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Starch and glycogen are the most widespread glucose-based 
reserve polymers in plants and bacteria, respectively. Both are 
homopolysaccharides of α-1,4-linked glucose subunits with 
α-1,6-linked glucose at the branched points. Starch accumu-
lates in the form of a quaternary structure composed of two 
structurally distinct polysaccharides: the highly branched 
amylopectin (which comprises up to ca. 80% of the starch dry 
weight) and the infrequently branched amylose. The synthe-
sis of starch requires the participation of starch synthase (SS), 
which transfers the glucosyl moiety of the activated donor, 
ADP-glucose, to an elongating glucan chain. Arabidospsis pos-
sesses five distinct SS classes: granule-bound SS (GBSS), which 
is required for the synthesis of amylose, and SS classes I, II, III, 
and IV, the latter two being suggested to be absolutely required 
for starch granule initiation.1 Since the initial demonstration 
that ADP-glucose serves as the precursor molecule for both 
plant starch and bacterial glycogen biosynthesis,2-4 it became 
widely considered that ADP-glucose pyrophosphorylase (AGP) 
is the sole source of ADP-glucose linked to bacterial glycogen 
and plant starch biosynthesis. In bacteria, genetic evidence 
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that glycogen biosynthesis occurs solely by the AGP pathway 
has been obtained from the characterization of glgC- mutants 
impaired in AGP such as the Escherichia coli AC70R1–504 
strain.5 These mutants display an apparent glycogen-less pheno-
type when macroscopically analyzed upon staining with iodine 
vapors.6 However, recent studies have shown that these mutants 
can accumulate high levels of glycogen.6 Furthermore, evidence 
has been provided showing the occurrence of various impor-
tant sources, other than GlgC, of ADP-glucose linked to glyco-
gen biosynthesis in different bacterial species.7 In Arabidopsis, 
genetic evidence showing that transitory starch biosynthesis 
occurs solely by the AGP pathway has been obtained from the 
characterization of the adg1–1 and aps1 AGP mutants.8-10 Leaves 
of these mutants display an apparent starch-less phenotype when 
macroscopically analyzed upon staining with iodine solutions, 
and when subjected to quantitative-type enzymatic tests for 
starch measurement. However, during the course of our stud-
ies we found that, independently of culture conditions, both 
adg1–1 and aps1 mutants accumulated ca. 2% of the wild type 
(WT) starch content despite the total lack of AGP activity and 
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only the presence of small starch granules in 
aps1 leaves, but also revealed that their shape 
was comparable to that of starch granules 
occurring in WT leaves.11 Confocal micros-
copy analysis of the starch granule marker 
GBSS–GFP in GBSS–GFP-expressing aps1 
and adg1–1 leaves further confirmed the 
presence of one or two small starch gran-
ules in the chloroplasts of adg1–1 and aps1 
plants.11

In addition to SEM and GFP confocal 
fluorescence microscopic localization meth-
ods, we developed a sensitive method for 
confocal fluorescence microscopy detection 
of starch that allowed to visualize starch 
granules within the chloroplasts of aps1 
and adg1–1 iodine stained leaves.11 In prin-
ciple, this method is based on the classical 
iodine staining protocol for macroscopic 
detection of glycogen and starch.6,12 Leaves 
from 4-weeks old plants cultured in pots at 
ambient CO

2
 (350 ppm) at 20°C under a 

16 h light (90 μmol photons sec–1 m–2) / 8 
h dark regime were fixed by immersion for 
24 h at 37°C into 3.7% formaldehyde and 
0.1 M phosphate buffer (pH 6.5). The fixa-
tive solution was then washed out with 0.1 M 
phosphate buffer (pH 6.5) for 24 h at 37°C. 
Dehydration and decoloration of samples 
was performed by transferring the samples to 
50% (v/v) ethanol for 24 h, and 96% (v/v) 
ethanol for 2 x 24 h, all steps being conducted 
at 37°C (at this stage samples can be stored 
for months at 4°C). Samples were then rehy-
drated in 50% (v/v) ethanol for 30–60 min, 
transferred to distilled water for 20–30 min, 
and stained in iodine solution (2% KI (w/v) 
and 1% I

