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Abstract This paper is aimed at developing and evalu-
ating a content-based retrieval method for contrast-
enhanced liver computed tomographic (CT) images us-
ing bag-of-visual-words (BoW) representations of single
and multiple phases. The BoW histograms are extracted
using the raw intensity as local patch descriptor for each
enhance phase by densely sampling the image patches
within the liver lesion regions. The distance metric
learning algorithms are employed to obtain the semantic
similarity on the Hellinger kernel feature map of the
BoW histograms. The different visual vocabularies for
BoW and learned distance metrics are evaluated in a
contrast-enhanced CT image dataset comprised of 189
patients with three types of focal liver lesions, including
87 hepatomas, 62 cysts, and 60 hemangiomas. For each
single enhance phase, the mean of average precision
(mAP) of BoW representations for retrieval can reach
above 90 % which is significantly higher than that of
intensity histogram and Gabor filters. Furthermore, the
combined BoW representations of the three enhance
phases can improve mAP to 94.5 %. These preliminary
results demonstrate that the BoW representation is ef-
fective and feasible for retrieval of liver lesions in
contrast-enhanced CT images.
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Introduction

The medical field is increasingly using digital images
for diagnoses. Enabling radiologists to quickly search
the images of similar-appearing lesions with accurate
diagnosis according to their visual image features would
be greatly beneficial for diagnostic decision making,
especially when the visual properties play an important
role to diagnosis. The task involves finding the visually
and semantically similar images in a large image col-
lection based on a given query image. This task can be
addressed using content-based image retrieval (CBIR),
which is an active research area in the field of medical
image analysis [1].

This paper aims to develop a CBIR system to re-
trieve contrast-enhanced computed tomographic (CT)
images that contain similar focal liver lesions and rele-
vant information. The purpose is to aid diagnosis for the
given query images, in which the lesion regions are
outlined or the regions of interest (ROI) are selected.
Contrast-enhanced CT examination is a standard routine
for the patients who are suspicious of liver problems.
The contrast-enhanced CT examination includes unen-
hanced, hepatic arterial (HAP), portal venous (PVP),
and delayed phases (HDP). Some studies have devel-
oped computerized methods to classify and retrieve CT
liver lesions [2-6]. However, many existing studies on
live CT images only used an unenhanced [3, 5] or PVP
image [4, 6] to detect and characterize the liver lesions.
Nonetheless, one study used temporal signal tendency to
describe the multiphase feature [7]. Liver CT images
from each phase may actually contain useful and im-
portant diagnostic information [8]. In this paper, the
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potential ability of single- and multiphase visual infor-
mation (contents) of contrast-enhanced CT for retrieval
of liver lesions is explored.

In general, two key issues are at the forefront of the
development of the CBIR system: (1) representing the im-
age contents and (2) defining the similarity between images
[9]. The intensity and texture features in liver CT images are
considered as the important cues for the computerized de-
tection and classification of liver lesions. First-order statis-
tics [5], gray-level co-occurrence matrix (GLCM) [2, 3],
Gabor filters [10, 11], and wavelet transform [12] are the
most commonly used methods for describing the intensity
and texture features of liver CT images. Although GLCM
and wavelet transform can effectively represent texture,
recent studies have suggested that the texton and patch
exemplar methods are more powerful for texture classifica-
tion [13, 14]. The patch exemplar and texton representations
are closely related to the bag-of-visual-words (BoW) ap-
proach [15-20]. BoW is a popular strategy for representing
images within the context of image classification and CBIR.
Unlike GLCM or Gabor, the BoW approach can provide the
way to design task-specific feature representation. In this
paper, the BoW approach is used to deal with the first issue
mentioned above. However, representing an image (or a
region) using the visual features usually results in loss of
information. In addition, the appearance of lesions has large
variations. Lesions belonging to the same pathological cat-
egory but coming from a different patient can present di-
verse appearances in the images. As a result, the extracted
visual features may not directly link to the target image
category (semantic concept). It is the so-called semantic
gap [21]. To address this issue, we use the distance metric
learning (DML) methods to obtain the image similarity
associated with semantic concepts in the BoW feature space.

