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Abstract
Cooperativity, multi-site and multi-component interactions are hallmarks of biological systems of
interacting macromolecules. Their thermodynamic characterization is often very challenging due
to the notoriously low information content of binding isotherms. We introduce a strategy for the
global multi-method analysis of data from multiple techniques (GMMA) that exploits enhanced
information content emerging from the mutual constraints of the simultaneous modeling of
orthogonal observables from calorimetric, spectroscopic, hydrodynamic, biosensing, or other
thermodynamic binding experiments. We describe new approaches to address statistical problems
that arise in the analysis of dissimilar data sets. The GMMA approach can significantly increase
the complexity of interacting systems that can be accurately thermodynamically characterized.
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INTRODUCTION
The study of macromolecular binding energetics is of great interest in many fields of
chemistry, biology, and biophysics, and numerous powerful techniques for measuring
binding affinities have been developed, including isothermal titration calorimetry (ITC),
sedimentation equilibrium (SE-AUC) and sedimentation velocity (SV-AUC) analytical
ultracentrifugation, surface binding assays in surface plasmon resonance (SPR) and other
biosensors, and approaches based on fluorescence, nuclear magnetic resonance, and other
spectroscopies. The quantitative determination of the free energy of binding and its entropic
and enthalpic contributions is both of fundamental interest in relation to macromolecular
structure, as well as of practical importance, for example, as a marker in drug discovery 1,2.
An additional important aspect of the binding energetics arises in macromolecular systems
with two or more binding interfaces, since the discovery of site-site interactions has direct
qualitative structural and mechanistic implications. In fact, it has become evident that
relatively weak, reversible multi-valent and cooperative multi-component binding processes
of proteins are ubiquitous and key in mediating complex system properties, such as found,
for example, in molecular machinery of multi-protein complexes, in many receptor-ligand
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interactions, and signal transduction networks3–5. Unfortunately, the quantitative
characterization of the thermodynamics of interacting systems with more than a single site
and/or more than two interacting components is notoriously difficult due to the smooth and
shallow concentration dependence of binding isotherms generated by mass action law.

Since the advent of computerized data analysis, it has become widely appreciated that the
global analysis of data from multiple experiments can significantly increase their
information content6. In ITC, for example, the global analysis of the shapes and areas of the
power trace allows the joint determination of kinetic and thermodynamic binding
parameters7, and, similarly, the global analysis of multiple titrations probing the multi-
dimensional binding isotherms along different trajectories can provide access to
cooperativity parameters in ternary multi-protein complexes8. Similar improvement has
been reported in many disciplines, where global analyses has become standard 7–11.

Hybrid methods in structural biology have demonstrated further substantial advantages of
the simultaneous analysis of data across different disciplines5,12. The present work applies a
conceptually similar approach, combining data from orthogonal methods measuring binding
energetics via different observables. For example, binding studies in SV-AUC are based on
the differential migration of species dependent on their size and shape, whereas ITC
measures the heat of reaction associated with complex formation or dissociation, and
spectroscopy methods follow changes in spectral properties accompanying binding. The
combination of data across different techniques has only been shown in a few
instances13–19, even though many laboratories routinely report interaction studies carried out
independently by multiple techniques.

Goal of the present work was to facilitate the convergence of techniques, to address with
global multi-method analysis (GMMA) the challenges posed by the binding energetics of
complex interacting systems. To this end, we have extended the public domain data analysis
platform SEDPHAT, which is currently widely used for SE-AUC, SV-AUC, and ITC, to
allow flexible and seamless combination of data from different techniques, including also
SPR, fluorescence polarization (FP), dynamic light scattering, and general spectroscopy
isotherms. We have developed statistical tools for examining the consistency between the
data sets, measuring the information content contributed by each, and strategies for how to
weight different data sets. We demonstrate in an example of two-site binding how the
binding energetics of the two sites cannot be determined by any single technique, but are
well resolved with GMMA.

