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Image analysis of Arabidopsis (Arabidopsis thaliana) rosettes is an important nondestructive method for studying plant growth.
Some work on automatic rosette measurement using image analysis has been proposed in the past but is generally restricted to
be used only in combination with specific high-throughput monitoring systems. We introduce Rosette Tracker, a new open
source image analysis tool for evaluation of plant-shoot phenotypes. This tool is not constrained by one specific monitoring
system, can be adapted to different low-budget imaging setups, and requires minimal user input. In contrast with previously
described monitoring tools, Rosette Tracker allows us to simultaneously quantify plant growth, photosynthesis, and leaf
temperature-related parameters through the analysis of visual, chlorophyll fluorescence, and/or thermal infrared time-lapse
sequences. Freely available, Rosette Tracker facilitates the rapid understanding of Arabidopsis genotype effects.

Integration of tools for simultaneous measurement
of plant growth and physiological parameters is a
promising way to rapidly screen for specific traits.
Remote analysis with minimal handling is essential to
avoid growth disturbance. For instance, fluorescence
imaging can provide information on chlorophyll con-
tent without the need for pigment extraction, and at
the same time, can be used for size estimations of
green plants (Jansen et al., 2009). Also, thermal images
can be used to evaluate relative transpiration differ-
ences without having to measure stomatal conduc-
tance.

Analysis of plant size or growth is frequently per-
formed by destructive techniques that involve the
harvesting of whole plants or plant parts at regular
time points. This often requires extensive growth room
or greenhouse space. In recent years, a number of
methods for systematically tracking plant growth have
been developed. For growth analysis of the primary
root or hypocotyl, Root Trace (French et al., 2009) and
HypoTrace (Wang et al., 2009) were developed primar-
ily for the Arabidopsis (Arabidopsis thaliana) community.

For analysis of rosette growth, a number of tools have
been developed (Leister et al., 1999; Jansen et al., 2009;
Arvidsson et al., 2011). However, the threshold for
implementation is high because the software is tuned
for specific hardware, restricting its accessibility for
smaller labs. Hardware for large-scale screening is
usually based on cameras steered into position with a
robot (Walter et al., 2007; Jansen et al., 2009; Arvidsson
et al., 2011). Therefore, because many labs do not have
the means to invest in such a system, phenotypic anal-
ysis of plant growth is still frequently done manually.
Plants are either weighed (destructive), scanned (de-
structive), or photographed, followed by manual anal-
ysis using image annotation software (nondestructive).
These methods are time consuming and call for low-
budget, user-friendly alternatives.

Several computer vision-based methods have been
proposed to measure and analyze leaf growth in a non-
destructive way. We summarize some of these methods
below:

“Semiautomatic image analysis” (Jaffe et al., 1985;
Guyer et al., 1986; Leister et al., 1999) has been pro-
posed to automatically analyze plant growth. This
method requires the user to select either a set of train-
ing pixels or to manually tweak an intensity threshold
to get robust measurements. The methods are able
to detect plant rosettes on a clear background, but
are hampered by a nonuniform background, e.g. soil
(Guyer et al., 1986). This restriction can be solved by
illuminating the plants with IR (infrared) light.

“Motion-based methods” (Barron and Liptay, 1994;
Barron and Liptay, 1997; Schmundt et al., 1998;
Aboelela et al., 2005) exploit information from mul-
tiple time frames. These methods show accurate re-
sults for high quality images of isolated leaves, but
are of course restricted to time-lapse sequences. A
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major drawback of these “optical flow” approaches
is that they have difficulties with regions, which are
partially occluded during a specific time frame.

“Vegetation segmentation” (Shimizu and Heins, 1995;
Onyango and Marchant, 2001, 2003; Clément and
Vigouroux, 2003) represents a group of algorithms
specifically developed for crop segmentation, i.e. au-
tomatically delineating a crop from the soil in an
image. These methods only require a visual (VIS)
image of a plant in its natural growing environment.
Thus, these tools can be used to measure plant growth
over time. The vegetation segmentation methods are
invariant to light conditions and independent of the
camera system and crop size. Unfortunately, they
rely on the assumption that the images are bimodal,
i.e. the images consist of two types of pixels: pixels
belonging to a plant or pixels corresponding to soil.
The methods will fail if the image contains other
types of pixels, e.g. corresponding to a tray, moss,
cloth, etc. Although these methods are interesting for
specific applications, they are too restrictive for a ge-
neric growth analysis system. Moreover, none of
these methods have an implementation publicly
available.

