proteins as the seed
nodes (K). K is a subset (a number of nodes) of a global
network of size N. The first step is the construction of a
directed shortest path network connecting each node in K
to other nodes in K, traversing via other nodes in the glo-
bal network. If there are multiple shortest paths of equal
length between two nodes within K, then all of the nodes
from the multiple paths are included in the shortest path
network for that pair, S, which is a subset of N and con-
tains nodes in addition to K. Some nodes from K may
become “internal” in S, that is, they are lying on the short-
est paths, while the rest are either “source” or “target”
terminals of the shortest paths (Figure 5). All nodes in S
that are not in K are by definition “internal” nodes. For

Table 2 Distribution of GO processes in glaucomatous optic nerve astrocytes revealed by proteomics

Top 10 GO processes
(for 35 proteins)

p-value Top 10 canonical maps
(for 20 mapped proteins)

p-value

Complement activation. Alternative pathway 3.60E-06 CDC42 in cellular processes 1.10E-03

Response to heat 1.10E-05 Alternative complement pathway 1.70E-03

Nucleosome assembly 3.80E-05 Putative ubiquitin pathway 3.10E-03

Complement activations 4.10E-05 Role of ASK1 under oxidative stress 3.20E-03

Glycogen catabolism 5.40E-05 Role of IAP proteins in apoptosis 4.10E-03

DNA DSB repair via homologous recombination 1.00E-04 Glucocorticoid receptor signaling 5.10E-03

Chromosome organization 1.40E-04 Role of Akt in hypoxia 7.80E-03

Carbohydrate metabolism 1.50E-04 Parkin disorder under Parkinson’s disease 8.10E-03

Innate immune response 2.20E-04 Role of Parkin in the ubiquitin-proteosomal family 8.10E-03

Small GTPase mediated signal transduction 3.10E-04 Urea cycle 3.40E-02
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Figure 4 Complement pathway activation in glaucomatous optic nerve astrocytes revealed by proteomics. The relevant proteomic data
(solid red indicator #1) and the differential gene expression data (indicators #2 and #3), mapped on the canonical pathway originally
characterized in macrophages, show cross-verification of the complement pathway activation in glaucomatous ONHAs. Pathway steps confirmed
by both data types are highlighted with ovals.

Figure 5 A diagram for hidden nodes algorithm. A set of experimentally derived nodes K is colored red. We connect them by shortest path
network S (blue nodes). The rest of the global network is represented by black nodes.
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future reference, we call S a condition-specific shortest
path network (CSSPN). The shortest path network is built
by a modified version of the standard breadth-first search
described elsewhere [12]. Let us consider node i Î S, an
internal node, and j Î K, one of the nodes of the experi-
mental set. In addition to S, we calculate the shortest
paths between j and every other node (except i) in the glo-
bal network, wherever such shortest paths exist (up to N-2
pairs). Then we count how many of these node pairs have
node i present in at least one of the shortest paths; this
number is Nij ≤ N-2. On the other hand, we count how
many times node i occurs in at least one shortest path of
node pairs when connecting j to all other nodes in K. This
number is Kij ≤ Kj ≤ K-1 (we assume node i is not differ-
entially expressed; otherwise Kj ≤ K-2). Note that we
count node i only once for every pair from K, even though
it may be part of multiple linear shortest paths connecting
the same pair. Under the “null” hypothesis, node i has no
special role in connecting node j to the rest of differen-
tially expressed genes in K. Thus, the probability of finding
i in the shortest paths connecting Kij or a larger number of
node pairs originating or terminating at node j follows a
cumulative hypergeometric distribution. This problem can
be recast as selection without replacement. Nij node pairs
containing i as an internal node in the shortest paths con-
necting j to all other nodes in the global network can be
considered as a set of “marked” node pairs. On the other
hand, a set of K-1 pairs consisting of the node j and the
rest of K- 1 experimentally derived nodes represent a
“selection”. If node i has no special role for connecting j to
the rest of the nodes in K, then the number of marked
shortest path networks in the selection should follow the
hypergeometric distribution where pij(Kij) is the probabil-
ity of finding node i in the shortest paths connecting Kij

number of node pairs in the differentially expressed set
among those originating or terminating at node j.

pij(Kij) =

(
Nij

Kij

)(
N − Nij − 2
K − Kij − 1

)
(

N − 2
K − 1

)