COMPUTATIONAL METHOD
For GMMA it is key to distinguish ‘global’ adjustable parameters {pglob} that characterize
the macromolecules and their interactions, from ‘local’ adjustable parameters {ploc} that
characterize the experimental conditions (such as baselines, coherence areas, meniscus
positions, etc.). Data sets can be loaded in SEDPHAT in any number and order through its
graphical user interface, and local parameters are added automatically as required for the
detailed description of data sets of the particular type.

The error surface to be minimized is the global weighted sum of squared residuals

(1)

where E denotes the total number of experiments, Ne the total number of data points in
experiment e, and we a weight assigned to experiment e; ye,i and σe,i are data points and
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statistical errors of data acquisition, respectively, and fe,i represents the fitting function
dependent on the experiment type, interaction model, and the global and local parameters.
(For a description of the fitting functions for each method, see the Supporting Information.)
Various interaction models for one-, two-, and three-component systems are currently
available, expressed with macroscopic or microscopic binding constants to take advantage
of known symmetries. Simplex, Marquardt-Levenberg, and simulated annealing methods are
implemented to minimize χ2

r,glob. Error estimates of the adjustable parameters can be
obtained by the Monte-Carlo method, covariance matrix, and projections of the error surface
with F-statistics 20–22. Two-dimensional projections of the error surface are available to
display parameter cross-correlation beyond the approximations of the covariance matrix.

Several statistical quantities can be calculated that report on the consistency among
experiments (or groups of experiments) from different techniques: First, a mutual
consistency matrix

(2)

that essentially compares the local sum of squares of e based on a best-fit GMMA model of
e and f, producing global parameters {p’glob, fit e, f} and local parameters of experiment e
{p’loc, fit e, f}, with the local sum of squares of e of a local fit of e only. Second, we can
assess the magnitude of the constraint from the complete GMMA on a given experiment e as

(3)

with the local χ2
e evaluated in analogy to Eq. (2). Third, we can assess complementarily the

effect of including experiment e into the GMMA on all other experiments, as

(4)

In addition to consistency we can examine the unique information content inherent in a
specific data set e, by testing in a cross-validation approach whether the ‘projection’ of the
best-fit parameters from all other experiments can predict well the data of e

(5)
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If an experiment cannot be predicted by all others (i.e. contains ‘orthogonal’ components’)
but leaves the quality of fit of all others nearly unchanged, it contributes unique information.
This can be measured by the information index

(6)

In more detail, we can assess the specific contributions of experiment e toward improving
the confidence interval of a certain global parameter p as

(7)

where the confidence interval σp is evaluated in GMMA including all experiments, or
excluding e, respectively.

All methods above are implemented in the public domain software SEDPHAT, which is
driven by a flexible graphical user interface requiring no user programming. It can be
downloaded from sedfitsedphat.nibib.nih.gov/software, and workshops are held semi-
annually at the National Institutes of Health and hosted at other research institutions

EXPERIMENTAL
α-chymotrypsin (CT) and soybean trypsin inhibitor (SBTI) were obtained from Worthington
Biochemical Corporation (Lakewood, NJ), dissolved in working buffer (Na2HPO4 5.62 mM,
KH2PO4 1.06 mM, NaCl 154 mM, pH 7.40 at 20°C), purified by size exclusion
chromatography.

ITC measurements were performed using an ITC200 calorimeter (MicroCal, GE
Healthcare). SBTI at 68 or 84 µM was placed in the syringe and titrated into 3 or ~20 µM
CT in the cell in 1.8 µL aliquots. The raw ITC thermograms were integrated using singular
value decomposition and peak shape analysis in NITPIC23 to generate the finalized
isotherms with error bars for each data point.