2
 (w/v)) for 60 min in the darkness 

and at room temperature. Samples were then 
rinsed gently in distilled water for about 1 
min, mounted on microscopic slides, and 
examined using a D-Eclipse C1 confocal 
microscope (NIKON, Japan) with Ar 488 
nm excitation. Starch granule-specific green 
fluorescence emission was detected using 

BA515/30 filter (detector gain setting 7.2), whereas red autofluo-
rescence emission was detected using BA650LP filter (detector gain 
setting 7.2) (as a reference, GFP fluorescence in GBSS-GFP express-
ing plants11 was detected with gain settings ranging between 5 and 
6.5). No green fluorescence emission could be detected in samples 
that were not stained with iodine solution (not shown). Pictures 
were processed by EZ-C1 software (Gold Ver. 3.40). Cropping and 
final arrangement of images were made in Adobe Photoshop CS3, 
Ver. 10.0.1.

Using this method, we could observe large, green fluores-
cence emitting oval/round structures that were negative for red 

protein in the aps1 mutants.11 Furthermore, leaves of aps1 plants 
exposed to microbial volatiles emitted by Alternaria alternata accu-
mulated as much as 40% of the starch normally accumulated by 
illuminated WT leaves.11 Moreover, adg1–1/sex1 and aps1/sex1 
double mutants impaired in the machinery required for normal 
β-amylase-mediated leaf starch mobilization accumulated ca. 3 
fold more starch than leaves of adg1–1 and aps1 mutants at the end 
of the light period.11 Microscopic analyses also provided strong evi-
dence showing the occurrence of transitory starch in leaves of both 
adg1–1 and aps1 mutants.11 Scanning electron microscopy (SEM) 
of starch granules isolated from WT and aps1 leaves confirmed not 

Figure 1. Confocal fluorescence microscopic analysis of iodine stained starch in leaves. Green 
fluorescence emission of iodine-stained starch granules occurring in chloroplasts of WT, aps1, 
ss3/ss4, gbss and sus1/sus2/sus3/sus4. Plants were grown in pots at ambient CO2 (350 ppm) at 
20°C under a 16 h light (90 μmol photons sec–1 m–2) / 8 h dark regime. Leaves were harvested at 
the end of the light period, fixed, stained as described in the main text, and examined using a 
D-Eclipse C1 confocal microscope with Ar 488 nm excitation using BA515/30 filter (detector gain 
setting 7.2). Note that green fluorescence associated only with oval/round structures that were 
identified as starch granules. Bar = 5 μm.
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autofluorescence, and identified as starch granules in bright-field 
images of WT plants (Fig. 1). Consistent with the presence of 
reduced starch content in aps1 leaves, the green fluorescence 
emitted by iodine stained starch granules in chloroplasts of 
mesophyll cells of aps1 leaves was much smaller than that of WT 
leaves (Fig. 1). We also analyzed mesophyll cells of the ss3/ss4 
mutant impaired in SSIII and SSIV isoforms that are suggested 
to be absolutely required for starch granule initiation.1 Although 
Szydlowski et al.1 reported that this double mutant displays a 
starch-less phenotype, a more recent work has provided evidence 
that ss3/ss4 leaves accumulate as much as 10% of the WT starch 
content.13 Consistently, analyses performed using the method for 
confocal fluorescence microscopic observation of starch granules 
confirmed the occurrence of starch granules in mesophyll cells of 
the ss3/ss4 mutant (Fig. 1).