The null hypothesis of scoring test is that node i has no
special role in connecting j with other nodes of interest
via shortest paths. The p-value of the test is calculated as
cumulative probability of observing ‘Kij’ or more paths by
chance under the null hypothesis. We repeated this pro-
cedure for all nodes in K, calculating up to K p-values for
each node i in the network of shortest paths connecting
differentially expressed genes. Each of these p-values
shows relevance of node i to individual members of the
set K. As we want to identify the nodes that are statisti-
cally significant to at least one or more members of the
experimental set, we define the “topological significance”

score associated with node i as the minimum of the pij
values. We note that our method, unlike betweenness
centrality, does not count the actual number of shortest
paths between the pairs of nodes, but rather it counts the
number of instances a node is part of the shortest path
network between the node pairs. More importantly, our
technique considers fractions of differentially and non-
differentially expressed genes connected by shortest
paths containing the node that is being evaluated. In this
context it is not concerned with the paths bypassing the
node of interest. In contrast, the betweenness centrality
measure is based on relative numbers of shortest paths
going via the node of interest and those bypassing it.
For example, in Figure 5, the size of the global network

N = 13, K = 7, and S = 5. The number of possible shortest
path networks between node B and each of the other
nodes in the global network, which can contain D, are 11
(N-2). The number of such networks which contain node
D is 7 (NBD = 7). On the other hand, the number of
shortest path networks containing D, among those con-
necting only nodes from the set K, is 5 (KBD = 5). The
significance (p-value) for node D with respect to node B
and set K can be calculated as pBD = p(N-2, NBD, K-1,
KBD). Similarly, we can calculate the other p-values for
D with respect to A, G, K, J, I, and L, and then pick the
smallest value and assign it as the significance of node D
in the sub-network defined by the nodes of interest (red
nodes). The nodes can be classified as internal (F, D, C,
H, and M), source (A, B, and L) and target (A, G, K, J,
and I) nodes.
The hidden nodes approach is another example that

supports and integrates functionality of several data
types. Vellaichamy et al recently [21] reconstructed sys-
tem-wide molecular events following stimulation of
LNCaP prostate cancer cells with synthetic androgen to
identify potential mechanisms of androgen-independent
progression of prostate cancer using concurrent mea-
surements of gene expression and protein levels from
microarrays and iTRAQ proteomics techniques, respec-
tively. The list of up-regulated genes and proteins were
submitted to the scoring procedure separately, resulting
in two sets of topologically significant regulatory pro-
teins. A total 962 topologically significant proteins from
gene expression data and 577 topologically significant
proteins from proteomic data (FDR<5%) were identified.
Of these two sets of topological significant nodes, 301
were common, (or 52% of the smaller set) demonstrating
a more than 2-fold increase in overlap between data
types (17% overlap between lists of up-regulated genes
and up-regulated proteins) (Table 3).
The resulting topologically significant proteins from

a hidden nodes analysis can be combined with ontol-
ogy enrichment to determine the differences of func-
tionality between data types (genes vs. proteins) or as a
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combination. In general, the top pathways represented
as a consequence of gene or protein expression dif-
fered but complemented each other at different levels
of connectivity. For instance, in the case of the LNCaP
prostate cancer cell analysis, the “Growth factor regu-
lation of cell cycle” network (Figure 6) is highly
enriched in proteins that are topologically significant
for both gene expression and proteomic data while the
androgen signalling network was more represented by
the proteins that are topologically significant for gene
expression. Close examination of this process reveals
that topologically significant proteins are present on all
levels of signalling hierarchy, including several growth
factors, receptors, signalling kinases, transcription fac-
tors and cyclin kinases. The overall impact of these
findings emphasizes the need to identify intercon-
nected network modules containing many alternative
routes and various levels of biology for the precise for-
mulation of combination therapy to effectively fight
the tumour growth.