“Growscreen, Growscreen Fluoro, and Lemnagrid”
(Walter et al., 2007, 2009; Arvidsson et al., 2011) com-
bines image analysis with specific plant monitoring
systems, e.g. the imaging-pulse amplitude-modulated
fluorometer or the ScanalyzerHTS from Lemnatec. All
three systems provide a wide range of measurements
such as area, relative growth rate, and compactness.
With Growscreen Fluoro, it is also possible to analyze
chlorophyll fluorescence images. The downside of
these frameworks is that they only work in combina-
tion with specific monitoring systems. A change of
tray, camera, focus, lighting conditions, etc. needs a
complete resetting of parameters, e.g. thresholds used
for the segmentation of rosettes in the work of
Arvidsson et al. (2011) are hard-coded, i.e. they are
not dynamically calculated, instead they have to be
manually set, which is tedious and error-prone be-
cause there are no guidelines on how to set specific
parameters. Another important disadvantage is that
neither Growscreen, Growscreen Fluoro, nor Lemna-
grid is publicly available.

“Montpellier RIO Imaging Cell Image Analyzer”
(Baecker, 2007) is a general purpose image analysis
ImageJ plug-in. It is controlled by a visual scripting
system, which is easier to use than regular scripting or
programming languages, but less user-friendly than a
specialized program with a graphical user interface.
However, it is only able to analyze images with a
single rosette in a VIS image, which is obviously a
great disadvantage when large numbers of plants
are to be analyzed without an automated/robotized

image capturing. MRI Cell Image Analyzer can mea-
sure the rosette area over time. All parameters are
trained for a specific dataset and should be adjusted
for time-lapse sequences capturedwith a different cam-
era system, or with different lighting conditions. The
system is open source, and thus can be adapted to
the needs of the user. Both ImageJ and the plug-in
are freely available.

“Virtual Leaf” (Merks et al., 2011) is a cell-based com-
puter modeling framework for plant tissue morpho-
genesis, providing a means to analyze the function
of developmental genes in the context of the bio-
physics of growth and patterning. This framework
builds a model by alternating between making ex-
perimental observations and refining the model. The
necessary processing of experiments into quantita-
tive observations, however, is lacking in this work.

“Leaf GUI (for graphical user interface) and Limani”
(Dhondt et al., 2012; Price et al., 2011) both provide
a framework for extensive analysis of leaf vein and
areole measurements. This image analysis framework
requires a high-resolution, high-magnification image
of an isolated, cleared leaf. Thus, this method is inva-
sive and does not allow the measuring of the same leaf
over time. The framework provides a detailed analysis
of the fine structures of a leaf but does not give any
information about the global leaf or plant growth.

This list is not exhaustive. For a more in-depth
overview of image analysis algorithms, we refer to
Shamir et al. (2010) and Russ (2011).

With the image analysis software proposed in this
paper, we attempt to combine the strong points of the
previous methods, while resolving major drawbacks.
The software tool is able to detect multiple rosettes in
an image without assuming bimodal images, i.e. the
images can contain parts that are neither soil nor plants,
and it does not require the use of a specific monitoring
system with fixed lighting conditions, trays, resolution,
etc. Specific parameters (e.g. the scale or number of
plants in the field of view) might have to be tuned to
cope with time-lapse sequences captured with different
systems, but these parameters are straightforward and
can easily be adjusted with a few mouse clicks using
a simple graphical user interface. The software tool
provides a wide range of rosette parameter mea-
surements, i.e. area, compactness, average intensity,
maximum diameter, stockiness, and relative growth
rate. Apart from analyzing regular color images (VIS
images) and/or chlorophyll fluorescence images, the
proposed software tool is also able to measure av-
erage rosette intensity in thermal IR images. To the
best of our knowledge, this is the first image analysis
tool proposed in literature offering all of these fea-
tures.

Although several image analysis tools have been
proposed in the past, a robust measurement tool
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independent of the monitoring system has not been
reported yet. We have developed such a freeware tool
to analyze time-lapse sequences of Arabidopsis ro-
settes. In this work, we elaborate on the most impor-
tant components of the proposed tool, called Rosette
Tracker. The first part of the next section will explain
how rosettes are detected in different image modalities.
This will provide some technical insight in how Rosette
Tracker works. Although this technical knowledge is
not necessary to use the software tool, it helps to obtain
a view on how the tool functions and to identify the
cause of occasional failure. Next, practical issues, such
as which measurements the tool can handle and what
the requirements are for good time-lapse sequences,
will be discussed. Finally, as an example, two plant-
growth experiments are analyzed using Rosette Tracker
to illustrate its versatility and usefulness.

RESULTS AND DISCUSSION

In the following section, we elaborate on the five dif-
ferent components of our image analysis system. These
key components consist of (1) calibration of the system,
(2) segmentation methods for VIS and chlorophyll fluo-
rescence images, (3) rosette detection, (4) registration of
VIS images with IR images, and (5) the set of measure-
ments provided for plant growth analysis. Our proposed
image analysis tool, Rosette Tracker, is implemented in
the programming language Java 1.6.2 and can be used as
a plug-in for ImageJ. The combination with ImageJ al-
lows us to extend the proposed analysis tools with extra
functionality and measurements available in ImageJ
(Abràmoff et al., 2004). Both a compiled plug-in and the
source code are freely available (http://telin.ugent.be/
~jdvylder/RosetteTracker/).