Materials and Methods
Image Data

Contrast-enhanced CT was performed using a multidetector
row helical scanner at the General Hospital, Tianjin Medical
University, China, from 2007 to 2010. CT images of the
three types of focal liver lesions, namely, hepatoma, cyst,
and hemangioma, were collected. Only one lesion per pa-
tient was analyzed, which was manually outlined by three
experienced radiologists. For patients with multiple lesions,
the dominant lesion (based on size) was analyzed. For each
patient, one to five representative slices of each phase were
selected by the radiologists to comprise the image dataset.
The resulting image dataset consisted of 1,375 CT slices
(512%512 matrix, 12 bits/pixel) from 189 patients, includ-
ing 87 hepatomas, 62 cysts, and 60 hemangiomas. Since the

clinical settings of patients were different during the imag-
ing procedure, only one to two phases of the CT images
from some patients were acquired. Details of the image data
are listed in Table 1. Three examples of outlined liver
lesions are shown in Fig. 2.

Bag-of-Visual-Words Representation of Lesions

The bag-of-visual-words image representation is analogous
to the bag-of-words representation of text documents, which
makes techniques for text retrieval readily applicable to the
problem of image retrieval. The BoW model treats an image
as a distribution of local descriptors, wherein each descriptor
is labeled as a discrete visual prototype. The set containing
these prototypes, or visual words, is the so-called visual
vocabulary (or dictionary [16], codebook [22]), which is
typically obtained by clustering in the feature space of local
descriptor. Given a visual vocabulary, an image is repre-
sented as a histogram of visual word occurrences on the
sampled image patches from the image. The histogram can
be considered as a discrete representation of the probability
distribution over visual words.

In the BoW framework, the image patches are sampled
densely or sparsely by interest point detectors and are
depicted by local patch descriptors. The most popular local
patch descriptor is SIFT in the computer vision community
[23]. Unlike natural images, most of the medical images are
taken under the standardized conditions to allow direct
comparisons of intensity of the images. There are no very
meaningful key points and structures in the liver lesions in
CT images, and the intensity is an important cue for diag-
nosis. Thus, for the current work, we used the raw intensity
without normalization as the local patch descriptor [24]. The
raw patches were then sampled densely with the stride of
one pixel in the liver lesion region to form the BoW
representation.

For the BoW method, an important issue is to construct
the visual vocabulary which affects the classification and
retrieval performance significantly. By clustering algo-
rithms, the found cluster centers or exemplars in the contin-
uous feature space are considered as the visual words. A

Table 1 Number

of patients in the Phase Patient number
image dataset
HAP 118
PVP 129
HDP 127
HAP and PVP 89
HAP and HDP 79
PVP and HDP 95
HAP, PVP, and HDP 68
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popular clustering approach for finding visual words is k-
means because of its simple and efficient implementation.
K-means is an unsupervised clustering algorithm that tries to
minimize the variance between k clusters and the training
data. Labeling the image patch is equivalent to quantize the
high-dimensional local descriptors. Generally, a larger visu-
al vocabulary usually leads to better performance since the
quantization error is effectively reduced [25]. A universal
vocabulary can be created in the whole feature space by k-
means clustering, which may produce more clusters for the
high-frequency parts in the feature space, leaving fewer
clusters for the remaining parts. However, frequently occur-
ring features are not necessarily informative and discrimi-
native. One way to improve the expressive ability of the
visual vocabulary is to incorporate the category information
into it. This can be done by constructing a visual vocabulary
for each category by clustering (classwise clustering) [25]
and then by aggregating them as one overall vocabulary
(category-specific vocabulary). We constructed the univer-
sal and category-specific vocabularies for each phase for the
liver CT images. Figure 1 shows the category-specific vo-
cabulary trained by k-means for the PVP phase. Figure 2
shows the examples of BoW histograms extracted using the
category-specific vocabulary.