Network analysis of proteomics data
Network analysis is another method assessing connectiv-
ity within a given dataset such as a proteomics list. In
MetaCore, networks are generated as a combination of

binary single step interactions (edges or links), which
connect network objects (nodes). In generating net-
works, a user’s dataset (for instance, a proteomics pro-
file) is considered as a list of root nodes (any protein,
gene or metabolic ID) and MetaBase is used as the
source of interactions as edges between them. As the
root node lists are different, the generated networks are
unique for the uploaded datasets and chosen conditions,
which makes networks a quite flexible and precise
research method. The same dataset (list of root IDs) can
be connected by interactions in different ways, depend-
ing on a chosen network parameters and filters. The
MetaCore’s network toolbox features several network
algorithms (each with a specific statistical method) and
filters enabling generation of networks specific for cellu-
lar processes, species, orthologs, cellular processes,
expression in human tissues, mechanisms of interactions
and effects. The end nodes on the networks have only
one edge; the internal nodes may have anywhere from
two to several hundred edges.
Network generation algorithms
On average, human proteins have over 20 interactions,
with thousands of interactions for some highly connected
proteins and complexes such as p53, NF-KB, AP1,
PIP3K. With 24,000 human proteins with at least one

Table 3 The highest scored topologically significant proteins from gene expression and proteomics data for
androgen-stimulated LNCaP prostate cancer cells

Symbol Entrez Gene ID Description p value

AAG11 2274 aging -associated gene 11 2.24E-19

CLS 6197 ribosomal protein S6 kinase, 90kDa, polypeptide 3 1.51E-18

CTNNB 1499 catenin (cadherin -associated protein), beta 1, 88kDa 5.45E-17

CCND2 894 cyclin D2 3.74E-16

FLJ21396 23132 RAD54 -like 2 5.26E-16

AIS 367 androgen receptor 1.36E-15

DAB2 1601 mitogen -responsive phosphoprotein 1.55E-15

ABP -280 2316 filamin A, alpha 3.89E-15

ACH 2261 fibroblast growth factor receptor 3 1.2E-14

RAD9 5883 RAD9 homolog 1.31E-14

Symbol Entrez Gene ID Description p value

MYC 4609 myc proto-oncogene protein 2.15E-08

HIRS-1 3667 insulin receptor substrate 1 1.85E-07

BCL2 596 B-cell CLL/lymphoma 2 4.21E-07

INSRR 3645 IR-related receptor 4.34E-07

MGC26306 9414 tight junction protein 2 (zona occludens 2) 4.38E-07

GCCR 2908 glucocorticoid receptor 5.98E-07

IRF-1 3659 interferon regulatory factor-1 1.01E-06

SREBF1 6720 sterol regulatory element binding transcription factor 1 1.06E-06

FLJ12859 23528 ZNP-99 transcription factor 1.1E-06

ETV3 2117 ets variant gene 3, ETS family transcriptional repressor 1.12E-06

The top table contains Entrez Gene IDs, gene symbol, gene names and topological scoring test p-values for top 10 topologically significant proteins identified for
overexpressed gene list. The bottom table contains the same information for 10 top topologically significant proteins identified for overexpressed protein list.
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interaction and over 500,000 experimentally confirmed
interactions in total (MetaBase, Thomson Reuters), the
complexity of interaction space is overwhelming, with
billions of possible multi-step connectivity combinations
even for a relatively small set of proteins in proteomics
profiles. In order to select the most probable combina-
tions of interactions activated in a given experiment, one
can apply certain rules the directed interactions can be
connected by. These rules are known as network genera-
tion algorithms. In MetaCore, there are seven basic net-
work algorithms and two additional versions (Figure 7).
Direct interactions (DI) algorithm This is the most
stringent algorithm (Figure 7), which allows visualization
of only the edges connecting root nodes. The density of
a direct interaction network is a function of the average
number of edges per node in the source interaction
database. With an input list of a substantial size (over
200 nodes), the assembly is typically presented as one
large network along with several smaller clusters and a
number of non-connected nodes. It is important to note
two critical aspects of the DI algorithm 1) this algorithm
will consider only the provided root list in network gen-
eration and 2) this algorithm may miss interactions
which are essential for the network topology and

biologically relevant, but not deducible from the original
input list of objects as they are not directly connected.
For example, when the input nodes represent differential
expression data, the DI algorithm may miss many regu-
latory interactions at the level of protein activity, such
as those that are relevant to proteomics including phos-
phorylation/dephoshorylation interactions, which are
usually not associated with elevated transcription levels
(as represented by differential expression data). For
instance, let us consider the proteomics list of 58 pro-
teins derived from the plasma of the ovarian cancer
mouse model example above [15] (Figure 2). The DI
network of this set of proteins suggests that a large per-
centage is NOT directly connected and upon closer
examination, two centralized hubs exist (Figure 8). From
this, we can prioritize MMP-2 and Clusterin as potential
proteins for further biomarker development, based on
connectivity.
Expand by One Interaction This algorithm builds one-
step sub-networks around any object from the list. The
algorithm helps to identify direct upstream and direct
downstream effectors, then finds “islands” of nodes from
the user’s list connected by no more than two bridging
objects.