Calibration

The conversion of pixels to physical measurement
units, such as millimeters, is necessary to analyze mea-
surements like rosette diameter or area. Rosette Tracker
has two main options to calculate the actual scale in
millimeters. The first option assumes that the actual
scale is known and allows the user to enter the ratio of
pixels to millimeters in a textbox. If the actual scale is
not known in advance, as is often the case, Rosette
Tracker provides an easy-to-use graphical tool to set the
scale. The user can click on two points in the image
between which the real distance is known, for example
the two corners of a tray. Alternatively, the user can
capture an image that includes a ruler. Based on the
distance in the image (in pixels) and the distance in re-
ality (in millimeters), the software tool can approximate
the resolution. To get a good estimation, however, it is
important that both control points and all rosettes lie
nearly in the same focal plane, such that they are ap-
proximately at the same distance from the camera.

If the user does not set a scale, all distance and area
measurements will be expressed in pixels. Although
this does not result in absolute measurements, it allows

Figure 1. The work flow of the proposed method: a top view of a rosette
tray is captured using a color reflex camera (A); the color image is con-
verted to the HSV color space, of which mainly the hue channel is used
(B); the histogram of the hue values of the image is calculated (C); the
histogram is modeled using a mixture of Gaussians (D). E, Pixels that have
a hue value where the Gaussian distribution corresponding to green is
higher than any other Gaussian distribution are classified as foreground
pixels; all other pixels are classified as background. F, All connected
components are labeled. G, All connected components corresponding to
the same rosette are merged and relabeled.
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for relative comparison of plants, provided that they are
monitored with the same imaging system.

Segmentation of VIS Images

Color is probably one of the most distinct features
for the detection of rosettes in VIS images (Clément
and Vigouroux, 2003; Walter et al., 2007; Arvidsson
et al., 2011). Many imaging systems represent color
using three components: red, green, and blue (RGB).
All possible colors that such a system can represent can
be organized as a three-dimensional (3-D) cube. Many
image analysis tools try to find a region in this RGB
cube that corresponds to the green of rosettes in an
image. This is not always an easy task because this
region can have any shape and might vary between
different monitoring systems. A different approach is
to first transform the RGB cube to a different repre-
sentation that is more intuitive for image analysis and
processing. An interesting color transformation reor-
ders the RGB cube into the HSV (for hue, saturation,
and value) cylinder (Agoston, 2005; Walter et al., 2007;
Supplemental Fig. S1, A and B). In this cylinder, color
is represented by the three measurements in the name.
Hue represents color tone, while saturation corre-
sponds to the colors’ distance from white and value to
the luminosity (Supplemental Fig. S1). It is important
to note that the hue value is sufficiently discriminative
to define pixels corresponding to chlorophyll (from
leaf, algae, or moss), whereas the other two parame-
ters, saturation and value, are less important. Thus,
finding a color region corresponding to the green of
plants is now reduced to finding an interval in one
dimension, i.e. the hue dimension, instead of finding
an arbitrary shape in three dimensions. An example of
the hue channel of a color image is shown in Figure 1,
A and B. Note that all pixels corresponding to rosettes
show similar hue values. A detailed description and
definition of different color space, such as RGB and
HSV, has been reported previously (Agoston, 2005).

Instead of defining fixed thresholds on a color
component, such as is done in Leister et al., (1999) and
Arvidsson et al. (2011), a more dynamic approach is
necessary for a software tool that is not coupled with
any specific monitoring system. To dynamically detect
plants, Clément and Vigouroux (2003) proposed the
detection of peaks in a histogram of color components.
Whereas their method works in RGB space and con-
strains the image to include only soil or plants, we use
the same concept but omit these constraints. First, the
histogram of the hue values of the image is calculated
(Fig. 1C). The peaks or modes in this histogram gen-
erally correspond to specific object types in the image,
e.g. rosettes will correspond with a peak near the hue
values corresponding with green, whereas soil, trays,
labels, etc., will result in different peaks. To detect
these peaks we model the histogram, h(.), with a
mixture of Gaussians, i.e. we approximate the histo-
gram as a weighted sum of Gaussian probability
density functions (Fig. 1D):

hð:Þ� ∑
m

i¼1
aiNðmi;si

2Þ ð1Þ

where ai represents a weighting parameter and N(mi,si
2)

stands for a Gaussian probability density function with
mean mi and variance si

2. An example of a description
using a mixture of Gaussians can be seen in Figure 1D,
where the hue histogram is approximated by the red
curve. This red curve is the sum of a set of Gaussian
distributions, shown by the green and blue dashed lines.
The optimal parameters, i.e. weights, means, and vari-
ances that result in the best approximation of the
histogram, can be calculated using expectation maxi-
mization optimization (Bilmes, 1997). The expectation
maximization method is an iterative optimization tech-
nique that alternates between two steps: an expectation
step, where the expectation of the logarithm of the
likelihood (log-likelihood) of Equation 1 is evaluated
using the current estimates for the parameters, and a
maximization step, where the parameters are optimized
to maximize the expected log-likelihood found in the
first step. For the exact equations used in each step, we
refer to Bilmes (1997).

