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IL-17–producing CD27− γδ cells (γδ27− cells) are widely viewed as
innate immune cells that make critical contributions to host pro-
tection and autoimmunity. However, factors that promote them
over IFN-γ–producing γδ27+ cells are poorly elucidated. Moreover,
although human IL-17–producing γδ cells are commonly implicated
in inflammation, such cells themselves have proved difficult to iso-
late and characterize. Here, murine γδ27− T cells and thymocytes are
shown to be rapidly and substantially expanded by IL-7 in vitro and
in vivo. This selectivity owes in substantial part to the capacity of
IL-7 to activate STAT3 in such cells. Additionally, IL-7 promotes
strong responses of IL-17–producing γδ cells to TCR agonists, thus
reemphasizing the cells’ adaptive and innate potentials. Moreover,
human IL-17–producing γδ cells are also substantially expanded by
IL-7 plus TCR agonists. Hence, IL-7 has a conserved potential to
preferentially regulate IL-17–producing γδ cells, with both biologi-
cal and clinical implications.
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Studies of IL-17 intensified with the identification of a specific
subset of CD4+ Th17 cells that upon activation primarily

produces IL-17 as opposed to IFN-γ (Th1 cells), IL-4 (Th2 cells),
or IL-10/TGFβ (Treg cells) (1–3). Th17 differentiation is regu-
lated by transcription factors RORγt and STAT3, the latter in
part explaining the promotion of Th17 differentiation by IL-6
and IL-23 (3). Paradoxically, more detailed studies of Th17 im-
munity have identified γδ T cells and/or innate-like lymphoid
cells as critical initial producers of IL-17 (4, 5). At steady-state,
γδ cells are only a minor subset of T lymphocytes, but upon in-
fection by Listeria, Mycobacteria, or Plasmodium, or upon LPS
administration, they expand and make critical contributions to
host protection (5–9). They likewise underpin immunopathology
in widely used models of inflammatory disease (10, 11). In
humans, IL-17 protects against mucocutaneous candidiasis and is
again implicated in autoimmune inflammation, including psori-
asis, multiple sclerosis, and rheumatoid arthritis (12, 13). Hence,
there is considerable interest in identifying factors that regulate
IL-17–producing γδ cells in mice and humans.
Adding to this interest is the emergence of murine γδ cells as

prime examples of thymic preprogramming, whereby functional
distinctions between CD27+IFN-γ producers (γδ27+ cells) and
CD27−IL-17–producing (γδ27−) cells are established by develop-
mental cues that are largely uneludicated (8, 14). For example, γδ27−
cells seem largely to arise from fetal thymocytes, requiring neither
engagement of cognate ligand, nor RORγt or STAT3 that are
both required for TCRαβ+ Th17 cell development (15). However,
despite the dispensability of RORγt and STAT3 in development,
most peripheral IL-17–producing γδ cells express RORγt and
respond rapidly to IL-23 that signals via STAT3 (10). Such rapid
responsiveness in the absence of TCR stimulation has led many to
classify γδ27− cells as innate immune cells: Indeed, they generally
respond poorly to concentrations of TCR agonists that would
promote robust activation of γδ27+ cells (9). Nonetheless,
assigning IL-17–producing γδ cells to innate immunity seems
premature until more is known about what regulates the cells and
how that might influence their response to TCR stimulation.

Although IL-17–producing γδ cells are likewise commonly
evoked in human immune responses and immunopathologies,
very little is known about these cells, because they have proved
particularly hard to isolate and characterize (16). Thus, it seemed
logical that by elucidating stimuli for murine γδ27− cells, onemight
identify the means to expand their human counterparts. This
study identifies IL-7 as a profound and selective activator of IL-
17–producing γδ cells in mouse and in human neonates.