Given a visual vocabulary, the standard BoW approach
assigns one visual word to an image patch, namely hard as-
signment. For each visual word w in a vocabulary ¥, the BoW
model estimates the distribution of visual words in an image (or
a ROI) by

*(w) = 1 Z { (1) if w= argvenl}ax(S(v, 7)) 7

i=i

where 7 is the number of sampled regions or patches in the
image, r; is an image patch i, and S(w, r;) is the similarity
between a word w and a patch 7;. Thus, an image is represented
by a histogram H of word frequencies that describes the prob-
ability distribution over visual words. The similarity S

(w, r;) can be defined as a Gaussian kernel S(v,7) = exp

(=lv=rl1?/0%)-

Labeling an image patch with the single best visual word
(hard assignment) ignores all ambiguity regarding the meaning
of the image patch. Unlike hard assignment, assigning a degree
of similarity to an image patch (soft assignment) can help in
modeling the inherent uncertainty of the image patch while
considering the continuous nature of image patches [22]. Soft
assignment can be easily incorporated in the BOW model by

1 n
:; ;S(W,Iﬁ)

Soft assignment weighs each word based on the
similarity of an image region to the visual word to
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Fig. 1 The category-specific visual vocabulary of PVP. The patch size
is 11x11, and vocabulary size is 256%3. a, b, and ¢ are hepatoma, cyst,
and hemangioma vocabulary, respectively. The intensity ranges of
visual words are adjusted for view

model the uncertainty of the meaning of an image
patch. The sparse coding method on a visual dictionary,
such as locality constrained linear coding (LLC) [26], is
another alternative of hard assignment.



J Digit Imaging (2012) 25:708-719

Fig. 2 Typical examples of
BoW representation of liver
lesions at PVP phase using the
category-specific vocabulary. a,
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Learning Distance Metrics Between BoW Histograms

Using visual features to represent an image (e.g., BoW
histogram in the present paper) usually results in loss of
information. Using a common distance metric, such as
Euclidean distance and x? distance between histograms
as the similarity (dissimilarity) measure, a CBIR system
cannot achieve the expected performance and capture
the important information for diagnosis. A CBIR sys-
tem, therefore, should be able to reduce the semantic
gap between the low-level visual features and the image
category. DML methods can be used to find a linear
transformation that projects the image features to a new
meaningful feature space to reduce this semantic gap.
Previous work showed that appropriately designed dis-
tance metrics could improve CBIR performance com-
pared with Euclidean distance [27]. For the BoW
model, the semantic meaning of visual words is ambig-
uous; thus, the retrieval performance can be improved
by embedding the semantic information to BoW repre-
sentation by supervised DML.

Let L be a dxD matrix and W=L"L. The (squared)
Mahalanobis distance between image representations x;
and x; is:

dw (x; = ;) = L = Lag|[;= (v — ) "L 7L (x — )

= (v =) W~ x),

800

®

where ” denotes the transposition of a matrix or vector. The
aim of distance metric learning is to find an optimal projec-
tion L or a metric W to minimize an objective function.
Most existing algorithms obtain a metric either by dimen-
sionality reduction (subspace learning) such as principal
components analysis, linear discriminant analysis (LDA),
and local Fisher discriminant analysis (LFDA) [28], or by
explicit metric learning, such as Xing's method [29], and
large margin nearest neighbor (LMNN) [30], close-form
metric learning (CFML) [31]. The intuitive goal of metric
learning is keeping all intraclass data points close, while
separating all interclass data points as far as possible in the
subspace projected by L. Among DML methods, some
require semidefinite programming to obtain solutions and
are computationally expensive, and some are formulated as
trace ratio and have close-form solutions.

LDA is a powerful approach to learn a subspace that
preserves the variance between class labels. Suppose we
have a set of n samples{x, x,, . .., x, }belonging to ¢ classes.
Since there are many variants of LDA [32], a regularized
form of LDA (rLDA) is used in this paper. The objective of
rLDA to search a transformation matrix L* is as follows:

L* = argmax tr(L"S,L), (1)
L

st. LI(S,, + AL =1,
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where

¢ T

Sy, = an (u(k) — u) (u<k) — u) ,

53" (Z (9 ) (<0 - u<k>)T)7
i=1

k=1

tr() denotes matrix trace, u is the total sample mean vector,
ng is the number of samples in the kth class, u® is the
average vector of the kth class, and x,@ is the ith sample in
the kth class. S,, is the within-class scatter matrix and Sy is
the between-class scatter matrix. The optimization problem
in Eq. (1) is equivalent to finding the eigenvectors associat-
ed with maximum eigenvalues of a generalized eigenpro-
blem. The rank of Sy, is upper bounded by c¢—1(<<D). The
regularization parameter A(A>0) enforces an isotropic
Gaussian prior on S, which ensures that the eigenvalue
problem is well conditioned when S, is low rank.