Each Gaussian probability density function generally
corresponds with the physical appearance of different
objects, e.g. a Gaussian probability density function for
plant pixels, a Gaussian probability density function
corresponding with tray pixels, etc. Although there can
be numerous objects, and thus Gaussians, only the
distinction between plant and other pixels is relevant.
The Gaussian probability density function correspond-
ing with rosette pixels is defined as the Gaussian whose
mean, mj, is closest to the expected green hue (the green
dashed line in Figure 1D). This expected green hue has
a default value of 60 but can easily be changed in the
software tool by clicking on a plant pixel. The hue value
of this selected pixel will then be considered as the ex-
pected green hue. Given the mixture of Gaussians, each
pixel can be classified based on its hue value; if the
probability that the hue value belongs to a rosette is
higher than the probability that it belongs to a different
class, and hence a different Gaussian, the pixel is clas-
sified as a rosette pixel. In all other cases, the pixel is
discarded as background.

Note that the expectation maximization algorithm is
able to find the optimal parameters for the Gaussian
mixture model for a fixed number of Gaussian prob-
ability density functions. Predefining this number is
not an easy task because it limits the possible setups;
two Gaussians only allow plant and soil pixels where
the soil is more or less homogenous (Onyango and
Marchant, 2003). To avoid predefining, Rosette Tracker
starts the segmentation method using two Gaussian
probability distribution functions and iteratively in-
creases the number of Gaussians until correct segmen-
tation is achieved. A segmentation result is considered
correct if a Gaussian is found with a mean sufficiently
close to the expected green hue. If the absolute differ-
ence between the expected hue and the mean of each
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Gaussian is higher than a specific threshold, the num-
ber of Gaussians is increased. This threshold is set to 10,
assuming that the hue values of the image range from
0° to 360°. Note that the hue values have a cyclic nature,
i.e. a hue of 0° is equal to a hue of 360° (Supplemental
Fig. S1B). This wraparound, however, does not cause
problems because a hue equal to 0° corresponds to red
(light with a wavelength of approximately 650 nm),
which rarely occurs in images of vegetative plant
tissues.
The method proposed above detects all green pixels;

however, this does not exclude green pixels that do not
belong to a rosette, e.g. pixels corresponding to moss
or algae growing on the surface of the plant substrate.
These pixels have the same hue as rosettes but are
generally darker than rosettes. Therefore, we can ex-
clude them by applying our proposed segmentation
algorithm not only in the hue channel but also in the
value channel. A true rosette pixel is considered to be a
pixel that is detected as a rosette pixel both by the
segmentation of the hue and the saturation channels.

Segmentation of Chlorophyll Fluorescence Images

Although the previous segmentation method was
developed for the analysis of VIS images, it can easily
be adapted to work for chlorophyll fluorescence images
as well. Because these are grayscale images instead of
color images, the method is simplified in the following
way. Instead of working in the HSV color space, a
histogram is directly calculated for the chlorophyll fluo-
rescence intensities. Subsequently, this histogram is
modeled using a mixture of Gaussians in the same way
as for VIS images, i.e. by iteratively increasing the
number of Gaussians. However, the criteria to cease
iteration are different because there is no default ex-
pected chlorophyll fluorescence intensity as is the case
for a green hue. Therefore, Rosette Tracker estimates
the expected intensity for each image independently,
using the following steps:

1. Calculate a rough initial segmentation. This seg-
mentation will only be used to calculate an estimate
of the expected intensity, and is thus less sensitive
to small errors in the segmentation as long as the
overall statistics of the detected foreground resem-
ble the real statistics. Such an initial segmentation
can be calculated using different algorithms such as:
a. Supervisedpixel classificationmethods (Cristianini

and Shawe-Taylor, 2000; Rabunal and Dorado,
2006), which have shown good results but re-
quire large amounts of training data. This train-
ing is in contrast to the goal of Rosette Tracker,
which attempts to be a dynamic analysis system
with minimal user input.

b. Pixel Clustering-based methods (Lloyd, 1982;
Ester et al., 1996; Hall et al., 2009) represent another
group of generic intensity-based segmentation

methods. These methods have been efficiently
used for the segmentation of biological objects
but are strongly dependent on initialization, i.e.
an initial estimate of the location of clusters.

c. Threshold methods separate foreground from
background by comparing pixel intensities
with a threshold. If the intensity is higher than
the threshold, the pixel is classified as foreground,
otherwise as background. Rosette Tracker uses
a threshold-based method because it does not re-
quire training or initialization. The threshold used
by Rosette Tracker is calculated using the Auto-
Threshold function provided in ImageJ. This
method is based on Ridler iterative thresholding
(Ridler and Calvard, 1978), where a threshold is
iteratively established using the average of the
foreground and background class means. For a
more detailed description on automatic threshold
methods, we refer to Otsu (1979), Abràmoff et al.
(2004), and Sezgin and Sankur (2004).