Figure 6 “Growth factor regulation of the G1-S transition in cell cycle” network in LNCaP prostate cancer cells. The red dots indicate
proteins identified as topologically significant using the gene expression profile. Blue dots indicate proteins identified as topologically significant
using the proteomics profile. Red boxes-proteins identified as topologically significant from both sets of data.
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Shortest path (SP) algorithm This is a less stringent
algorithm than the DI as it allows for the addition of
non-root nodes to the networks (objects from the data-
base, not originally in the original user file). The SP
algorithm works as follows: when there are two lists of
nodes, one for the initial nodes, and another for end
nodes, the lists are considered as almost always identical
and corresponded to the input list. For every node from
the initial list, the set of shortest paths (chains of conse-
cutive directed interactions) to every other node from
the ‘end nodes list’ is established. For every pair of
nodes, all of the minimal paths are built and depicted as
an inter-connected network of pathways. The number of

steps defined by user options can limit the length of
paths.
Auto-expand (AE) AE algorithm creates sub-networks
around every object from the uploaded list. The expan-
sion halts when the sub-networks intersect (whether it
is 1-step or more). The objects that do not contribute to
connecting sub-networks are automatically removed.
Analyze Network (AN) This algorithm starts with build-
ing a super network by applying a simplified version of
the “Auto Expand” algorithm to the initial list of objects.
The network, which is never visualized as a whole, con-
nects all objects from the input list with all other objects
in the input list. Naturally, this process results in a

Figure 7 Diagrams of network algorithms in MetaCore. (A) Direct interactions algorithm; (B) Shortest path algorithm; (C) Analyze network; (D)
Analyze network (Transcription Factors); (E) Transcription regulation; (F) Analyze network (Receptors).
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super-connected large network, and is therefore
“divided” into smaller fragments of a user-chosen size,
from 2 to 100 nodes. The division process is conducted
in a cyclical manner, i.e. fragments are created sequen-
tially one by one where edges used in a fragment are
never reused in subsequent fragments. Nodes may be
reutilized, with different edges leading to them in differ-
ent fragments. The end result of the AN algorithm is a
list of multiple overlapping networks (usually ~30),
which can be prioritized based on five parameters: the
number of nodes from the input list among all nodes on
the network, the number of canonical pathways on the
network, and three statistical parameters: p-value,
z-score and g-score (see network statistics below).
The resulting networks are significantly different from

those generated by the DI algorithm and address differ-
ent “connectivity’ questions. In the AN algorithm, a user
is looking for a more explorative network of interactions

based on the logical progression of cellular signalling,
using the database as a resource. Therefore, each divi-
sion may represent a different collective function. For
example, using the same input list defined in the DI
example, the AN table shown in Table 4 suggests the
first two sub-networks represent regulation of biological
quality yet, each contains individual representations of
morphogenesis or inflammation (network 1 and 2,
respectively).
A closer look at the first network illuminates a differ-

ent set of connections, compared to the DI MMP-2
-rich network (Figure 9). As a consequence, several dif-
ferent and distinct observations can be made: 1) this
network was determined as the most significant based
on g-score (which considers representation of well
established signalling mechanisms); 2) several proteins
can be prioritized based connectivity to a canonical
mechanism marked by the teal blue lines (as opposed to

Figure 8 Direct interaction network of a plasma proteome from a mouse ovarian cancer model. 58 proteins were used to determine the
direct relationship within the input list. A total 19 proteins were found to be directly interacting within 2 separate clusters. Directional edges are
marked by colored arrows (green = activation, red = inhibition).
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hub connectivity determined in the DI example) includ-
ing Fibulin-2 and Cathepsin-Z; and 3) the series of
interactions, including the marked canonical mechanism
are influenced by the presence of sp-1, providing yet
another level of prioritization for transcriptional regula-
tion purposes. Such observations greatly contribute to
subsequent stages of discovery or drug development.