CFML, a close-form DML algorithm proposed by Alipa-
nahi [31], is closely related to LDA. We assume that the
images and lesions are labeled, i.e., whether or not two
image representations are in the same category or not. Be-
low, we refer to the image representations in the same and
different categories as similar and dissimilar, respectively.
Let the set of similar pairs be denoted by

S: (x,-,x_,—) €S if x; and x; are similar,
and the set of dissimilar pairs be denoted by
D: (x,»,xj) € D if x; and x; are dissimilar.

The objective of CFML to search the dx D transformation
matrix L* is as follows

L+ = argmin tr(L” (Ms — Mp)L), (2)
L

st. LTMgL =1,

where
1
MS—W Z (x,—xj)(x, x/)Tv
(x[,xj>€S
and
1 T
Mp =5 > =) =)

CFML attempts to minimize the squared Mahalanobis
distance between similar points, while maximizing the
squared Mahalanobis distance between dissimilar points.
The solution of the optimization problem in Eq. (2) is

@ Springer

provided by the matrix of eigenvectors corresponding to
the largest eigenvalues of the matrix Mg ' M. In this paper,
a regularization form of CFML is implemented by substi-
tuting L’MgL=/ with L'(Mg+\)L=1.

For high-dimensional BoW representations, we find that
the explicit regularization is essential for good performance
even when S,, or Mg is full rank. The number of available
samples in this paper is less than 200, while the BoW
histograms have a large number of bins. This is a typical
high-dimensional small-sample problem. As shown in
Fig. 3, the 768-dimensional BoW histograms of liver CT
images are embedded into 2-dimensional feature space by
rLDA. This scatter plot demonstrates the powerfully dis-
criminative ability of the BoW representation. In the training
sample set, three types of liver lesions were linearly separa-
ble in the subspace learned by rLDA.

Since the BoW histograms can be regarded as the discrete
probability distributions, they do not perform well for re-
trieval and classification in Euclidean space. In comparison,
histogram intersection (which is equivalent to L1 distance),
x* distance, and Hellinger distance have consistently been
found to perform well in applications for the histogram-
based representations. Particularly, the squared Hellinger
distance between two distributions, P and Q, can be
expressed as

2
H(P,0) =3 (VPi = V&),

which has a similar form to Euclidean distance. Analogous
to Mahalanobis distance, we define the generalized Hellin-
ger distance

iy (P.0) = (VE~/0) W (VP ~/0).

To learn a generalized Hellinger distance, the square-
rooting operation on the elements of the BoW vector is the
only requirement. Actually, the square-rooting BoW histo-
gram is the feature map of Hellinger kernel k(x,y) = \/xy,
which can improve the retrieval performance [33, 34].

0.1
0.05 LR
0
-0.05
o hepatoma X
R e
-0.1+ - cyst ¢
* hemangioma *‘
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-0.15 -0.1 -0.05 0 0.05 0.1

Fig. 3 The embedding space of BoW representations by rLDA
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To develop the CBIR system of contrast-enhanced liver
CT images, the visual vocabularies of each phase and the
distance metrics were learned offline for each single- or
multiphase CT image. These were then restored in the
database. The BoW histograms of each patient at each phase
were also computed offline and restored in the database for
indexing the patients. Figure 4 presents the architecture of
the retrieval system based on the BoW representations and
the learned distance metrics. All of the acquired slices at the
single or multiple phases of a patient are fed to the system as
a query. The BoW histograms of a query were computed
using the stored visual vocabularies for each phase online
and then compared with the BoW histograms stored in the
database using the learned distance metrics for single or
multiple phases. The images and the known diagnostic
information of patients corresponding to the most similar
BoW histograms were retrieved from the database and were
then presented to the user.