2. Calculate the mean intensity of all plant pixels, i.e.
all pixels above the threshold.

3. Use this mean as expected chlorophyll fluorescence
intensity.

It is important to note that the expected intensity
will depend on the quality of the segmentation method
in Step 1. Tests showed that the proposed initialization
method resulted in a good approximation of the ex-
pected intensity. If this automatic initialization would
fail, however, it is also possible to predefine the ex-
pected intensity in a similar way as for VIS images, i.e.
by clicking a well-chosen pixel in the chlorophyll flu-
orescence image.

Rosette Detection

The proposed segmentation method only classifies
pixels as corresponding with a rosette pixel or belonging
to the background. However, it does not detect to which
rosette a pixel belongs. In several high-throughput sys-
tems, this is achieved using prior knowledge about the
plant’s location and the pot in which the rosette is
grown (Walter et al., 2007; Arvidsson et al., 2011). This
knowledge has to be reprogrammed for each different
setup, e.g. for different trays, different locations of pots,
etc. Rosette Tracker proposes a method without this
prior knowledge, thus allowing a dynamic setup while
requiring a minimal user input.

The output of the segmentation algorithm is repre-
sented as a binary image where pixels corresponding
to plants are represented by 1, and all other pixels have
value 0 (Fig. 1E). Using a connected-component algo-
rithm, this binary image can be transformed to a
grayscale image where all foreground pixels, which
are connected to each other, bear the same label (ide-
ally corresponding to a single rosette) whereas pixels
that are not connected bear a different label. Two
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pixels are considered to be connected whenever a path
of consecutive neighboring foreground pixels exists
between them (Fig. 1F).

Because of shadows, it might be that a single rosette
is not recognized as such, but corresponds to multiple
connected components, each with different labels. To
overcome this, components are merged, i.e. relabeled
until a predefined number of components remain. The
number of final components corresponds to the num-
ber of plants visible in the image, which the user has to
enter in the settings of Rosette Tracker. This relabeling
is done using a clustering approach. Although several
clustering techniques will show good results (Lloyd,
1982; Ester et al.; 1996; Hall et al., 2009), we propose a
nearest-neighbor approach for its simplicity and effi-
ciency. The connected components are relabeled by
iteratively applying the following steps:

1. Calculate the centroid for each connected compo-
nent.

2. Calculate the distance between all centroids.
3. Merge the two components that are closest to each

other.

An example of this relabeling is shown in Figure 1G.
It is important that rosettes do not touch each other in
the image because this would result in one connected
component corresponding to two rosettes. For a hands-
on comparison of different clustering techniques, we
refer to the WEKA Data Mining Software (Hall et al.,
2009).

To aid the user, Rosette Tracker relabels all rosettes
such that they are ordered row by row. Vertical rows
are automatically detected in the image, based on prior
input of the number of rows. This is done using
nearest-neighbor clustering, i.e. the same clustering
method used for the relabeling of connected compo-
nents in the rosette detection algorithm. The distance
between rosettes, i.e. the basis for clustering rosettes
into vertical rows, is defined as the absolute difference
in y coordinates of the centroid of each rosette.

Analyzing Thermal IR Images

Although the proposed segmentation method is
relatively generic, e.g. it works on color and grayscale
images without major modifications, it will not work
for all possible image modalities. Near-IR images
generally have too low of a contrast and are too noisy
to obtain proper segmentation results. Instead, Rosette
Tracker uses the segmentation result from a VIS or
chlorophyll fluorescence image to measure intensity in
a thermal IR image, i.e. the segmentation result is
projected as a mask onto the IR image.

To ensure proper correspondence between the seg-
ment and the rosette in the IR image, the segment first
has to be warped, i.e. deformed in a specific way. This
has to be done to cope with difference in scale, focus,
small differences in location of the VIS and IR camera,

lens distortion, etc. This is often done based on a set of
landmarks, i.e. corresponding points that are anno-
tated by the user in both VIS and IR images (Bookstein,
1989; Beatson et al., 2007). The result of this warping
strongly depends on the accuracy with which a user
can detect corresponding points in IR and VIS images.
Low contrast and blur, however, hamper the accurate
detection of landmarks in IR images. Therefore, Ro-
sette Tracker requires users to click on corresponding
regions in both images instead of accurate landmarks.
The location of these regions does not have to be as
accurate because Rosette Tracker will calculate the lo-
cation that results in optimal warping. The technical
details about this warping method can be found in our
previous work (De Vylder et al., 2012).

