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Abstract
Cellular reprogramming and generation of induced pluripotent stem cells (iPSCs) from adult cell
types has enabled the creation of patient-specific stem cells for use in disease modeling. To date,
many iPSC lines have been generated from a variety of disorders, which have then been
differentiated into disease-relevant cell types. When a disease-specific phenotype is detectable in
such differentiated cells, the reprogramming technology provides a new opportunity to identify
aberrant disease-associated pathways and drugs that can block them. Here, we highlight recent
progress as well as limitations in the use of iPSCs to recapitulate disease phenotypes and to screen
for therapeutics in vitro.

Introduction
Understanding the molecular basis of many diseases have been hampered by the lack of
appropriate in vitro cell culture models that accurately reflect the disease phenotypes. The
availability of such models is also crucial for the discovery and development of therapeutics.
However, primary human cells and especially disease-bearing ones are difficult to obtain
and propagate in culture for extended periods of time. Since their discovery by Takahashi
and Yamanaka and application to the human context, induced pluripotent stem cells (iPSCs)
have emerged as a way to generate disease-specific cell types [1–5]. With this technology,
somatic cells isolated from patients (in most cases fibroblasts from skin biopsies), can be
reprogrammed into a pluripotent state by overexpressing four transcription factors (Oct4,
Sox2, Klf4 and c-Myc)[1]. The resulting iPSCs can be expanded in culture virtually
indefinitely, and then be differentiated into cell types of interest.

The first disease-specific iPSCs were derived from patients with familial amyotrophic lateral
sclerosis (ALS) and a number of genetic diseases with either Mendelian or complex
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inheritance [6,7]. Since then an ever-growing number of disease-specific iPSCs are being
generated from primary cell samples from patients afflicted with a variety of genetically
inherited and sporadic diseases affecting virtually every organ system (Table 1). In general,
patient-specific iPSCs are then differentiated to the key cell types that are affected in the
disease in question. The next step is the identification of disease-associated phenotypes that
are readily detectable by molecular and/or cellular assays. Once a robust assay is identified,
larger scale screens can be undertaken to discover key disease pathways and therapeutics
(Figure 1).

In this review we will highlight some of the salient themes that emerge from studies reported
to date and point out some of the promises and limitations of using iPSCs in disease
modeling.

Identification of disease relevant cellular phenotypes
For iPSC-based disease modeling to be meaningful, a relevant cellular or molecular
phenotype must be observable in either the derived iPSCs or their differentiated progeny.
Monogenic diseases affecting a specific cell type that can efficiently be derived from
pluripotent stem cells are the best candidates for this approach. Some examples include
neurological diseases such as spinal muscular atrophy (SMA) and Rett syndrome, metabolic
diseases such as α1-antitrypsin deficiency, familial hypercholesterolemia and glycogen
storage disease type 1A, and cardiovascular diseases such as Timothy syndrome and Type 1
and 2 Long QT syndrome. Upon differentiation into disease-relevant cell types, most of
these iPSCs manifest an observable phenotype. SMA-specific iPSCs displayed progressive
loss of motor neurons upon differentiation, which may be similar to the developmental loss
of this cell type during disease progression[8]. Neurons derived from Rett syndrome-specific
iPSCs had reduced spine density, smaller soma size and altered calcium signaling when
compared to controls[9]. For the metabolic diseases mentioned above, differentiation of
iPSCs into hepatocyte-like cells resulted in several phenotypes including aggregation of
misfolded α1-antitrypsin in the endoplasmic reticulum, deficient LDL receptor-mediated
cholesterol uptake, and elevated lipid and glycogen accumulation[10]. In the modeling of
cardiovascular diseases, disease-specific phenotypes manifest themselves in the
differentiated cardiomyocytes such as the prolonged action potentials of Long QT and
Timothy syndrome-specific cells [11,12]. In certain cases, the disease phenotype could also
be observed upon spontaneous differentiation of iPSCs in teratoma assays, as recently
shown for the absence of dystrophin expression in muscle-like tissues derived from
Duchenne muscular dystrophy-specific iPSCs [13].