Results
IL-7 Enriches for Lymph Node γδ27− Cells. Lymph node (LN) γδ27+
cells appear like naïve conventional T cells, being primarily
CD62L+ CD25− CD44lo ICOS−, whereas between 50% and 75%
of γδ27− cells resemble activated T cells (CD62L− CD25+/−

CD44hi ICOS+), although they are largely CD69− (Fig. 1A and
Fig. S1A). As was reported (17), γδ27− cells also express higher
levels of IL-7R than do γδ27+ cells (Fig. 1A). To determine
whether this phenotype had functional implications, LN cells
were cultured with IL-7 for 4 d. Over eight independent
experiments, γδ27− cells were strikingly enriched ∼five- to sev-
enfold relative to γδ27+ cells and ∼6- to 10-fold relative to total
LN cells, whereas αβT-cell numbers declined (Fig. 1B and Fig. S1
B and C). Essentially all γδ27− cells were TCRhi CD44hi, and now
∼70% expressed CD69 (Fig. 1 B and C). IL-7 also increased the
proportion of γδ27+ cells expressing CD44 and CD69 (Fig. 1C),
although their numbers declined ∼70% over 4 d, whereas absolute
numbers of γδ27− cells increased three- to fourfold (Fig. 1D).
Strikingly, this enrichment was for cells with IL-17–producing ca-
pacity, whose representation increased from ∼30% to ∼70% of
the γδ27− subset (Fig. 1E). Consistent with this increase, IL-7
enriched for cells expressing RORγt protein but not for those
expressing T-bet, a primary regulator of IFN-γ (Fig. S1D).
To probe the generality of these observations, we investigated

cells from the peritoneal cavity, known to harbor IL-17–pro-
ducing γδ T cells (18, 19). Ex vivo almost all γδ cells were CD44hi

(Fig. S1E), and they were enriched after 4 d in IL-7, compared
with total cells (Fig. S1 E and F). However, whereas IL-7
maintained γδ27+ cell numbers in vitro relative to culture in
medium alone, absolute numbers of γδ27− cells were again in-
creased: ∼ninefold relative to medium alone, and ∼fourfold
relative to numbers harvested ex vivo (Fig. S1G). Among these
cells, the proportion of IL-17 producers was again increased (Fig.
S1H). Thus, IL-7 preferentially enriches for IL-17–competent γδ
T cells from two distinct anatomical sources.
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To examine whether the same effects would be achieved in
vivo, mice were administered recombinant IL-7 three times over
5 d and then examined on day 7. There was a conspicuous

enrichment of CD44hi γδ27− cells, with absolute numbers of LN
γδ cells competent to make IL-17 upon activation increasing
>fivefold, compared with two- to threefold increases in IFN-
γ–competent cells (Fig. 2 A–C). Note that before and after IL-7
treatment, few γδ cells coproduced IL-17 and IFN-γ, consistent
with developmental preprogramming (8).
To test whether IL-7 is required for the expansion of IL17–

producing γδ cells in vivo, we examined mice treated epicuta-
neously with imiquimod (IMQ) in which the development of
acute psoriaform lesions is largely attributable to expansion of
IL-17–producing γδ cells in the skin and skin-draining LNs (11,
20). Indeed, such lesions are comparable in WT and αβ T-cell–
deficient mice but dramatically reduced in TCRδ−/− mice (11,
20). Administration of anti–IL-7R antibody almost completely
blocked the enrichment (∼10-fold) in IL-17+ γδ cells in the skin-
draining LNs of mice administered IMQ versus vaseline but did
not significantly limit the two- to threefold expansion of IFN-γ+
γδ cells (Fig. 2 D and E). Skin erythema scores, which compose
a highly reproducible marker of IMQ-induced pathology, were
significantly reduced in anti–IL-7R–treated animals (Fig. 2F), as
was epidermal thickening that is associated with dermal IL-17–
producing γδ cell expansion (11, 20). That some reddening
nonetheless occurred most likely reflects widely acknowledged
nonimmunological effects of IMQ (20).