Postprocessing

Because of noise, shadows, or clutter, some pixels
might be erroneously classified. To correct for these
small errors, two postprocessing steps are available:
removing small holes and removing clutter. Both
methods work on the same principle; objects/holes,
which can be enclosed by a small disk, are removed.
The size of this disk can be easily tuned using the
settings menu of Rosette Tracker. These postprocess-
ing steps are implemented using morphological opening
and closing, i.e. a succession of growing and shrinking
the objects, or vice versa (Russ, 2011).

Measurements

Quantifying plant growth using image analysis can
be done by measurement of many different parameters
(Walter et al., 2007, 2009; Arvidsson et al., 2011). Ro-
sette Tracker enables a wide range of these measure-
ments, which we briefly enumerate here:

“Area” expresses the area the rosette occupies (Fig.
2B). This is expressed in square millimeters if Rosette
Tracker is properly calibrated by setting a scale; oth-
erwise, it is expressed in pixels. The area is measured
in a two-dimensional image, i.e. an overhead projec-
tion of a 3-D plant. However, because rosettes of
Arabidopsis remain relatively flat, this is a very rea-
sonable approximation of the 3-D area (Leister et al.,
1999; Walter et al., 2007; Arvidsson et al., 2011).

“Diameter” corresponds with the maximal distance
between two pixels belonging to the rosette (Fig.
2C). Used in combination with area, this parameter
can hint to changes in petiole length.

“Stockiness” is based on the ratio between the area of a
rosette and its perimeter. It is a useful measurement
to detect serration of leaves (Jansen et al., 2009)
Stockiness is defined as 4 3 p 3 Area/Perimeter2.
This can be seen as a measure of circularity, i.e. a
circular object’s stockiness is 1. Values vary between
0 and 1.
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“Relative Growth Rate” (RGR) expresses the growth of
a rosette between two consecutive frames (Blackman,
1919; Walter et al., 2007; Jansen et al., 2009). RGR is
defined as 1/t 3 ln(Area2/Area1), where Area2 and
Area1 correspond to the area of the rosette in the cur-
rent and previous frames, respectively, whereas t rep-
resents the time between the two frames.

Average rosette “intensity” is a relevant measure for
chlorophyll fluorescence and IR images, which relate
to photosynthesis and temperature, respectively
(Wang et al., 2003; Chaerle et al., 2004, 2007).

“Compactness” expresses the ratio between the area of
the rosette and the area enclosed by the convex hull
of the rosette (Jansen et al., 2009; Arvidsson et al.,
2011). The convex hull of a rosette corresponds to the
contour with the shortest perimeter possible that en-
velopes the rosette. This is represented in Figure 2D,
where the compactness corresponds to the white
area over the area enclosed by the red contour.

Image Requirements

Rosette Tracker has been developed to allow robust
image analysis for a wide variety of images, with as
few assumptions of the monitoring system as possible.
There are, however, some limitations a user should be
aware of to obtain reliable and accurate measurements.

The most notable constraint is that rosettes should not
touch one another in the image, otherwise they will be
detected as a single rosette, and as a result, another
rosette might be detected as two. This can be avoided
by leaving enough space between the plants when
performing an experiment.

Rosette labels are ordered by vertical rows, where
label 1 is the top rosette of the utmost left row and the
last label corresponds with the bottom rosette of the
utmost right row (Supplemental Document S1). If
the trays in the images are oriented such that the
rosettes do not correspond with vertical rows, we sug-
gest to first rotate the images using image processing
software to get a logical order in rosette labels. To cor-
relate the output of the analysis with the exact rosettes,
it is useful to verify the labeling by looking at the seg-
mentation images, which can be saved during analysis.

Although the program does not require any specific
scaling, we advise careful development of experiments.
High-resolution images result in accurate measure-
ments but require more computational resources, e.g.
memory or computational time. However, having a
scale (millimeter/pixel) that is too high (i.e. too low of a
resolution) will result in a loss of accuracy and, in ex-
treme cases, might even result in an occasional corrupt
measurement, where a leaf is classified as belonging to
a wrong rosette (Supplemental Fig. S2). Relative errors
induced by increased scaling will depend on the size of
the plant, with smaller plants being more prone to error.
For good results, we suggest using a maximum scale of
0.33/mm (resolution of 3 pixels/mm) for standard
wild-type rosettes. In this way, a camera resolution of
12 megapixels could yield 500 rosettes per shot.

Rosette Tracker puts no constraints on the moni-
toring system used. This was tested by imaging 35
Arabidopsis rosettes using three different cameras. The
measurements showed, on average, a relative SD of
5.2% (this is the SD of the measurements normalized by
the average measurement itself).