Analyze network (Transcription Factors - TFs) and
Analyze network (Receptors) Both algorithms start with
creating two lists of objects expanded from the initial
list: the list of transcription factors and the list of recep-
tors. Next, the algorithm calculates the shortest paths
from the receptors to TFs. Then, the shortest paths are
prioritized in a similar way. The first algorithm, AN

Table 4 Analyze network’ algorithm results for a plasma proteome from a mouse ovarian cancer model

No Network GO Processes Total
nodes

Seed
nodes

Pathways p-
Value

zScore gScore

1 Factor H, APOF,
Cathepsin Z, TIG2, SSB-2

positive regulation of cell adhesion (15.6%; 1.020e-08),
regulation of biological quality (44.4%; 1.296e-08), response
to inorganic substance (22.2%; 7.552e-08), wound healing
(17.8%; 2.420e-07), anatomical structure morphogenesis

(35.6%; 3.159e-07)

50 14 2 1.270E-
29

54.15 56.65

2 Fetuin-A, IBP4,
Thrombospondin 1, KNG,

SERPINA3 (ACT)

response to wounding (39.6%; 8.503e-15), regulation of
biological quality (54.2%; 2.556e-13), response to stimulus

(72.9%; 3.053e-12), inflammatory response (29.2%; 3.365e-12),
response to stress (52.1%; 1.913e-11)

50 14 0 2.470E-
29

53.05 53.05

3 Calgranulin A, Calgranulin
B, VCAM1, Cathepsin D,

NOTCH2

positive regulation of cellular process (67.4%; 1.338e-15),
response to stress (62.8%; 5.497e-15), positive regulation of
biological process (67.4%; 1.566e-14), multicellular organismal
process (83.7%; 5.605e-14), developmental process (74.4%;

9.693e-14)

50 13 0 8.090E-
27

49.24 49.24

4 Thrombospondin 1,
CNBP, AKR1C1,

Coagulation factor XI,
NOV

regulation of biological quality (58.8%; 1.894e-11),
multicellular organismal process (79.4%; 8.590e-10), regulation

of multicellular organismal process (44.1%; 1.560e-08),
response to stress (50.0%; 7.234e-08), positive regulation of

cellular component organization (23.5%; 1.432e-07)

50 11 2 3.690E-
22

42.49 44.99

An excerpt of AN network list (from MetaCore) constructed from the list of 58 proteins derived from a plasma proteome of a mouse ovarian cancer model. For a
complete description of each column refer to network statistics please see “3.2.2. Prioritization of sub-networks”.

Figure 9 The top scoring network of AN algorithm applied to a plasma proteome from a mouse ovarian cancer model. Directional
edges are marked by colored arrows (green = activation, red = inhibition) and root/input nodes are marked with red circles. Teal blue arrows
delineate presence of interactions that represent canonical, well-established mechanisms
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(TFs), connects every TF with the closest receptor by all
shortest paths and delivers one specific network per TF
in the list. Similarly, the second algorithm AN (R ) deli-
vers a network consisting of all the shortest paths from
a receptor in the list to the closest TF; one network per
receptor. Since all the edges, and therefore, paths are
directional, the resulted networks are not reciprocal.
Every network built by an AN algorithm may be

optionally enriched with the receptor’s ligands and the
TF’s targets. The networks may be grouped, and merged
within every group. Namely, if we are building one net-
work for every transcription factor, then all such net-
works with the same receptors are grouped and merged
within each group.
Transcription regulation (TR) This algorithm starts
with a small sub-network that consists of the initial list
of objects plus all the “immediate transcription factors”
for those initial objects, i.e. the objects that are linked to
at least one of the initial objects by an edge of the “tran-
scription regulation” type. Then, a separate network is
built around every such transcription factor, using the
AE algorithm with “upstream” option and limiting to
the objects from the initial list. Then the transcription
factor’s targets from the initial list are added to network.
The algorithm delivers a list of networks, one per tran-
scription factor.
Model canonical pathways MetaBase contains a library
of pre-reconstructed “canonical” signaling pathways.
Each pathway represents a linear chain of signal trans-
duction interactions thoroughly described in the litera-
ture; 17 steps on average. Each object n-1 in the chain is
connected with object n by one outgoing interaction. The
pathway typically starts with a ligand and its correspond-
ing receptor and ends with a transcription factor and its
target gene. The “model canonical pathways” algorithm
attempts to reconstruct the networks, which are com-
posed exclusively of canonical pathways and enriched
with objects from the input list. The main steps are as
following:

- Determine all objects from the input list that are
involved in at least one canonical pathway;
- For each selected object, retrieve all canonical
pathways containing this object and merge them
into a separate network (each network is built
around a single root object from the input list;
- Optionally, add objects from the input list that is
regulated by transcriptional factor already present in
network;
- Optionally, add objects from the input list that
binds to the receptor already present in network;
- Rank networks by the number of input list objects
they contain. Networks with equal number of such

objects are ranked by size (the less total number of
objects, the higher rank).

Prioritization of sub-networks
Application of network ranking statistics is important
for the analysis of large high throughput experimental
datasets, such as expression profiles or proteomics data-
sets, which may include hundreds to thousands of pro-
teins and complexes. The networks can be ranked using
the z-scores calculated from the hypergeometric distri-
bution. These scores reflect the relative enrichment of
reconstructed networks by the genes/proteins from the
list of interest. Let us consider a general set size of N
with R marked objects/events (for example, the nodes
with expression data). The probability of a random sub-
set of size of n which includes r marked events/objects
follows the hypergeometric distribution and is calculated
as

p(r, n, R, N) =

(
R
r

) (
N − R
n − r

)
(

N
n

)

The mean of this distribution is equal to the following:

μ =
n∑

r=0

r · P(r, n, R, N) =
n · R

N
= n · q,

where q=R/N defines the ratio of marked objects. The
dispersion of this distribution is described as follows.

σ 2 =
n∑

r=0

r2 · P(r, n, R, N) − μ2 =
n · R(N − n) · (N − R)

N2 · (N − 1)
= n·q·(1−q)·

(
1 − n − 1

N − 1

)

It is essential that these equations are invariant in
terms of exchange of n for R. This means that the “sub-
set” and “marked” are the equivalent and symmetrical
sets.
We use the following z-score for prioritization of

node-specific SP sub-networks.

z − score =
r − n

R

N√
n

(
R
N

)(
1 − R

N

)(
1 − n − 1

N − 1

) =
r − μ

σ

Where:
N is the total number of nodes after filtration;
R is the number of nodes in the input list or the

nodes associated with experimental data;
n is the number of the nodes in the network;
r is the number of the network’s nodes associated with

experimental data or included in the input list;
µ and s are respectively, the mean and dispersion of

the hypergeometric distribution described above.
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Conclusions
Here, we described the basics of analysis of proteomics
data by functional methods. Essentially, all functional
analysis is divided to “protein-based” and “interaction-
based” methods. The former consists of relative enrich-
ment of a list of proteins (proteomics profile) with the
terms of functional ontologies, such as pathways, cellu-
lar processes and disease biomarkers. This is a low reso-
lution, descriptive analysis, helpful for the first look at
the data and functional filtering of proteomics profiles.
This type of analysis is useful for basic biology applica-
tions and relatively large protein sets; preferably over
200 proteins. Enrichment profiles can also be applied
quantitatively, with one or several top scoring ontology
terms representing a functional descriptor. Pathway
descriptors can be applied for clinical sample clustering
or prediction of disease prognosis or toxic effects
(reviewed at [16]).
The interaction-based methods are based on the

assumption that it is the set of physical interactions that
defines the protein functionality in a living cell. There-
fore, evaluation of the local “interactome” for each pro-
tein from proteomics datasets could be used as a flexible
ad powerful research tool. High resolution interactome
analysis is well applicable for drug target identification
and biomarker discovery. Although technically there is
no size limit, Interactome and network tools work best
on relatively small protein sets and particularly useful
when the sample size is too small for statistical analysis
of sufficient power. Deducing companion biomarkers for
drug response in clinical trials is a typical application. In
most clinical study settings, drug sensitivity and resis-
tance biomarkers have to be identified from a limited
number of Phase I or II samples (or pre-clinical in vitro
assays) and validated in much larger and more expensive
Phase III studies. A small sample size often makes statis-
tical tools for “gene signature” calculations irrelevant,
and researchers have to rely on interactome-based meth-
ods, such as “causal reasoning” [22].
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