Retrieval Evaluation Measures

To evaluate the CBIR system, several performance evaluation
measures have been proposed based on precision and recall:

Number of relevant samples retrieved
Total number of samples retrieved ’

Precision =

__ Number of relevant samples retrieved
Recall = Total number of relevant samples

Precision and recall values are usually represented in
a precision—recall curve, which summarizes the preci-
sion—recall pairs for varying numbers of retrieved sam-
ples. The most common way to summarize this
precision—recall curve into one value is the mean of
average precision (mAP). More precisely, precision at
the top k retrieved samples (Prec@k in short) is defined
as the proportion of relevant samples up to position k:

1
Prec@k = T ereljl{ﬂ(xj) < k},

where rel; € {0, 1}is the relevance label of x; for a given
query x, (1 for relevant, and 0 for irrelevant), m(x;) is
the position or rank of the jth sample in the ranking list,
and 1{} is the indicator function. Average precision

Fig. 4 Architecture of the
CBIR system of multiphase
liver CT images

(AP) is the average of the precisions at the positions
where there is a relevant sample:

1 .
AP = N Zrelj X Prec@),
j

where N' is the number of relevant samples. mAP is
the mean of AP over all queries.

Results
Experimental Settings

The performance of BoW representations for retrieval of
liver lesions was evaluated on single- and multiphase
CT images. The patients were partitioned by tenfold
cross-validation method. The slices of patients in the
training set were used as the dataset images. The slices
of each patient in the test set were used as a query to
retrieve the training set to report performance. The
visual vocabulary for each enhance phase was con-
structed by k-means clustering. For each patient, the
BoW histogram was computed using all of the slices
at cach phase.

The shapes of image patches were set to be blocks
with the sizes of 7x7, 9x9, 11x11, and 13x13 pixels,
respectively. The image patches were sampled densely
on grids with step of one pixel to form the BoW histo-
grams. For each phase, the universal vocabulary and
category-specific vocabulary were constructed separate-
ly. For the category-specific vocabulary, the sizes of
vocabulary (number of visual words) for each type of
liver lesion were set to 64, 128, 256, and 512. For fair
comparison, the sizes of universal vocabulary were set
to 192, 378, 768, and 1,536.

In this paper, two patients with the slices at single
(or multiple) phase(s) containing lesions in the same
category were defined as relevant (similar); otherwise,
they were considered as irrelevant (dissimilar). For the
DML algorithms, the optimal regularization parameters
and embedding dimensionality were estimated by cross-
validation.

Visual

vocabularies Bl

Images
BoW histograms

BoW histogram
of each phase

Choose a distance metric
based on query pahses

Retrieval results
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Comparison of Different Distances

First, the sizes of the image patch and visual vocabulary
were fixed, after which the retrieval performances of the
different distances on the BoW representations in terms of
mAP were summarized. Figure 5 shows the mAP values of
different distance metrics for retrieval of CT images at each
single phase using category-specific vocabulary with the
size of 256%3 and the image patch size of 11x11. It can
be seen that the mAP values of Euclidean (L2), L1, x?
(chi®), and Hellinger distance are significantly lower than
those of the learned distance metrics. Using the feature map
of Hellinger kernel of BoW histograms, the distance metrics
learned by LMNN and rLDA (denoted as LMNN-H and
rLDA-H) achieved slightly better retrieval performance in
terms of mAP than the original histograms (denoted as
LMNN-E and rLDA-E). We found that the feature map of
Hellinger kernel of BoW histogram was an effective way to
improve the retrieval performance in the experiments. Only
the results on the feature map of Hellinger kernel are
reported in the rest of this paper.

Figure 6 shows the precision-recall curve and the
precision—scope curve of different distance metrics for
retrieval of the CT images at PVP phase using the BoW
representations. We can see that the precision of x> and
Hellinger distance is rather high when recall or scope is
small, even the mAP of x* and Hellinger distance is
relatively small. It is verified that the visual similarity
induced by the BoW histogram is related to the seman-
tic similarity. However, with respect to semantic mean-
ing, the importance of visual word is ambiguous and
different. Directly using x* and Hellinger distance can-
not efficiently express well the discriminant information,
and the precision drops dramatically when scope
increases. By DML, the discriminant ability of BoW
representation was explored. As shown in Fig. 6b, the
high precision is kept up when the scope increases up
to 30.

L L [ Chi2 —1 Hellinger
[ JLMNN-E [0 rLDA-E [ LMNN-H Il rLDA-H
09 e == o o o - - o i v e e —

0.8

mAP

0.7

0.6 —

0.5

Fig. 5 Retrieval performance of different distance metrics on BoW
representations
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Impact of Vocabulary Size and Patch Size

Previous studies suggested that the vocabulary size and the
patch size were important factors to the performance of
image categorization and retrieval [24, 25]. We varied the
image patch size and the vocabulary size. Using the
category-specific vocabulary, we reported the retrieval per-
formance of the learned distance metrics.