Mechanism of Enrichment. Directly ex vivo, few γδ27+ and γδ27−
cells were dividing as judged by Ki67 staining, but after 4 d in
IL-7, >90% of γδ27− cells were dividing compared with only
∼30% for γδ27+ cells (black versus gray lines; Fig. 3A). Fur-
thermore, when cells were labeled ex vivo with a membrane-
intercalating dye, carboxy-fluorescein diacetate succinimidyl es-
ter (CFSE), γδ27− cells showed much greater dye dilution (by cell
division) than did γδ27+ cells (Fig. 3B), and it was those dividing
cells that accounted for almost all IL-17 production upon stim-
ulation (Fig. 3C). Hence, IL-7 drives the preferential expansion
of γδ27− cells with, by contrast, little evidence of selective sur-
vival: indeed, Bcl-2 mRNA whose up-regulation has been asso-
ciated with antiapoptotic effects of IL-7 in T cells (21) was more
strongly expressed by γδ27+ cells (Fig. S2A).
IL-7 signals are primarily transduced by STAT5 and PI3-ki-

nase (22–24). However, IL-7–dependent STAT5 phosphoryla-
tion was comparable among γδ27+ cells and γδ27− cells (Fig. 3D),

Fig. 1. IL-7 enriches for IL-17–competent γδ T cells. (A) γδ T cells from lymph
nodes (LN) of adult mice, stained for CD44, CD69, IL-7R, and CD27. (B)
Representative plots (from n = 8 experiments) of total LN cells, ex vivo (Left)
and after 4-d culture in vitro with IL-7 (Right). (C) Surface staining of γδ T
cells after 4-d culture in vitro with IL-7. (D) Absolute numbers of CD44lo and
CD44hi γδ27+ cells and CD44lo and CD44hi γδ27− cells from LN cells cultured as
in B. Error bars are SEM from n = 8 experiments: *P < 0.05, ***P < 0.0005. (E)
Intracellular staining for IL-17 in γδ T cells from LN cells cultured as in B and
then activated with PMA + ionomycin.

Fig. 2. IL-7 enriches in vivo for IL-17–competent γδ T
cells. (A) Representative plots (n = 3) of γδ T cells
from total adult LNs from mice treated with PBS
(Left) and IL-7 (Right). For all plots, numbers indicate
percent of cells in relevant quadrant. (B) Intracellular
staining for IL-17 and IFN-γ in gated γδ T cells, from
mice treated as in A, and then activated in vitro with
PMA + ionomycin. (C) Absolute numbers of IL-17+

and IFN-γ+ γδ T cells from mice treated as in B: Error
bars are SEM from n = 3 mice; *P < 0.05. (D) Mice
were treated with Vaseline (Ctrl; Upper) or imiqui-
mod (IMQ; Lower) and anti–IL-7R Ab (Right) or iso-
type control (Left). Intracellular staining for IL-17
and IFN-γ in γδ T cells from LN cells, activated with
PMA + ionomycin. (E) Absolute numbers of IL-17+

and IFN-γ+ γδ cells obtained as described in D (error
bars are SEM from two experiments, n = 8 mice in
total, *P < 0.05). (F) Score for skin erythema from
mice treated with IMQ as in D (from 4 experiments,
n = 16 mice in total, P < 0.005).
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failing to account for the differential effects of IL-7 on γδ27−
cells. In fact, STAT5 activation antagonizes Th17 differentiation
(25) in which regard the promotion of IL-17–producing cells by
IL-7 seemed paradoxical. However, IL-7 may also activate
STAT3 (22) which mediates the effects of cytokines known to
promote IL-17–producing γδ T cells (10): indeed, after IL-7
stimulation γδ27− cells showed >threefold higher phospho-
STAT3 expression than γδ27+ cells (Fig. 3D). This phosphory-
lation was largely limited to CD44hi cells, in which most pSTAT3
was nuclear, as illustrated by colocalization with propidium
iodide (Fig. 3E and Fig. S2C). In Il17aCreR26ReYFP “fate
mapping” mice, cells transcribing the Il17a locus induce cre that
excises a stop codon, thereby irreversibly activating an enhanced
yellow fluorescent protein (eYFP) gene in the rosa26 locus (26).
LN eYFP+ γδ cells are CD44hi and RORγt+ (Fig. S2D), and
after 30-min stimulation with IL-7, pSTAT3 was selectively
expressed by eYFP+ γδ cells (Fig. S2E).
When LN cells were incubated for 3 d with IL-7 in the presence or

absence of an inhibitor that blocks STAT3 phosphorylation but
leaves STAT5 phosphorylation intact (Fig. S2F), γδ27+ cells were
little affected, whereas the preferential enrichment of γδ27− cells was