A recent study by Brustle and colleagues highlights some of the advantages of iPSCs-based
disease modeling. Spinocerebellar ataxia (also called Machado-Joseph disease) is a late-
onset neurodegenerative disease caused by the expansion of polyglutamine (CAG) repeats in
the MJD1 gene. Upon proteolytic cleavage, the MJD1 gene product ataxin3 (ATXN3) is
thought to cause SDS-insoluble protein aggregates which then have a critical role in
neurodegeneration. To explore the role of neuron specific proteolysis in initiating the disease
process, Koch et al. first derived iPSCs from MJD patients and showed that the expanded
MJD allele was expressed in both the pluripotent cells and their differentiated neuron-like
progeny[14]. They then showed that glutamate-induced excitation of these differentiated
cells initiates Ca2+ - dependent proteolysis of ATXN3, which is followed by aggregate
formation. Interestingly, this observed phenotype could be abrogated by the inhibition of
Ca2+ -dependent calpain proteases. This cell model manifest a neuron-specific phenotype;
aggregate formation was not observed in the iPSCs, fibroblasts or glia, thus providing an
explanation for the neuron-specific manifestation of the disease phenotype[14]. Although
the molecular mechanisms linking microaggregate formation to late-stage
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neurodegeneration remains elusive, this study shows how aspects of a late-onset disease can
also be modeled in a cell-type specific manner.

Unfortunately, there have been numerous studies in which disease-specific iPSCs were
generated but no phenotype has been assessed or observed (Table 1). For some diseases, this
is most likely due to lack of suitable differentiation protocols to the affected cell type and/or
specific assays to detect the molecular defect. For example, modeling hematological
disorders such as sickle-cell anemia or β-Thalassemia, and ADA-SCID has been hampered
by a lack of pure in vitro derivation protocols for the specific blood lineages most relevant to
these conditions (beta-globin expressing adult red blood cells, and T cells, respectively). In
another example, iPSCs generated from sporadic Parkinson's disease patients could in fact
be efficiently differentiated into dopaminergic neurons, but the resulting cells did not show
significant differences in various in vitro assays, when compared to control iPSC-derived
cells [15,16]. It remains to be seen whether other late-onset diseases that have complex
environmental and genetic causes will yield detectable in vitro phenotypes.

Disease-specific iPSC-derived cells as discovery and screening platforms
When a robust disease phenotype is identified in patient-specific iPSCs or their
differentiated progeny, such cells can then be used to discover new therapeutic compounds
or test existing candidates. One of the first demonstrations that disease-specific iPSCs can be
used to test therapeutic compounds came from iPSCs generated from Familial dysautonomia
(FD), a rare genetic disorder affecting sensory and autonomic neurons due to mutations in
the I-κ-B kinase complex-associated protein (IKBKAP) gene. These mutations result in a
tissue-specific splicing defect that lowers the levels of IKAP protein. Lee et al. derived
iPSCs from a FD patient which they then differentiated into neural precursors cells that
exhibited three FD-associated phenotypes: defective IKBKAP splicing, decreased rate of
neurogenesis, and reduced migration[17]. Such iPSC-derived cells were then used to test a
number of candidate compounds for their ability to affect any of these phenotypes. One
compound, kinetin, could partially reverse the aberrant splicing and the neurogenic
differentiation and migration defects[17].

A growing number of disease-specific IPSC-derived cells are being used to test candidate
small molecules. For example, motor neuron survival defects observed in SMA-specific
cells were partially abrogated by the application of two compounds, valproic acid and
tobramycin, which increased the level of SMN protein in the patient-derived iPSCs [8]. In
Rett-iPSC derived neurons, IGF1 treatment increased synapse formation[9]. In Long QT
syndromes, cardiomyocyte-specific defects could be attenuated by beta-blockers and several
ion channel blockers [11,18]. The antipsychotic loxapine has been shown to ameliorate the
diminished neuronal connectivity and decreased neurite number phenotype of
Schizophrenia-iPSC-derived neurons[19]. All in all, these examples show that the stage is
set for the use of disease-specific iPSC-derived cells to be used in larger screens aimed to
discover new therapeutic agents that will block the disease-associated phenotypes. Given the
disease-relevance of human iPSC-based drug screens, there is considerable hope for
therapeutic development.

Limitations of iPSCs
As enumerated above, iPSC-based disease modeling offers significant potential in drug
discovery. However, as it currently stands, there are also limitations to this technology,
which may preclude its use for some types of diseases. Certain genetic lesions inhibit or may
even preclude the derivation of iPSCs from patients by interfering with the reprogramming
process itself. A case in point comes from the attempt to model Fanconi anaemia (FA), the
most common genetic bone marrow failure syndrome that is caused by recessive autosomal
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or X-linked mutation in one of 13 genes in the FA pathway. This pathway plays an
important role in DNA repair, and it was recently shown that reprogramming leads to
activation of the FA pathway, increased DNA double strand breaks and senescence [20].
Initial attempts to reprogram FA fibroblasts were unsuccessful unless the genetic defect was
first corrected with a viral vector [21]. Therefore it was concluded that restoration of the FA
pathway is a prerequisite for iPSC generation from FA patients [21]. Subsequent work has
shown that it is possible to reprogram FA fibroblasts, albeit at a very low efficiency [20].
Nevertheless, these studies suggest that in cases where the diseases caused by mutations that
affect DNA repair and senescence pathways, it may be difficult to generate iPSCs from
patient cells. It should be noted that a number of small molecules have been shown to
improve reprogramming efficiency of human fibroblasts and could therefore prove useful in
such cases [22–26].