The image patch size was set to 9% 9 to assess the impact
of the vocabulary size on the retrieval performance. Figure 7
shows the mAP values of the distance metrics learned by
rLDA, CFML, LFDA, and LMNN using the BoW histo-
grams with different vocabulary sizes at each phase. For all
the three phases and the learned distance metrics, larger
vocabulary led to higher mAP. It is interesting that rLDA
outperforms the state-of-the-art metric learning algorithm
LMNN in some cases. It is interesting to note that, in some
cases, TLDA outperformed the state-of-the-art metric learn-
ing algorithm LMNN. However, a large vocabulary requires
higher computational cost. Since the gain on mAP is not
significant when the vocabulary size is greater than 768, this
vocabulary size is an appropriate value for the category-
specific vocabulary size in balancing the computational cost
and the retrieval performance.
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Fig. 7 Performance of BoW representations with different vocabulary sizes at single phase: a HAP, b PVP, ¢ HDP

The vocabulary was set to 768 to assess the impact of the
image patch size on the retrieval performance. The category-
specific vocabularies were used to obtain the BoW histo-
grams of liver lesion at each phase. The patch size is a
critical factor for the local image feature. A larger patch size
can achieve higher discriminative power of a local feature.
However, a larger feature is less repeatable and more sensi-
tive to image variations. Usually, the medium size of a patch
is a good choice as the tradeoff between discriminative
power and generalization ability of the local feature.

The medium size of the image patch led to better retrieval
performance in terms of mAP at a single phase (Fig. 8). For
the HAP and PVP phases, the BoW representations on 11 x
11 image patches outperformed the other image patch sizes
using the different DML algorithms. For the HDP phase, the
best choice of image patch size was 9x9.

Universal Vocabulary vs. Category-Specific Vocabulary

This section presents a comparison between the two types of
visual vocabularies. For a fair comparison, the universal
vocabulary and the category-specific vocabulary were
trained by k-means on the same image patch set for each
phase. Their sizes were also set to the same value. The
category-specific vocabulary outperformed the universal
vocabulary when the vocabulary size was relatively small
(Fig. 9). When the vocabulary size was large enough, the

(a)

091}/

performance of the universal vocabulary and the category-
specific vocabulary tended to be identical for the learned
distance metrics. In addition, rLDA outperformed LMNN in
most of the cases for the category-specific vocabulary.

Comparison of BoW Representation and the Other Image
Descriptors

Gabor filters, a widely used approach for texture classifica-
tion, had been employed for the retrieval of liver CT images
[10]. The Gabor filter bank and descriptors proposed by
Manjunath were implemented in the experiments [35]. Ta-
ble 2 lists the retrieval performance in terms of mAP and
precision at the top 10 and 20 retrieved patients for each
single phase. The retrieval performance of the intensity
histogram was also reported. For the intensity histogram,
the CT values were quantized to 16, 32, 64,128, and 256
levels. The intensity histogram was actually equivalent to
the BoW histogram of 1x1 image patches. The intensity
histogram of 128 bins achieved the best performance. For
the BoW histograms, the category-specific vocabularies of
11x11 image patches were used. From Table 2, we can see
that Gabor vector performed worst. For each single phase,
mAP of the BoW histograms with the learned distance
metric can achieve more than 90 % which is significantly
higher than those of the intensity histogram and Gabor
vector.

mAP

Patch Size

Patch Size

Patch Size

Fig. 8 Performance of BoW representations with different patch size at single phase: a HAP, b PVP, and ¢ HDP

@ Springer



716

J Digit Imaging (2012) 25:708-719

(a) (b)

©,

0.92 0.92
09 0.9
0.88
0.88
o 086 A o
< < (.86 <
E g4 E ¢ E
[ —6— CSV+rLDA 0.84 —e— CSV+rLDA —— CSV+ILDA
0.82 - = —UV+rLDA - = =UV+rLDA = = =UV+rLDA
ok’ —8— CSV+LMNN 0.82 —8— CSV+LMNN —8— CSV+LMNN
’ = = = UV+LMNN . - = —~UV+LMNN | - = =UV+LMNN
0.78 08 86 -
64*3 128%3 256%3 512*3 64*3 128*3 256%3 512%3 64%3 128%3 256*3 512%3