Example 1: Quantification of Rosette Growth Using VIS Images

It has been demonstrated that the rosette area is
directly proportional to its weight (Leister et al., 1999).
Although the relation is not linear for older rosettes as
older leaves can become occluded by newly formed
leaves, tracking the rosette area can be a useful tool for
monitoring growth.

For images in the visual range, current single-lens re-
flex cameras offer a good value solution. A 12-megapixel
reflex camera is suitable for the monitoring of 150
(55-mm lens) to 600 rosettes (18-mm lens) in one shot,
from a distance of 2 m. Images captured with wide-
angle lenses, such as 18 mm, should be treated for lens
distortion prior to analysis. This can be done using
camera calibration software such as ROS or CAMcal
(Shu et al., 2003; Bader, 2012). Figure 3, A and B show
a picture taken with a handheld reflex camera with a
55-mm lens and the corresponding segmentation pic-
ture as generated with Rosette Tracker, respectively.

Figure 2. An example of different rosette measurements on a VIS
image: the actual VIS image of a rosette (A), the area detected by
Rosette Tracker (B), the diameter of the rosette corresponds to the
length of the red line (C), and depict the compactness of the rosette
(D), i.e. the ratio of the area corresponding to the actual rosette over
the area enclosed by the convex hull, shown as a red line. [See online
article for color version of this figure.]
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Figure 3C shows the eventual output as a bar graph in
a spreadsheet, using values generated and saved by
Rosette Tracker. The work flow that produced these
data are shown in Supplemental Document S2 and il-
lustrated by the supplemental video online (http://
telin.ugent.be/~jdvylder/RosetteTracker/).

As stated above, time series can be analyzed in a
straightforward way as well. Rosette Tracker analyzes
all images in a specific file system folder and displays a
graph of the measurements of different rosettes as a
function of time (see Supplemental Document S1).

These measurements were compared with manually
annotated measurements. The ratio between the Ro-
sette Tracker and the manual-based measurements was
over 0.97 on average, which is acceptable for the pur-
pose of plant phenotyping based on image analysis.

Example 2: Analyzing a Composite Time-Lapse Sequence of
Fluorescence and Thermal (IR) Images

Because of its ubiquitous accumulation in the shoot,
fluorescence of chlorophyll can be used to determine the

projected leaf area of green rosette plants. Fluorescence
images of rosettes, therefore, are a valuable alternative
for VIS images. IR images can be used to estimate leaf
temperature. Temperature is dependent on evaporation
and transpiration of the leaf, which is partly determined
by stomatal opening. Hence, IR imaging can be used to
monitor transpiration differences (Wang et al., 2003).

Using Rosette Tracker, we followed Arabidopsis
ecotype (Burren-0 [Bur-0], Martuba-0 [Mt-0], Rschew-4
[Rsch-4], Lipowiec-0 [Lip-0], and Catania-1 [Ct-1]) and
abscisic acid mutant rosettes in time, using a robotized
time-lapse imaging system containing fluorescence and
thermal cameras (Chaerle et al., 2007). It should be noted
that similar analysis based on VIS images (see Example
1) instead of fluorescence images is also possible. The
original image set and segmentation files, as generated
by Rosette Tracker, are available online (http://telin.
ugent.be/~jdvylder/RosetteTracker/). Afterward, these
files were loaded into a spreadsheet and average values
were calculated (Supplemental Document S3).

The projected leaf area data for ecotypes Bur-0, Mt-0,
and Ct-1 confirm the previously observed large rosette

Figure 3. Example 1: determination of projected ro-
sette area with Rosette Tracker. A, Original color
image showing Columbia-0 plants. B, Segmentation
image produced from the color image by Rosette
Tracker. Centered numbers in the rosettes from the
Rosette Tracker image were repeated on the picture,
next to the plant, for clarity. C, Graph showing the
projected rosette area per plant from A, as calculated
by Rosette Tracker. [See online article for color ver-
sion of this figure.]
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size of Bur-0, the intermediate size of Mt-0, and the
small size of Ct-1 (Fig. 4A; Granier et al., 2006). The
diurnal difference in area, maximal diameter, stocki-
ness, and compactness, visible in all lines, reflects up-
and downward leaf movements (Fig. 4, B–D); at

midday, rosettes are flatter than at midnight (Mullen
et al., 2006). Figure 4E shows the level of small varia-
tions in RGR when measured in 1-h intervals. It can be
noticed that in some lines, RGR is the lowest at the
beginning of the night, contrasting what was found for