SV-AUC experiments were conducted using a Beckman ProteomeLab XL-I (Beckman-
Coulter) following the standard procedures24 and boundary structure analysis25. Absorbance
profiles at 280 nm acquired at a rotor speed of 50,000 rpm were analyzed with a c(s)
sedimentation coefficient distribution26 to determine the overall weighted-average s-value
and the s-value of the reaction boundary27, respectively, as a function of the composition of
the loading mixture. Concentrations were chosen as a titration series of 1.8 µM of SBTI by
0.2 to 12 µM of CT.

SPR experiments were performed in a Biacore 3000 (GE Healthcare, Piscataway, NJ).
Standard amine coupling (NHS/EDC) was employed to immobilize SBTI on the sensor
surface28. For both direct and competition assays, flow rate of 0.5 mL/min was employed.
Both association and dissociation show fast kinetics, and no regeneration step was
necessary. For SPR-SC, the steady-state binding signal was utilized as an empirical
calibration of sensor response dependent on the free CT concentration in the flow. Then a
series of solutions of SBTI (0.045 – 28.78 µM) and CT (0.30 µM) was injected into the flow
cell, and the steady-state signal was recorded. Linear interpolation between the nearest
calibration points was used to estimate the free CT concentration.
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Fluorescence anisotropy experiments were conducted in a PTI fluorimeter (Photon
Technology International). To generate a direct binding isotherm, 0.090 µM of SBTI labeled
with DyLight488 were titrated with unlabeled CT (0.001 – 10 µM). Similar to the SPR-SC
competition assay, we titrated labeled SBTI with a series of mixture of constant
concentration CT (1 µM) and unlabeled SBTI as the competitor with varied concentrations
(4.5 nM – 180 µM). This was modeled as a three-component system.

For the different techniques, absolute error bars for the data points were determined from the
estimated accuracy of the measurements, with the exception for ITC where individual error
estimates were derived from the analysis of the thermogram23.

RESULTS AND DISCUSSION
To illustrate the tools and performance of GMMA, we collected data of α-chymotrypsin
(CT) binding to two non-symmetric sites on soybean trypsin inhibitor (SBTI)29 by SPR,
ITC, SV-AUC, and FP (Figure 1). Since these techniques do not report on site-specific
binding, we restrict this example to the determination of macroscopic binding parameters of
the two sites: the macroscopic affinity of the first site, Kd1, the macroscopic enthalpy change
ΔH1, the affinity ratio, log10(Kd2/Kd1) and the enthalpy difference of site 2 to site 1 ΔH2-
ΔH1. Additional unknown macromolecular parameters are the hydrodynamic shapes or
sedimentation coefficients of the 1:1 and 2:1 complex (s11 and s21), respectively. Taken
individually, each data set could be described well by a two-site binding model (Figure 1,
blue dotted lines). However, it is important to note that the data sets from none of the
methods could provide well-determined estimates of the binding energetics, and instead
showed unlimited error intervals for one or both binding constants, as well as both binding
enthalpy changes (Figure 2).

For the combined analysis by GMMA the most important initial question is whether the data
are consistent. This may not be trivial considering the different susceptibility of methods to
experimental imperfections. For example, protein modifications are required for surface
binding in SPR, as well as for the attachment of fluorophores, both with the potential to
profoundly alter the binding properties30,31. Preparative impurities can bias AUC, but, if
consisting of unreactive species, may be irrelevant for ITC and SPR, and preparations
subject to time-dependent degradation can behave differently in different techniques32.
Furthermore, well-known technical challenges can impact experiments in different ways, for
example, transport limitation in surface binding experiments, or convection in SV-AUC,
trace aggregates or dust in DLS, etc. Similarly, the use of an inadequate binding model may
impact the resulting (apparent) thermodynamic parameters differently when applied to
different methods. However, all these problems should ideally be absent or negligible. This
very important, non-trivial result has been previously demonstrated experimentally by the
ability to achieve a satisfactory global fit for different systems13–19 and is also found in the
present work, as shown in the red solid line of Figure 1.