reduced by>50%, with a corresponding reduction inKi67+ cells, and
very severe attenuation of cells with IL-17–producing potential (Fig.
3 F and G and Fig. S2G). This effect was not attributable to any
toxicity of the inhibitor; for example, γδ27− annexin-V profiles were
equivalentwith orwithout it (Fig. S2H).Correlatingwith the selective
IL-7–mediated activationof STAT3 in γδ27−cells were very low levels
of the STAT3 suppressor, SOCS3, relative toCD44lo γδ27+ cells (Fig.
S2I). Interestingly, the minor CD44hiγδ27+ subset also expressed low
levels of SOCS3, perhaps accounting for the maintenance of these
cells in IL-7 compared with the loss of bulk γδ27+ cells (Fig. 1D).

IL-7 Enriches for γδ27− Thymocytes. IL-17–producing γδ27− cells
reportedly arise during fetal thymic development (4, 18), although

Fig. 3. IL-7 promotes expansion of IL-17–competent γδ T cells via selective
STAT3 activation. (A) Staining for Ki67 (cells in cycle) in gated γδ27− (Left) and
γδ27+ (Right) LN cells ex vivo (gray line) and after 4-d culture with IL-7 (black
line). Shaded histograms show Ki67 isotype staining. (B) Offset histograms of
γδ27+ (red) and γδ27− (blue) LN cells labeled with CFSE and then cultured for 4
d with IL-7. Shaded gray area represents γδ T cells stained ex vivo. (C) CFSE-la-
beled LN cells were cultured for 4 d with IL-7, activated with PMA + ionomycin
and stained for intracellular IL-17 and gated on γδ cells. (D) Flow cytometric
detection of intracellular pSTAT5 and pSTAT3 in gated γδ27− and γδ27+ cells as
labeled. Open and shaded areas indicate IL-7 treatment and controls, re-
spectively. (E) Intracellular localization by ImageStream Flow Cytometry of
pSTAT3 among two representative CD44hi γδ27− (Upper) and CD44lo γδ27+

(Lower) LN cells after 30-min culture with IL-7 (BF, Bright field). (F) LN cells
preincubated with a specific STAT3 inhibitor and subsequently culturedwith IL-
7 for 72 h. Representative plots (from n = 3 experiments). (G) Staining for Ki67
and intracellular IL-17 in gated γδ T cells cultured as in F; open and shaded areas
indicate STAT3 inhibitor preincubation and controls, respectively. For all plots,
numbers indicate percent of cells in relevant gate or quadrant.

Fig. 4. IL-7 enriches for IL-17–competent γδ thymocytes. (A and B) Histo-
grams for IL-7R staining of: adult γδ27− (black line) and γδ27+ (gray line)
thymocytes ex vivo (A); γδ27− cells expressing IL-17 (black line) or not
expressing IL-17+ (gray line) after PMA + ionomycin activation (B). Gray
shaded area is isotype control staining. (C) Il17 mRNA levels in sorted γδ27+,
and IL-7Rlo and IL-7Rhi γδ27− thymocytes determined by real-time RT-PCR. (D)
Total thymocytes from adult mice ex vivo or activated for 4 d in vitro with IL-
7 (Left); CD44 and CD27 expression among gated γδ T cells (Center Left);
Intracellular staining for IFN-γ and IL-17 in all γδ T cells (Center Right) and
γδ27− cells (Right) after PMA + ionomycin activation. For all plots, numbers
indicate percent of cells in relevant gate or quadrant. (E) Adult thymocytes
preincubated with a specific STAT3 inhibitor (Lower) or vehicle control
(Upper) and subsequently cultured with IL-7 for 72 h. Representative plots
(from n = 3 experiments) of gated γδ T cells. (F) Percentage and absolute
numbers of eYFP+ γδ27− and eYFP− γδ27− thymocytes from adult Il17a-
CreR26ReYFP mice ex vivo (black bars) or after culture with IL-7 for 4 d (open
bars). (G) γδ cells stained for IL-17 and IFN-γ after 7-d FTOC from embryonic
day 16.5 fetal thymus in the presence (Right) or absence (Left) of IL-7 (from
n = 3 experiments with ≥3 thymic lobes per condition).
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they can easily be found in the thymus of adult mice, where they
express conspicuously high levels of IL-7R (Fig. 4 A and B). High
levels of Il17 mRNA were consistently detected only among IL-
7Rhiγδ27− cells (Fig. 4C). IL-7 is absolutely required for γδ cell
development, and culture with IL-7 fueled the survival and ex-
pansion of all adult γδ thymocytes, as shown by a time course
(Fig. S3A). Nonetheless, there was again a strong enrichment for
CD44hiIL-17–competent, TCRhi CD27− γδ cells, with such cells
transitioning from the minority to the majority by comparison to
IFN-γ−competent cells (Fig. 4D and Fig. S3A).
As for LN cells, CFSE labeling and Ki67 staining of thymo-