Another example of the limitation of iPSC-based disease modeling comes from studies of
Fragile X syndrome, the most common form of inherited mental retardation. Fragile X is
caused by silencing of the FMR1 gene due to CGG triplet expansion in its 5′UTR, which
then results in aberrant DNA methylation and accumulation of repressive histone marks.
Urbach et al. successfully derived iPSC lines from Fragile X patients, and observed that the
FMR1 gene remained inactive and was thus refractory to factor-based epigenetic
reprogramming [27]. This contrasted to the active FMR1 gene expression and down-
regulation following differentiation in embryonic stem cell (ESC) lines derived from
embryos affected by Fragile X [27]. Thus, in this context, Fragile X-iPSCs could not model
the silencing of the FMR1 gene that occurs during development, but ESC lines could. There
is also evidence indicating that other epigenetic disorders such as imprinting defects are not
reset by somatic cell reprogramming [28]. Sheridan et al. recently derived additional Fragile
X iPSCs and observed clonal variation among the iPSC lines with respect to CGG-repeat
length, CpG methylation and expression levels of FMR1 suggesting that iPSCs may not
faithfully reproduce these phenotypes present in the original fibroblasts [29]. Furthermore,
in one case, the patient derived fibroblast line was a heterogeneous mixture of normal and
expanded-repeat cells, and this line yielded individual iPSC clones bearing either the normal
or expanded-repeat lengths, suggesting that reprogramming can capture single target cells
with variable properties [29]. This point highlights the clone-to-clone variability that can
confound and complicate disease models while also being potentially useful as a platform
for line-to-line comparison from specific individuals.

Whether clonal variation among different iPSC lines from patients influences the observed
disease phenotype remains an important concern. Agarwal et al. and Batista et al. both
reprogrammed fibroblasts from patients afflicted with dyskeratosis congenita (DC), a
premature aging syndrome caused by mutations in telomerase components [30,31]. While
both groups observed increases in expression of multiple members of the core telomerase
machinery in the reprogrammed iPS cells, there was clonal variation with respect to
maintenance of telomere length. Agarwal et al. observed that some iPSCs recovered enough
telomerase activity to regrow telomeres, whereas in the study by Batista et al. DC-specific
iPSCs continued to show telomere decay [32]. Given these different outcomes, one must
remain wary of the clonal variation that results from the technical inefficiency and infidelity
of reprogramming when iPSC-based disease models are generated. In general, the number
and location of viral integrations, heterogeneity in the starting somatic cell populations,
passage numbers and culture conditions as well as genetic alterations introduced during
reprogramming are all likely to contribute to the clonal variability among iPSC lines[33]
[34]. In addition, there is growing evidence that epigenetic remodeling can be incomplete,
thus influencing the consistency of disease phenotypes [35-39]. Therefore, multiple clones
from multiple patients will most likely need to assessed before a truly representative and
faithfully reprogrammed iPSC-based disease model is established.
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One potential way to overcome the variability among disease-specific iPSC lines, especially
with respect to monogenic diseases, is to generate genetically defined sibling cell lines.
Engineered zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases
(TALENs) have emerged as important tools to achieve “genome editing” in pluripotent stem
cells [40-42]. This technology can be used to correct the disease-specific mutations by gene
targeting or generate de novo disease-specific mutations in wild-type lines. This approach
has recently been to used to model susceptibility variants for familial Parkinson's disease by
genetically modifying single base pairs in the alpha-synuclein gene[43]. Genome editing has
also been employed for X-linked chronic granulomatous disease where a wild-type gene has
been inserted into a ZFN-induced break induced at a potential “safe harbor” locus in iPSCs
and for sickle-cell anemia in which case correction of mutations in the beta-globin gene has
been achieved by either ZFNs or by homologous recombination [44-46]. Such panels of
isogenic disease and control cell lines that differ only at precise disease-associated loci are
going to be useful in studying the effects of the mutations in question.

