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Abstract
The neurotrophin receptor, tropomyosin-related kinase B (TrkB), is required for epileptogenesis in
the kindling model. The role of a closely related neurotrophin receptor, TrkC, in limbic
epileptogenesis is unknown. We examined limbic epileptogenesis in the kindling model in TrkC
conditional null mice, using a strategy that previously established a critical role of TrkB. Despite
elimination of TrkC mRNA, no differences in development of kindling were detected between
TrkC conditional null and wild type control mice. These findings reinforce the central role of
TrkB as the principal neurotrophin receptor involved in limbic epileptogenesis.
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INTRODUCTION
Although simultaneous overexpression of exogenous BDNF and FGF2 can limit
epileptogenesis in the pilocarpine model (Paradiso et al., 2009), converging lines of
evidence demonstrate that excessive activation of the receptor tyrosine kinase, TrkB, by
endogenous ligands is critical for induction of limbic epileptogenesis (reviewed by
McNamara et al., 2006; Brooks-Kayal et al., 2009). Specifically, the genetic perturbation of
brain-derived neurotrophic factor (BDNF) (Kokaia et al., 1995; Croll et al., 1999; He et al.,
2004; Barton and Shannon, 2005) or its receptor, tropomyosin-related kinase B (TrkB)
(Lähteinen et al., 2002; He et al., 2004, 2010; Kotloski and McNamara, 2010; Heinrich et
al., 2011), have convincingly demonstrated that this particular neurotrophin pathway is
required for limbic epileptogenesis. In contrast to TrkB, whether TrkC is activated by
seizures or is required for epileptogenesis has not been investigated. Nevertheless, this
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remains a relevant question because the elimination of just one allele of neurotrophin-3
(NT-3), an endogenous agonist of TrkC, has been shown to delay epileptogenesis in the
kindling model (Elmer et al., 1997).

We examined the role of TrkC in limbic epileptogenesis using a genetic strategy identical to
that which established a critical role for TrkB in the kindling model (He et al., 2004).
Because deletion of TrkC from the germline is lethal shortly after birth (Klein et al., 1994),
we used a conditional approach in which mice with floxed alleles of TrkC were mated with
mice expressing Cre recombinase driven by a synapsin-1 promoter (Syn-Cre), resulting in
mice in which both TrkC alleles were eliminated from a subset of central nervous system
neurons. We assessed epileptogenesis by quantifying development of kindling and used both
RT-PCR and in situ hybridization to verify deletion of TrkC mRNA.

METHODS
All animal experiments were carried out in accordance with current IACUC guidelines
under animal protocol A298-09-03. Detail of the animals used, genotyping, qRT-PCR, in-
situ hybridization, electrode implantation and kindling procedure are described in the
Supplemental Methods section.

Electrode implantation and kindling procedure
Surgical and kindling procedures followed that of He et al., 2010 (See supplemental
methods). In brief, the electrographic seizure threshold (EST) was determined by
administering a 1 sec train at 50 μA with additional stimulations increasing by 25 μA (at 1
min intervals) until an electrographic seizure was detected. Stimulations were subsequently
administered twice per day at an intensity of the EST until the animals exhibited 3
consecutive seizures of class 4 or greater. Seizures were classified according to a modified
Racine (1972) scale. Kindling data are presented as the mean ± SEM for each group.

RESULTS
Neuron-specific TrkC conditional knockout mice

To selectively eliminate TrkC expression from CNS neurons, mice in which exon 14 of the
TrkC gene was flanked by loxP sites (Chen et al., 2005) were crossed to Syn-Cre transgenic
mice. Reduction of TrkC mRNA was evidenced by qRT PCR study of hippocampal
homogenates which revealed levels in TrkC−/− mutant mice approximating 57.2 ± 0.2% of
WT mice (p<0.05, Figure 1D, right and middle). Importantly, the floxed TrkC mice in the
absence of Syn-Cre exhibited no decrease in TrkC mRNA levels (Figure 1D, right) relative
to non-floxed wildtype controls (Figure 1D, left). In situ hybridization revealed striking
reductions of TrkC mRNA in the dentate granule and CA3 pyramidal cells with lesser
reductions in CA1 pyramidal cells of TrkC−/− mutant compared to WT mice (Figure 1A, B,
C), a pattern identical to that found with TrkB mRNA using the same Cre driver line (He et
al., 2004). Together these findings demonstrate the efficacy of Cre recombinase in reducing
TrkC mRNA expression.