GBSS is involved in the synthesis of amylose, and impair-
ments in this activity result in changes of amylopectin 
structure.14 Whether the method for confocal fluorescence 
microscopic observation of starch granules is suitable to visual-
ize starch granules with reduced amylose content was investi-
gated by using a T-DNA gbss Arabidopsis mutant impaired in 
GBSS activity (GABI_914G01). As shown in Figure 1 these 
analyses revealed that starch granules from gbss leaves emitted 
green fluorescence.

In many heterotrophic organs, sucrose synthase (SuSy) activ-
ity acts as a major determinant of sink strength that highly con-
trols the conversion of incoming sucrose into starch. SuSy has 
also been suggested to be involved, at least in part, in the sucrose-
starch conversion process in autotrophic organs.15,16 Earlier stud-
ies17,18 have shown that different organs of the sus1/sus2/sus3/sus4 
quadruple Arabidopsis mutant accumulate WT starch content. 
We employed the method for confocal fluorescence microscopic 
observation described in this work to visualize the starch gran-
ules in the chloroplasts of sus1/sus2/sus3/sus4 mutant. As shown 
in Figure 1, these analyses revealed the occurrence of large starch 
granules in the sus1/sus2/sus3/sus4 mesophyll cells, which is con-
sistent with the view that sus1/sus2/sus3/sus4 leaves accumulate 
nearly WT starch content.

The method for confocal fluorescence microscopic observa-
tion of iodine stained branched homopolysaccharides of α-1,4- 
and α-1,6-linked glucose molecules was valid not only for starch 
granules occurring in plant cells, but also for glycogen gran-
ules occurring in bacteria. E. coli cells cultured in M9 mini-
mal medium (4 mM NaCl, 9 mM NH

4
Cl, 0.1 mM CaCl

2
, 2 

mM MgSO
4
, 48 mM Na

2
HPO

4
 and 22 mM KH

2
PO

4
) supple-

mented with glucose were harvested at the end of the exponen-
tial growth,19 fixed by immersion for 1 h in 3.7% formaldehyde 
and 0.1 M phosphate buffer (pH 6.5), and centrifuged at 6000 
rpm for 5 min. The pellet thus obtained was washed with 0.1 M 
phosphate buffer and stained in iodine solution (2% KI (w/v) 
and 1% I

2
 (w/v)) for 10 min. Stained cells were then transferred 

to microscopic slides and examined as described above using a 

Figure 2. Confocal fluorescence microscopic observation of iodine 
stained glycogen granules in E. coli. E. coli cells were cultured in M9 
minimal medium supplemented with glucose, harvested at the end of 
the exponential growth and stained as described in the main text. Note 
the presence of green fluorescence dots in the poles of WT cells, but 
not in the glycogen-less ΔglgBXCAP cells lacking the whole glycogen 
biosynthetic machinery. Bar = 2.5 μm

D-Eclipse C1 confocal microscope (NIKON, Japan) with Ar 
488 nm excitation and green emission detected using BA515/30 
filter. As shown in Figure 2, these analyses revealed the presence 
in the poles of the cells of fluorescence emitting iodine-stained 
glycogen, which is consistent with previous electron microscopy 
studies on topographic distribution of glycogen granules in E. 
coli.19 In clear contrast, glycogen-less ΔglgBXCAP mutants lack-
ing the whole glycogen biosynthetic machinery20 did not exhibit 
any green fluorescence.

The method for confocal fluorescence microscopic observa-
tion of iodine stained starch and glycogen granules was valid 
not only for structures occurring inside the cell, but also for 
pure, isolated polymers. Potato starch, amylose and amylopec-
tin were stained with iodine solution (see above), rinsed gen-
tly in distilled water for about 1 min, mounted on microscopic 
slides, and examined using a D-Eclipse C1 confocal microscope 
with Ar 488 nm excitation. As shown in Figure 3, in all cases 
green fluorescence emission was detected using BA515/30 filter 
(detector gain setting 7.2–7.5). No green fluorescence emission 
could be detected in samples that were not stained with iodine 
solution (not shown).
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