Vocabulary Size

Vocabulary Size

Vocabulary Size
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HDP

Retrieval Using Multiphase BoW Representations

For some patients, more than one phase contrast-enhanced
CT images were acquired. The retrieval performance may be
improved by combining multiphase information. For multi-
phase retrieval, the BoW histograms of each single phase
were merged into one vector to represent the multiphase
contents. The settings of BoW representations were the
same as in the previous section. Table 3 lists mAP and
precision of the multiphase BoW histograms. By combining
the information of multiple phases, mAP of x* distance was
consistently improved. However, Prec@10 and Prec@20 of
x° distance achieved the highest values for the HDP phase;
the mAP values of the two-phase BoW histograms with the
distance metrics learned by rLDA were slightly higher or at
times lower than single-phase BoW histograms. Combining
the three-phase BoW histograms resulted in the highest

mAP (94.5 %) and Prec@10 (92.1 %) for the learned
distance metric by rLDA.

Retrieval Examples

Figure 10 presents the retrieval examples using BoW repre-
sentations and the distance metrics learned by rLDA. For
BoW, the category-specific vocabularies (patch size 11x11)
of size 768 for each phase were used. Only one representa-
tive slice of each retrieved patient was displayed. For mul-
tiphase retrieval, all slices of the query patient at three
phases are fed to the retrieval system as one query. The
images in each column are the slices of one patient at three
phases in Fig. 10b. In Fig. 10, all of the query lesions and
the top five retrieved lesions are hemangiomas. From
Fig. 10a, we can see that the query lesion and the retrieved
lesions have very similar appearance; the visual similarity

Table 2 Retrieval performance

of different image descriptors Phase Descriptor Distance mAP Prec@10 Prec@20
(mean=standard deviation) (in
percent) HAP Intensity histogram (128 bins) XZ 58.0+£5.0 61.1£7.0 57.1+£6.7
rLDA 70.8+7.7 67.8+10.3 67.6+£9.9
Gabor vector (24 D) L1 47.5+4.4 50.1+7.5 45.7+6.8
rLDA 55.0+7.8 52.5£10.9 51.7+£10.3
BoW histogram (256 %3 bins) X’ 63.2+5.7 70.9+9.2 63.7£6.9
rLDA 90.8+6.0 86.9+8.0 86.9+8.0
PVP Intensity histogram (128 bins) . 60.2+6.5 64.6+£11.0 62.9+9.5
rLDA 71.4+8.4 68.7£12.6 68.1£11.6
Gabor vector (24 D) L1 55.2£5.5 62.6+9.0 56.8+7.7
rLDA 63.0+4.3 65.4+7.2 62.5+5.3
BoW histogram (256 %3 bins) X 67.8+£5.8 73.1+8.6 70.2+8.5
rLDA 90.9+6.3 87.5+8.9 87.6+8.8
HDP Intensity histogram (128 bins) X 70.1+5.6 76.5+£8.0 72.6x7.0
rLDA 78.2+9.3 79.8+13.0 78.3£11.1
Gabor vector (24 D) L1 53.6+4.0 59.0+£5.5 54.4+5.6
rLDA 60.6+6.7 63.0+£9.6 60.0+8.7
BoW histogram (256 %3 bins) X 73.2+5.7 83.1+6.2 78.0+7.3
rLDA 90.8+6.5 89.2+8.3 89.2+8.2
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Table 3 Retrieval performance 5

of BoW histograms using single- Phase X tLDA

and multiphase representations ]

(mean=standard deviation) (in mAP Prec@10 Prec@?20 mAP Prec@10 Prec@?20

press)
HAP 63.2+5.7 70.9+9.2 63.7+6.9 90.8+6.0 86.9+8.0 86.9+8.0
PVP 67.8+5.8 73.1£8.6 70.2+8.5 90.9+6.3 87.5+8.9 87.6+8.8
HDP 73.2+5.7 83.1+6.2 78.0+7.3 90.8+6.5 89.2+8.3 89.2+8.2
HAP+PVP 68.5+13.1 72.4+11.1 64.9+7.7 88.8+5.4 84.2+8.0 84.2+8.0
PVP+HDP 81.5+13.6 78.9+8.9 71.7+8.2 93.1+8.3 91.4+10.4 91.2+10.7
HAP-+HDP 84.0+5.0 77.5+9.3 66.9+7.4 91.4+8.6 88.8+11.2 86.3+12.2
HAP+PVP-+HDP 84.1+5.0 77.5+8.5 63.7+7.8 94.5+8.3 92.1+12.1 87.0+12.2

between the query lesion and the retrieved lesions at one or
two phases can also be observed in Fig. 10b.