Because such favorable behavior may not always be the case, it is worthwhile posing this
question more subtly and quantitatively. A straightforward approach to the mutual
consistency of pairs of data sets is the ratio of χ2 of an experiment e (or a group of
experiments from the technique e) between the best-fit model based on solely e, or based on
the combined analysis of the two data sets e and f. Due to the constraint from additionally
fitting f, the latter will always be higher, and the consistency matrix Cef = χ2

e
(fit e,f)/χ2

e
(fit e)

ratio can be related to a confidence level by F-statistics. Similarly, we can examine the
magnitude of constraints in the GMMA context on the quality of the individual set, Ce =
χ2

e
(fit all)/χ2

e
(fit e), and complementarily, the decrease in the quality of the GMMA by

including one further experiment e, C*e = χ2
{f≠e}

(fit all)/χ2
{f≠e}

(fit all f≠e), which will flag
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experiments inconsistent with the rest. We have automated the computation of these
quantities in SEDPHAT functions.

By these measures, the data shown in Figure 1 are highly consistent (P < 0.683 throughout,
Table S1, Supporting Information), despite their orders of magnitude different estimates of
binding constants when considered individually. The best-fit model by GMMA is shown as
red solid line in Figure 1. However, the direct surface binding SPR data are found to be
inconsistent (P > 0.995 throughout, Table S3 and Figure S1, Supporting Information). We
attributed this to the presence of the surface or covalent modification required to immobilize
SBTI. CT cannot be immobilized due to avidity effects of surface binding by soluble SBTI
that is bivalent for CT. Therefore, SPR was conducted in a solution competition mode (SPR-
SC), where the sensor surface was functionalized with immobilized SBTI and the signal
calibrated for probing the concentration of free CT in a series of reaction mixtures of
constant CT and increasing soluble SBTI concentration. Similarly, to enable the comparison
of binding between the same species of unmodified proteins in all methods, FP experiments
were conducted with a fixed concentration of CT and fluorescently labeled SBTI at
increasing concentration of unlabeled SBTI.

As illustrated in Figure 2, the GMMA analysis leads to well-determined parameters
throughout. This includes the enthalpy changes of both sites, notably, without adding any
additional ITC data measuring heats of reactions. Clearly, this must be due to breaking of
the cross-correlation with the affinity constants, which become well-determined in GMMA
even though they were undermined in all experiments individually. Similarly, error
estimates of the hydrodynamic parameters improve considerably over the analysis of SV-
AUC data alone.

It is interesting to examine which experiments add information to the global analysis. This
may be revealed in a cross-validation approach, by projecting the best-fit model derived
from GMMA of all experiment except e into the parameter space of e. If this leads to a bad
fit, i.e., the quantity Je = χ2

e
(fit all f≠e)/χ2

e
(fit all) is large, while C*e is small, then this

experiment is consistent with all the others, but not predictable, therefore adding new
information, as measured in the index I = J/C*. This cross-validation projection is illustrated
in Figure 3 for the SPR-SC data, which clearly cannot be predicted by the set of other data
(ISPR-SC = 4.9), in contrast to the FP data, which are highly predictable and add little new
information (IFP = 1.005). Furthermore, to understand the interplay between methods in
GMMA we can determine which parameters benefit uniquely from certain experiments, by
calculating the improvement of the confidence interval of parameter p by including
experiment e into the context of GMMA, Iep = σp

(fit all f≠e)/σp
(fit all). In the present example,

this highlights the contributions of the SPR-SC data to the affinity and cooperativity
constants, as well as indirectly to the hydrodynamic and enthalpy parameters (Table S2,
Supporting Information).