Modeling complex diseases using iPSCs will be especially challenging. First of all, robust
differentiation protocols for disease-relevant cell types may be lacking. Modeling of
diabetes would be greatly facilitated by the discovery of reliable differentiation methods for
generating pancreatic β-cells in vitro from iPSCs. Although progress has been made on this
front, routine production of β-cells from diabetic patients to be used in genetic and drug
screens are still some time away [47]. In addition, certain disease-associated phenotypes
might arise from non-cell autonomous interactions between two different cell types. In such
cases, it will be essential to differentiate the iPSCs into multiple different cell lineages and
to generate in vitro co-culture assays. For example, Di Giorgio et al. have shown that in a
minority of ALS cases resulting from SOD1 mutations, neurodegeneration may be due to
the non-cell autonomous effect of the glial cells on the motor neurons [48]. Finally, for late-
onset diseases that have large environmental components, it will be important to identify
ways by which disease latency can be shortened or environmental conditions recreated by
the applications of exogenous stresses [49].

Conclusions
The growing number of studies reporting the generation of disease-specific iPSCs is a
testament to the potential of this technology in drug and pathway discovery. However, it is
also becoming increasingly apparent that iPSC-based disease modeling will have to
incorporate more reliable protocols for directed differentiation into mature cell types in
order to realize its full potential. Furthermore, more robust disease phenotypes, especially
for complex and common diseases, will have to be detected and assayed. Despite the
progress described above, it should be noted that all the published studies to date have tested
the effects of previously reported candidate compounds on disease-specific iPSCs. As such,
these studies constitute only proof-of-principle demonstrations for larger higher throughput
screens to discover novel agents that can potentially reverse the disease phenotypes
observed in iPSCs-derived cells. The full benefit of the iPSC platform for disease modeling
and drug development, although promising, remains to be proven.
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Figure 1. Disease modeling and drug discovery using patient-derived iPSCs
Generation of an iPSC-based disease model starts with cells isolated from patients, usually
by a skin punch biopsy. Upon reprogramming, several iPSC clones are selected, expanded
and characterized. High-quality iPSCs are then differentiated into mature cell types
exhibiting a disease-specific phenotype that is readily detected by cellular and/or molecular
assays. High-throughput screens based on such assays can be carried out to discover
therapeutics that reverse the disease phenotypes. Hits from these screens are candidates for
lead optimization by medicinal chemistry, and then further preclinical studies.
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Table 1
Summary of published human disease-specific iPSCs

Disease Molecular defect Disease phenotype observed / References

ADA-severe combined immunodeficiency Mutations in ADA Not determined [7].

Adrenoleukodystrophy, X-linked Mutation in ABCD1 Very long chain fatty acid accumulation in
oligodendrocytes [50].

Alzheimer's disease, familial Mutation in PS1 or PS2, Duplication of
APP

Increased amyloid β42 secretion[51]. Higher
levels of the pathological markers amyloid-
β(1–40), phospho-tau and active glycogen
synthase kinase-3β [52].

Alzheimer's disease, sporadic Unknown Higher levels of the pathological markers in
one out of two patient-derived lines [52].

Amyotrophic lateral sclerosis (ALS), familial Mutation in SOD1 or VAPB Not determined [6]. VAPB protein levels are
reduced in ALS8-derived motor neurons [53].

Angelman syndrome Loss of maternal UBE3A allele Reduced UBE3A expression upon neuronal
differentiation [28].

Atypical Werner syndrome Mutation in LMNA Alterations in the nuclear membrane, slow
proliferation, senescence [54].

α1-antitrypsin deficiency Mutation in α1-antitrypsin Loss of α1-antitrypsin expression [10][55].

Becker muscular dystrophy Mutation in DMD Not determined [7].

β-thalassaemia Deletion in β-globin gene Not determined [56] [57].

Chronic granulomatous, X-linked CYBB deficiency Neutrophils differentiated from X-CGD iPSCs
lack ROS production [44].

Crigler–Najjar syndrome Mutation in UGT1A1 Not determined [58].

Cystic fibrosis Mutations in CFTR Not determined [55].

Diabetes, Type1 Multifactorial; unknown Not determined [7][59].

Down syndrome Trisomy 21 Not determined [7].

Dyskeratosis congenita Mutations in DKC1, TERT or TCAB1 Increased expression of telomerase
components [30]. Progressive telomere
shortening, loss of self-renewal [31].

Duchenne muscular dystrophy Mutation in DMD Not determined [7]. Loss of dystrophin
expression in iPSC-derived muscle tissue [13].