Development and persistence of kindling is equivalent in WT and TrkC−/− mice
The development of kindling as measured by electrophysiological and behavioral responses
to stimulation of amygdala proceeded similarly in WT and TrkC−/− mice. No differences
were found between WT (n=7) and TrkC−/− (n=7) mice with respect to the following
measures: First, the current required to evoke the initial electrographic seizure was similar in
WT and TrkC−/− mice (279 ± 42 μA and 271 ± 50 μA for WT and TrkC−/−, respectively).
Second, the duration of the initial electrographic seizure and the progressive lengthening of
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electrographic seizure duration were similar in WT and TrkC−/− mice (Fig. 2A). Third, the
development of behavioral seizure intensity progressed similarly in mice of both genotypes
(Fig. 2B). No significant differences were found in the number of stimulations required to
evoke the first clonic motor seizure (class 4 or greater) or the 3rd consecutive clonic or tonic
motor seizure lasting at least 10 sec (Fig 2C).

To determine whether a null mutation of TrkC influenced the persistence of the
hyperexcitability following the completion of kindling, WT (n=7) and TrkC−/− mutants
(n=7) were stimulated following a stimulation-free period of 2 weeks after the 3rd

consecutive class 4 or 5 seizure had been evoked. No significant differences were detected
in EST assessed after a 2 week stimulation-free period (average ESTs of 338 ± 132 μA and
343 ± 144 μA of WT and TrkC−/− mutants). Moreover, the number of additional
stimulations required to evoke a class 4 or 5 seizure did not differ between the WT and
TrkC−/− mice (1.9 ± 0.4 and 1.2 ± 0.2 stimulations, respectively; Fig 2C, far right column).
In addition, there was no significant difference in the duration of electrographic seizure
(23.1 ± 1.2 and 26.0 ± 1.7 sec) or seizure class evoked in the WT and TrkC−/− mutants.
Thus, the persistence of the hyperexcitable state established by kindling was unaffected in
the TrkC−/− mutant mice.

DISCUSSION
The objective of this study was to test the hypothesis that a conditional deletion of TrkC
inhibits epileptogenesis in the kindling model. Two principal findings emerged: 1) crossing
Syn-Cre transgenic mice to floxed-TrkC mutant mice reduced TrkC mRNA content as
assessed by two independent methods; 2) this reduction of TrkC content did not affect
epileptogenesis as revealed by the development of kindling or persistence of
hyperexcitability. We conclude that the partial reduction of TrkC expression in this
conditional mutant mouse does not modify limbic epileptogenesis in the kindling model.

To compare the effects of TrkC with TrkB on epileptogenesis in the kindling model, the
identical genetic strategy using the same Cre driver line was used. Despite reductions of
TrkC in a pattern similar to that observed for TrkB in earlier studies (He et al., 2004), no
differences were detected in the development of kindling in TrkC−/− compared to WT
control mice. The contrast is striking because the development of kindling was eliminated
altogether in the conditional TrkB−/− mice (He et al., 2004). Even more modest reductions
of TrkB content in the conditional TrkB+/− heterozygous mice resulted in a 50% increase in
the number of stimulations required to induce the development of kindling (He et al., 2004).