cytes ex vivo showed that IL-7 primarily promoted proliferation
of CD44hiCD27− thymocytes with IL-17 potential (Fig. S3 B and
C): Indeed, after 4 d, >90% of CD44hiCD27− thymocytes were
cycling with >98% of IL-17–competent cells found among these.
Again there was little evidence for IL-7–mediated selective sur-
vival of γδ27− cells with Bcl-2 mRNA levels lower in γδ27− cells
than in γδ27+ cells (Fig. S3D). The preferential expansion of
CD44+γδ27− thymocytes was reduced ≥80% by the STAT3 in-
hibitor (Fig. 4E and Fig. S3E). Conspicuously, thymic γδ27− cells
were not selectively enriched by other STAT5- (IL-2, IL-15, and
IL-21) and STAT3- (IL-6) activating cytokines, either alone or
added to suboptimal concentrations of IL-7. IL-2 activated all γδ
thymocytes, but still enriched (almost twofold) for γδ27+ cells,
whereas IL-15 primarily activated γδ27+ cells (Fig. S4). Thus, as
for LN cells, IL-7 promotes preferential STAT3-dependent ex-
pansion of IL-17–competent γδ27− thymocytes.
Further evidence that IL-7 preferentially expands IL-17–

competent thymocytes within the γδ27− subset was derived from
the Il17aCreR26ReYFP mice. Ex vivo ∼1% of γδ thymocytes are
eYFP+CD27−, whereas ∼8% are eYFP−CD27− (Fig. 4F), roughly
consistent with ∼11% of γδ27− thymocytes producing IL-17 upon
short-term activation (Fig. 4D, Upper). Conversely, 4 d in IL-7
increased eYFP+CD27− cell numbers >30-fold, making them the
larger subset compared with eYFP−CD27− cells that had in-
creased much less (Fig. 4F).
To demonstrate that developing γδ27− cells are a preferential

target of IL-7, fetal thymocytes were examined because the fetal
thymus will not be a target for peripheral T-cell recirculation.
Supplemental IL-7 added to 7-d fetal thymic organ culture
(FTOC) expanded absolute numbers of total γδ thymocytes by
∼fivefold, but again the impact was preferential for IL-17–com-
petent γδ thymocytes whose representation was increased two-
fold over IFN-γ–producing γδ thymocytes (Fig. 4G). To verify
that IL-7 preferentially activated γδ27− thymocytes rather than
promoting the conversion of γδ27+ thymocytes to γδ27− cells,
IL-7 was applied to purified CD44hiγδ27−, CD44hiγδ27+, or
CD44loγδ27+ thymocytes. After a 4-d culture, CD44hiγδ27− cells
appeared by microscopy to be highly activated, by contrast to the
γδ27+ subsets. To normalize the number of cells in the cultures,
purified subsets were admixed with thymocytes from age-matched
TCRδ−/− mice. Strikingly, neither γδ27+ subset generated IL-
17–competent cells over 4 d, whereas >70% of cells arising
from only 5,000 CD44hi γδ27− were IL-17 competent (Fig. S5).
Thus, IL-7 primarily expands cells with IL-17 competence
rather than differentiating cells toward IL-17 de novo.