Dystrophic epidermolysis bullosa Mutations in COL7A1 Lack of expression of type VII collagen [60]
[61].

Emanuel Syndrome Partial trisomy 11;22 Not determined [62]

Fanconi Anemia FANCA or FANCC deficiency Corrected loss of FANCA function [20][21].

Familial dysautonomia Mutation in IKBKAP Defects in neural crest differentiation
migration [17].

Familial hypercholesterolaemia Mutation in gene encoding LDL receptor Reduced ability to incorporate LDL in iPSC-
derived hepatoctyes [10].

Fragile X syndrome Trinucleotide (CGG) expansion, silencing
of FMR1

Not determined [27][29].

Friedreich's ataxia (FRDA) Trinucleotide GAA repeat expansion in
FXN

Reduced FXN mRNA expression [63].

Gaucher's disease Mutation in β-glucocerebrosidase Impaired lysosomal protein degradation,
accumulation of α-synuclein, and
neurotoxicity [64].

Glycogen storage disease type 1A Deficiency in glucose-6-phosphate Hyperaccumulation of glycogen [10] [58].

Gyrate atrophy Mutation in OAT Not determined [65].
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Disease Molecular defect Disease phenotype observed / References

Hereditary tyrosinaemia type 1 Mutation in FAH Not determined [58].

Huntington's disease Trinucleotide expansion in huntingtin gene Not determined [7][66].

Hutchinson–Gilford progeria syndrome Mutation in LMNA Increased senescence, progerin accumulation,
DNA damage, nuclear abnormalities [67][68]
[54].

Inherited dilated cardiomyopathy Mutation in LMNA Increased senescence and apoptosis in iPSC-
derived fibroblasts, nuclear abnormalities [54].

LEOPARD Syndrome Mutation in PTPN11 Increased cardiomyocyte size, decreased
MAPK signaling [69].

Lesch–Nyhan syndrome (carrier) Heterozygous for HPRT1 Not determined [7].

Long QT syndromes 1 and 2 Mutations in KCNQ1 or KCNH2 Increased cardiomyocyte depolarization [11]
[18]

MPS type I (Hurler syndrome) IDUA deficiency Not determined [70].

MPS type IIIB α-N-acetylglucosaminidase deficiency Defects in storage vesicles and Golgi
apparatus [71].

Osteogenesis imperfect Mutations in COL1A1 or COL1A2 Not determined [72]

Parkinson's disease, sporadic Unknown Not determined [7][15][16][73].

Parkinson's disease, familial Mutations in LRRK2 or PINK1 or
triplication of SNCA

Sensitivity to oxidative stress in LRRK2-
mutant neurons[74]. Impaired mitochondrial
function in PINK1-mutant dopaminergic
neurons[75]. Increased α-synuclein protein in
neurons[76].

Patau syndrome Trisomy 13 Not determined [62].

Polycythaemia vera Mutation in JAK2 Enhanced erythropoiesis [77]

Pompe disease Mutations in GAA High levels of glycogen and defective cellular
respiration in iPSC-derived cardiomycyte-like
cells [78].

Prader-Willi syndrome Paternal deletion of 15q11-q13 Imprint disorder [79][28].

Progressive familial hereditary cholestasis Unknown Not determined [58].

Retinitis pigmentosa Mutations in RP1, RP9, PRPH2 or RHO Decreased numbers of differentiated rod cells
[80].

Rett syndrome Mutation in MECP2 Decreased synapse number, reduced spine
density [9][81][82].

Schizophrenia Unknown Decreased neuronal connectivity, neurite
number, and PSD95 and glutamate receptor
expression [19].

Scleroderma Unknown Not determined [55].

Shwachman–Bodian– Diamond syndrome Mutations in SBDS Not determined [7].

Sickle cell anaemia Mutation in β-globin gene Not determined [55][46].

Spinal muscular atrophy (SMA) Mutations in SMN1 Loss of SMN gene expression, reduced size
and number of motor neurons [8].

Spinocerebellar ataxia type 3 Trinucleotide expansion in MJD1 gene Neuron-specific formation of SDS-insoluble
aggregates [14].

Timothy Syndrome Mutations in CACNA1C Increased cardiomyocyte depolarization [12].

Turner Syndrome Monosomy X Not determined [62].

Wilson's disease Mutations in ATP7B Defective copper transport in iPSC-derived
hepatocyte-like cells [83].

Warkany Syndrome 2 Trisomy 8 Not determined [62].
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