The absence of detectable inhibition of the development of kindling in the conditional
TrkC−/− null mutant mice is particularly surprising in light of previous studies of NT-3
heterozygotes in the kindling model. That is, NT-3, a neurotrophin with high affinity and
efficacy for TrkC (Lamballe et al., 1991), is thought to function as the principal
neurotrophin agonist of TrkC in vivo. Mutant mice carrying just one allele of NT-3 exhibit a
50% increase in the number of stimulations required to induce kindling (Elmer et al., 1997).
While the present results were surprising in light of the studies of NT-3+/− mice, our
findings are consistent with earlier studies of Binder et al. (1999) that examined the effects
on kindling development of intraventricular (ICV) infusion of recombinant proteins in which
the ligand recognition domain of TrkA or B or C was fused in frame with the Fc portion of
human IgG1, proteins that bind to and scavenge the endogenous neurotrophins. Whereas
ICV infusion of TrkB-Fc markedly inhibited the development of kindling, infusion of either
TrkA- or TrkC-Fc had no effect (Binder et al., 1999). The failure of ICV infused TrkC-Fc to
inhibit kindling development is consistent with the similarity of kindling development in
WT and TrkC−/− conditional mutant mice in the present study. The possibility that
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endogenous NT-3 promotes the development of kindling by activation of TrkB seems
unlikely because ICV TrkC-Fc would be expected to scavenge NT-3 and partially inhibit
development of kindling, yet it did not (Binder et al., 1999).

The present findings underscore several unanswered questions arising with respect to NT-3
in epileptogenesis. What is the cellular and molecular mechanism by which the development
of kindling is inhibited in NT-3+/− mice? What is the functional consequence of the seizure-
induced reduction of NT-3 mRNA described in multiple animal models (Gall, 1993; Kokaia
et al., 1996; Elmer et al., 1997; Ferencz et al., 1997)? Does TrkC undergo activation
following seizures, a possibility suggested by the small increases of pTrk immunoreactivity
detected in Western blot analyses of TrkB mutant mice (He et al., 2010)? Addressing this
last question is hampered by the lack of antibodies that selectively detect TrkC in western
blot or by immunoprecipitation. The answers to these questions notwithstanding, the present
results demonstrate that TrkC exerts neither a detectable pro- nor anti-epileptogeneic action
in the kindling model. These findings underscore the specificity of TrkB among the
neurotrophin tyrosine kinase receptors regulating epileptogenesis in animal models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
In situ hybridization and qRT PCR of TrkC mRNA in the hippocampus of WT and TrkC−/−

mutant mice. A–C) The granule cell layer (GCL) of the dentate gyrus adjacent to the hilus
(H) and molecular layer (ML) exhibited a clear decrease in TrkC mRNA in the TrkC−/−

mutant mice (A, right panel) relative to WT controls (A, left panel). The CA3 pyramidal
layer (P) adjacent to the stratum oriens (SO) and stratum lucidem (SL) exhibited a clear
decrease in TrkC mRNA in the TrkC−/− mutant mice (B, right panel) relative to WT controls
(B, left panel). The TrkC mRNA levels in the CA1 pyramidal layer (P) adjacent to the SO
and stratum radiatum (SR) exhibited a modest reduction in the TrkC−/− mutant mice (C,
right panel) compared to WT controls (C, left panel). Scale bar = 50 μm. D) qRT PCR
analysis demonstrating TrkC−/− (n=7; Cre+, floxed/floxed) mutant mice exhibit reduced
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hippocampal mRNA content (†, p<0.05) relative to WT (n=3; Cre−, floxed/floxed) and non-
floxed WT* (n=4) controls.
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Figure 2.
Kindling development is equivalent in WT (n=7; open squares) and TrkC−/− (n=7; closed
squares) mutant mice. A&B) Kindling development is presented as electrographic seizure
duration (A) and behavioral seizure class (B). Stimulation number (x axis) refers to the
number of stimulations that evoked an electrographic seizure with duration of least 5 sec. C)
Number of stimulations to reach different seizure classes (y axis) in WT and TrkC−/− mice.
Left to right: First class 1, class 2 and class 4/5 behaviors; Fully kindled refers to the third
consecutive class 4/5 behavioral seizures. The maintenance stimulation was to assess
persistence of the kindled state.
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