Discussion
From the experimental results, the BoW representations are

effective for retrieval of contrast-enhanced CT images of liver
lesions. Unlike Gabor filters [ 10] and the other hand-drift filter

PVP

HAP

EvP

HDP

P e e o o e o e o o e e e e e e e o

Top five retrieved samples

banks [13], the task-specific and subtle representation can be
learned in the BoW framework within the specific image
domain, e.g., liver CT images in this paper. In general, the
Gabor filter bank and the other filter bank can be more suitable
for classification of periodic and structural textures which
appear less in liver CT images. The large visual vocabulary
of BoW and the learned distance metrics served as factors that
facilitated good retrieval performance. Although the larger
visual vocabulary requires more computational cost and

(®)

Fig. 10 The retrieval results of a hemangioma query: a using a BoW representation of the PVP phase only and b using BoW representations of the

three phases
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storage, the distance metric learning algorithms can be
employed to reduce the dimensionality of feature vectors
and to speed up the retrieval procedure. In addition, incorpo-
rating the category information as the category-specific vo-
cabulary is an effective way to construct a relatively compact
vocabulary.

Each phase of contrast-enhanced liver CT images are
effective and useful for the retrieval task. From the experi-
mental results, the retrieval performance of BoW represen-
tations for each enhance phase is close. This implies that the
retrieval system can work well even if only one phase of
contrast-enhanced liver CT images is acquired. The re-
trieved results can be more accurate if all three phases of
liver CT imaging of a patient are simultaneously fed into the
retrieval system. The reason may be that more information
of lesion is provided by multiphase CT images. However,
more phases can increase patient exposure to ionizing radi-
ation and lead to higher CT examination cost.

In this paper, the relevant patients are defined as the
patients who have the same category lesions. It is expected
that the relevant or categorical similar CT images to the
query images could help the diagnosis. A more proper
approach to define this relevance is by annotating the
patients and the CT images by medical experts, as discussed
in a previous study [6]. We plan to construct a liver CT
image dataset with more types of liver lesions that are
manually annotated by radiologists. We also intend to verify
the clinical usefulness of the CBIR system.

The focal liver lesions in the CT images need to be
outlined manually in the current retrieval method. It is not
convenient for radiologists to use the CBIR system. More-
over, there are interobservation variations in the outlined
lesion regions. To address these problems, the existing
methods of automatic detection and segmentation of liver
lesion in CT images can be integrated to the CBIR system. It
is interesting to develop a retrieval system in a simpler and
more efficient way, in which the lesion or an ROI only
requires to be bounded by a box or an ellipse.

Aside from the standard BoW with hard assignment
procedure, there are also other BoW variants. The state-of-
the-art methods include soft assignment, LLC, etc. We also
tested experimentally the retrieval performance of these
methods. Their performance, however, was similar to hard
assignment, and no significant improvement was found.

Conclusions

We presented a CBIR method for the retrieval of categori-
cally similar focal liver lesions in the contrast-enhanced CT
images. The BoW histograms represented the contents of
the liver lesions at each phase. Raw intensity was used as the
local descriptor of image patch, and the dense sampling

@ Springer

method was employed to form the BoW representations.
We used the distance metric learning algorithms in obtaining
the semantic similarity between the CT images. Both single-
phase and multiple-phase contrast-enhanced CT images
were evaluated in the retrieval performance of the BoW
representation. Preliminary results demonstrated that the
BoW representation of the single phase achieved mAP
greater than 90 %. Additionally, combining the BoW repre-
sentations of three phases could improve mAP to 94.5 %.
These encouraging results suggest that it is feasible to re-
trieve similar lesions in the contrast-enhanced CT image via
BoW representation. In future works, we hope to extend the
BoW approach on a liver CT image dataset composed of
more types of liver lesions, in which the similarity is man-
ually annotated. We also intend to develop a practical sys-
tem for clinical decision making and medical education.
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