IL-7 Promotes Adaptive Potential to Produce IL-17. IL-17–producing
γδ cells are widely viewed as innate because they are rapidly
activated by IL-1 and IL-23 alone and are relatively unresponsive
to TCR agonists that strongly activate IFN-γ–producing γδ27+
cells (Fig. S6A) (9). However, in the presence of IL-7, TCR
agonists promoted a>20-fold enrichment of γδ27− cells relative to
LN cells, whereas γδ27+ cells were enriched by only three- to
fourfold: By 4 d, ∼100% of γδ27− cells were CD69+CD44hiCD25+
ICOS+ (Fig. 5 A and B and Fig. S6B). Compared with IL-7 alone,
suboptimal concentrations of TCR agonists added to IL-7 in-
creased γδ27− IL-17–competent cell numbers by an additional 40–
50% (Fig. 5 C and D), whereas there was negligible synergy for
γδ27+ cells, which instead responded very strongly to the combi-
nation of IL-15 + TCR agonists (Fig. S6 C and D).
As a preface to killing target cells in response to TCR-medi-

ated activation, T cells exocytose the contents of cytolytic

granules in a process that involves movement to the cell surface
of the protein CD107a (27). Hence, CD107a expression levels
provided an additional assay for the impact of IL-7 on the re-
sponse of γδ T cells to TCR stimulation. Strikingly, TCR agonists
provoked surface up-regulation of CD107a by γδ27− cells only
after the cells’ culture in IL-7, whereas γδ27+ cells up-regulated
CD107a expression directly ex vivo, with no requirement for IL-7
(Fig. 5E). In sum, IL-7 selectively facilitates strong responses of
IL-17–producing γδ cells to TCR stimulation whether measured
by expansion, activation markers, or effector function.

IL-7 Reveals IL-17–Competent Human γδ Cells. By contrast to mice,
a substantive subset of IL-17–producing human γδ T cells has
been hard to identify in healthy donors (16, 28). As reported
(29), there was precocious production of IFN-γ by fresh human
cord blood (CB) γδ cells and by adult TCRγδ+ peripheral blood
mononuclear cells (PBMC) stimulated by PMA + ionomycin, but
there was no obvious IL-17–producing subset (Fig. 6A). When
PBMC were cultured for 1 wk with anti-TCRγδ + IL-7 and then
activated for 6 h, IFN-γmonoproducers described ∼80% of cells;
a small percentage coexpressed IL-17 and IFN-γ, but there was
still no IL-17 monoproducer (Fig. 6B). However, when CB cells
were likewise cultured, substantial fractions of Vδ2+ and Vδ1+
cells produced IL-17 with most being IL-17-monoproducers (Fig.
6B and Fig. S7A). Unsurprisingly, the percentages of γδ cells that
were IL-17-competent varied with the source of CB from ∼15%
to >40%, with higher representation always being among Vδ2+
cells: Indeed, IL-17–competent Vδ2+ cells sometimes outnumbered

Fig. 5. TCR agonists and IL-7 cooperatively promote IL-17–producing γδ
cells. (A) Total LN cells stained for markers as indicated ex vivo (Left) and
after 4-d culture with IL-7 + 1 μg/mL TCR-agonist antibody [GL3] (Right) or
isotype control (Center). (B) LN γδ T cells stained for markers as indicated
after 4-d culture with IL-7 and either TCR-agonist antibody (Lower) or iso-
type control (Upper). For all plots, numbers indicate percent of cells in rel-
evant quadrants. (C) Absolute number of total γδ27− (Upper) or IL-17–
expressing γδ27− (Lower) LN cells after culture in IL-7 with 1 μg/mL GL3 or IgG
control, as in A. Error bars are SEM from n = 3 experiments; *P < 0.05. (E)
Staining for CD107 in gated γδ27− (Left) and γδ27+ (Right) cells, activated for
6 h with 10 μg/mL TCR agonists (line) or isotype control (shaded area), from
ex vivo LN (Left) and after 4-d culture with IL-7 (Right).
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IFN-γ–competent cells (Fig. 6B and Fig. S7B). Comparing the
main γδ cell subsets: 1-wk culture with IL7 + TCR agonists
sustained absolute numbers of Vδ1+ cells but IL-17 monop-
roducers expanded by ∼50-fold, compared with no significant
increase in IFN-γ–competent cells, whereas Vδ2+ cell numbers
increased ∼10-fold within which IL-17 monoproducers expanded
by >20-fold, compared with only a 10-fold increase in IFN-
γ–competent cells. Hence, as in the mouse, the effects of IL-7 +
TCR agonists are strongly biased toward IL-17 competence.
Consistent with γδ cell activation, ∼100% lost the naïve T-cell
marker CD45RA, up-regulated ICOS, and expressed CD161,
a marker of human IL-17–producing T cells (30) (Fig. S7 B
and C). When fresh or 1-wk cultures of CB or PBMC were
freshly stimulated for 30 min with IL-7, all showed increased
STAT5 phosphorylation, which did not therefore correlate with
IL-17 competence. Conversely, STAT3 activation was measur-
able only in CB-derived Vδ2+ cells when cultured for 1 wk and
then stimulated with IL-7 (Fig. 6C and Fig. S8A). Thus, as in
mouse, IL-7–dependent STAT3 activation is highly selective.
CB Vδ2+ cells cultured for 1 wk with IL-7 + TCR agonist and