We have previously shown that a global analysis of multiple ITC titrations along different
trajectories can allow one already to determine cooperativity parameters for complex
systems8. In principle, ITC is particularly suited to measure cooperativity because it can be
detected independently in enthalpy and affinity constants33,34. For this reason, we collected,
in addition to the data shown in Figure 1b, three more ITC titrations, and analyzed them in a
single-method global analysis (Figure S2, Supporting Information). As shown in Figure 2
(‘multi-4 ITC’, blue bars), this can indeed produce enthalpy estimates comparable to the
four-experiment GMMA of Figure 1, although at significantly greater uncertainty of affinity
constants. On the other hand, if the same additional ITC titrations are combined with all the
data in Figure 1, in addition to another set of SV-AUC isotherms from a dilution series
(Figure S3, Supporting Information), significant further improvement of the binding
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enthalpies can be achieved (Figure 2, ‘GMMA 9’ , red bars). Similarly, the combination of
the single ITC data set of Figure 1 with SPR-SC provides already comparable results to
those of ‘multi-4-ITC’ (Figure S4). Thus, the additional data dimensions that can be
exploited in GMMA can lead to superior resolution even over single-method global
analyses.

The objective function for minimization in our formulation of GMMA (in contrast to the
work of Xue et al 14) is the standard least-squares expression of the overall reduced χ2 of
the fit. If all experimental errors were exactly known and normally distributed, either χ2- or
F-statistics could be strictly applied to evaluate most likely parameter estimates and their
confidence intervals. However, we introduced weight factors we

2 ≥ 1.0 for each group of
data sets, or technique, respectively, to reflect systematic errors inherent in the experimental
data, which inflate the obvious statistical error of data acquisition σi,e that may be
bootstrapped from the available data, to become total errors of σi,e × we. Systematic errors
are generally notoriously underestimated. Fortunately, for a single method global analysis,
such a factor would cancel out in the χ2-ratio of different fits, which makes F-statistics the
method of choice for statistical analysis in most techniques.21 However, in multi-method
analyses we cannot assume uniform we values across different disciplines, as they all differ
in their susceptibility to experimental imperfections, as discussed above. For fundamental
reasons accurate values of systematic errors we cannot be known, although we obviously
expect them to be small.

This problem is particularly apparent in global modeling of techniques producing very
dissimilar numbers of data points: as Eq. (1) reveals, any error in the assignment we will be
amplified by the number of data points, Ne, which may vary from ~10 to ~105 in different
techniques. Therefore, underestimated we

2 factors in the technique producing the largest
data set can enable this data set to dominate, and may easily render contributions from all
other techniques essentially irrelevant. Clearly this is not consistent with our intuition; from
experience we expect most methods should be worthwhile to execute and contribute
information (otherwise we would probably not have performed these experiments).
Therefore, similar to the treatment of Xue et al. of this problem14, we can choose we as the
square root of the number of points to eliminate this dependency on Ne. We believe this
adjustment will be important for GMMA with data sets dissimilar in size by more than a
factor 10.

Even for cases of more even sized data sets, we have to acknowledge the possibility that
unavoidable experimental imperfections in any technique can lead to systematic errors, i.e.
we values that should be adjusted to values above 1.0. The difficulty is that these values
cannot be known a priori. Furthermore, they cannot be bootstrapped from the set of
experiments, since by design GMMA aims to utilize a small number of orthogonal methods
and we values will be different for each. However, to assess their potential influence, we can
explore GMMA analyses over the entire hyperrectangle formed of all weights {we; 1.0 ≤ we
≤ we,max} (for example, with we,max = 2.0). The variation and range of extreme values Δp of
the best-fit GMMA parameters over {we} can be compared with the confidence intervals σp
arising from statistical data acquisition errors derived by F-statistics at the origin {we = 1.0}.
If the variability from systematic errors Δp is larger than the confidence interval from
statistical errors σp, this would suggest residual inconsistency between methods, and Δp
would be a more conservative estimate of the parameter uncertainty. On the other hand, if
Δp is smaller than σp, then these GMMA parameters are robust and reliable. For our
example system, the variability Δp is well within the confidence interval when allowing
weights to vary by a factor 2, as indicated by the vertical white lines inside the magenta bars
in Figure 2.
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CONCLUSIONS
By exploiting mutual constraints from orthogonal data sets, GMMA is capable of
significantly increasing the precision and resolution of thermodynamic analysis of
interacting macromolecular systems with multiple sites. This offers the potential for
studying cooperative multi-site and multi-component systems where the number of
unknown parameters exceeds the information content of a single technique reporting only on
one particular observable. This will aid in the functional characterization of interacting
macromolecular systems, in both the determination of the correct binding model, as well as
the energetic characterization of interactions and cooperativity (provided site-specific
binding data or structural prior knowledge are available). We have created a computational
framework and developed suitable statistical tools that can be conveniently used for the
flexible, seamless combination of data sets from different methods in GMMA.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