Figure 4. Example 2: edited output of results obtained by Rosette Tracker, using a combined analysis of fluorescence and
thermal images. 4-week-old rosettes of abi1-1, 35S::ABI5, Bur-0, Ct-1, Mt-0, Lip-0, and Rsch-4 were photographed each hour,
and the following average rosette parameters were calculated: projected rosette area (A), maximal diameter (B), stockiness (C),
compactness (D), RGR (E), and temperature (F).
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circadian hypocotyl extension (Dowson-Day and Millar,
1999). This readout may be influenced by the relatively
more compact appearance of the projected rosette image,
which is related to the diurnal leaf movements (more
hyponasty at night onset). The effect becomes even
clearer when 4-h intervals are used for determining RGR
(Supplemental Fig. S3). In the 4-h interval measure-
ments, there is a difference between Lip-0, with lower
RGR in the morning, and the other lines, most of which
have a lower RGR at dusk. This can be directly related to
the leaf movements and consequent phase differences
between Lip-0 and the other lines regarding projected
leaf area, maximal diameter, stockiness (very clear), and
compactness (compare Fig. 4 with Supplemental Fig.
S3). Optimal use of the RGR measurement tool in rela-
tion to growth, therefore, is best suited for image se-
quences with a 1-d interval (Supplemental Fig. S3).
There it becomes apparent that during the experiment,
there was an increase in RGR for the small rosettes of
Lip-0, for the large rosettes of Bur-0, Mt-0, and 35S::ABI5,
the RGR decreased, whereas the RGR remained, albeit
with some fluctuation, at the same level in the other
lines. Note that the first 24 h show “0” for RGR, because
there was no available data for 24 h before the point of
measurement for comparison (Supplemental Fig. S3).

Analysis of IR images demonstrated that tempera-
tures are lowest in abi1-1 mutants, indicating strong
transpiration (Fig. 4F). The Arabidopsis ecotypes are
all warmer than abi1-1. Earlier observations have
shown similar transpiration rates for the ecotypes Bur-0,
Mt-0, and Ct-1 (Granier et al., 2006). The abscisic acid-
insensitive mutant abi1-1 is known to have reduced
stomatal closure and should indeed appear colder in
thermal images. By contrast, ABI5 does not influence
water loss from plants (Finkelstein, 1994); in this image
sequence, the values of the 35S::ABI5 are similar to
those of the wild-type ecotypes. Additionally, diurnal
temperature variation is observed, with peaks during
the day, due to irradiation heat (Fig. 4F).

CONCLUSION

Rosette Tracker offers a user-friendly ImageJ plug-in
for rapid analysis of rosette parameters. It is designed
for Arabidopsis but can work for any other rosette
plants species. The use is not limited to any specific
indoor image acquisition hardware, lowering the
threshold for implementation in field experiments. It
can be used to analyze size and temperature of single
snapshots, including multiple rosettes and more com-
plex time series with a high number of frames. In
combination with a standard to high-end camera sys-
tem and modern PC, it is a powerful and affordable
tool for plant growth evaluation.

MATERIALS AND METHODS

For Testing the Robustness against Different Cameras

A photograph of 34 Arabidopsis (Arabidopsis thaliana) rosettes was taken
using three different cameras: an Olympus C5050 camera, a Canon Powershot

SX110IS, and a built-in camera in an LG5000 mobile phone. The images were
captured at a distance of 50 cm.

For Example 1

Arabidopsis Columbia-0 wild-type seeds were acquired from the Not-
tingham Arabidopsis Stock Center. Plants were grown for 4 weeks in a growth
room with 22°C and 16-h/8-h light/dark cycles. Light intensity was 60 mmol
m22 s21 from cool-white light tubes (Philips). A photograph was taken using a
Canon 500D reflex camera with an 18- to 55-mm lens (www.Canon.com), at 55
mm, from a distance of 50 cm. Image 1 used for this analysis can be found at
http://telin.ugent.be/~jdvylder/RosetteTracker.

For Example 2

Arabidopsis accessions and abi1-1 were acquired from the Nottingham
Arabidopsis Stock Center. 35S::ABI5 was kindly provided by J. Smalle. Plants
were grown in trays for 3 weeks in 13-h/11-h light/dark cycles in a growth
room at 21°C. Daytime photosynthetic photon flux density was 150 mmol m22

s21. Rosettes were photographed every hour by a robotized camera system
(Chaerle et al., 2006). Fluorescence images were acquired with an in-house-
developed fluorescence imaging system (Chaerle et al., 2004), whereas thermal
images were acquired with a FLIR-AGEMA Thermovision THV900SWTE (Flir
Systems). The output files (supplemental data/online) were rearranged, and
average values were calculated from up to eight replicate plants, depending
on the genotype (Supplemental Document S3). A compilation of all unarranged
measurements, photographs, and configuration files used for this example can
be downloaded from http://telin.ugent.be/~jdvylder/RosetteTracker.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Two possible representations of color and exam-
ples of the representation of a VIS image in HSV color space.

Supplemental Figure S2. The relation between scale and error on area
measurements.

Supplemental Figure S3. Comparison of RGR results using different time
intervals.

Supplemental Document S1. Quick-start guide for new users.

Supplemental Document S2. Work flow for Example 1.

Supplemental Document S3. Measurements for Example 2.
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