GMMA global multi-method analysis

ITC isothermal titration calorimetry

SPR surface plasmon resonance

SPR-SC solution competition surface plasmon resonance

SE-AUC and SV-AUC sedimentation equilibrium and sedimentation velocity analytical
ultracentrifugation

FP fluorescence polarization

FP-C fluorescence polarization competition

CT α-chymotrypsin

SBTI soybean trypsin inhibitor
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Figure 1.
Global multi-method analysis of the two-site interaction of CT binding SBTI. (a) Steady-
state SPR biosensor signals from binding of 0.3 µM CT to surface immobilized SBTI in the
presence of different concentrations of soluble SBTI (symbols); (b) Normalized heats of
reaction measured in calorimetry from the titration of 20 µM CT with aliquots of 84 µM
SBTI (symbols); (c) Weight-average (open symbols) and reaction boundary sedimentation
coefficients (filled symbols) in SV-AUC for 1.8 µM SBTI with different concentrations of
CT; (d) fluorescence anisotropy of a mixture of 0.09 µM DyLight488-labeled SBTI and 1
µM CT with a range of concentrations of unlabeled SBTI (symbols). In all panels the best-fit
GMMA model is shown as red solid line, with parameter values and error estimates as
shown in magenta in Figure 2 (‘GMMA 4’). For comparison, best separate fits to individual
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data sets are shown as dotted blue line (virtually superimposing the red curve), with
parameter estimates as shown in Figure 2.
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Figure 2.
Best-fit parameter estimates (vertical black lines) and 68% confidence intervals (colored
bars) from the analysis of the data of Figure 1 for the macroscopic affinity of the first site
(a), the macroscopic ratio of affinities of the two sites (b), the macroscopic enthalpy changes
of site 1 (c), the macroscopic difference in enthalpy changes between the two sites (d) and
the sedimentation coefficient of the 1:1 (e) and the 2:1 complexes (f). Alternative analyses
are distinguished by color, showing the results from the individual fits of the data in Figure 1
(grey, light blue, orange and green, as indicated), the GMMA analysis of the data in Figure 1
(‘GMMA 4’, magenta), and the GMMA analysis of an extended data set comprised of 3
more ITC titrations and 2 more SV-AUC data sets (‘GMMA 9’, red), as shown in the Figure
S3, Supporting Information, and the global but single-method analysis of the ITC contingent
of ‘GMMA 9’ (‘multi-4 ITC’, dark blue, Figure S2, Supporting Information). Arrows
indicate unbounded confidence intervals. Short white vertical lines in the magenta GMMA 4
bars indicate variability Δp across a range of weights {we; 1 ≤ we ≤ 2}.
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Figure 3.
Projections of the GMMA fit of all remaining data sets (red solid line) into the space of
SPR-SC data (open circles, left axis). The discrepancy arises from the unique information
contributed by the SPR-SC data being ‘orthogonal’ to the others. For comparison, the best
local fit and complete GMMA fit are shown as dotted and dashed lines, respectively. In
contrast to the SPR-SC data, the equivalent projections to the FP data (filled circles, right
axis, projection in magenta) virtually coincides with the best-fit models from local and
complete GMMA fits, showing that the information from the FP data is merely redundant to
that of all others.
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