stimulated for 2 h with PMA + ionomycin showed conspicuous
reductions in RNA for T-bet, IL-2, and IFN-γ, with corre-
sponding increases in IL-17A, IL-17F, and IL-22 RNAs (Fig.
S8B). Indeed, a small number of IL-22–expressing cells was
evoked, with the majority coproducing IL-17 (Fig. S8C). Again,
these results were specifically due to IL-7, because IL-2 + TCR
agonists skewed CB cells toward IFN-γ, with ∼10-fold fewer cells
expressing IL-17 (Fig. S8D).

Discussion
This study identifies a pathway selectively activating the pro-
duction of IL-17 by γδ T cells. It operates in vivo and is con-
served in mice and humans. It broadens our perspectives on the
biology of IL-7 and has clinical relevance, given that IL-7 is used
to promote lymphocyte expansion in cancer patients and in bone
marrow transplantation (31) and given that protocols are being
sought to maintain and expand γδ cells for adoptive immuno-
therapy. Conversely, IL-7 blockade is being considered for
inflammatory diseases.

Although a specific cytokine may not be essential for the de-
velopment and survival of a particular lymphocyte subset, its
capacity to regulate such cells is important. Such is the case for
IL-7 and memory CD8+ αβ T cells, which are unaffected by IL-7
depletion but are nonetheless substantially expanded by IL-7,
evoking an accumulation of CD44hiCD8+αβ T cells (32, 33).
Likewise, IL-17–producing γδ cells may not depend on STAT3
(15), but they are rapidly responsive to IL-23 that signals via
STAT3 (10). In this vein, this study identifies a capacity of IL-7
to activate STAT3 preferentially in γδ cells competent to pro-
duce IL-17, markedly expanding and activating such cells and
promoting their functional responsiveness, for example, increased
cytolytic potential. This activation is a selective role for IL-7 that
for γδ cells has hitherto been regarded as a generic regulator of
development and homeostasis for all γδ subsets (17, 34). This role
of IL-7 offers parallels with its reported requirement to maintain
TCRαβ+ Th17 cells, although a key difference is that the effects
of IL-7 in that case were mediated by STAT5 (35), which seems
paradoxical given that STAT5 can antagonize Th17 differentia-
tion. By contrast, the role of IL-7 described here is in large part
mediated by STAT3, emphasizing the importance of a relatively
poorly understood phenomenon—namely, how different cyto-
kines use different signaling pathways to effect specific roles.
Like the effects of IL-7 on αβ T cells (36, 37), IL-7–induced

γδ27− expansion in vivo occurs in the periphery, but unlike for αβ
T cells, this expansion does not require prior lymphodepletion,
emphasizing the capacity of IL-7 to act selectively on γδ27− cells
in physiologic situations. Indeed, blocking IL-7R almost com-
pletely abrogated the expansion of LN IL-17–producing γδ cells
in response to IMQ, although it left the expansion of IFN-
γ–producing cells largely untouched. Correspondingly blocking
IL-7R inhibited the development of inflammatory lesions. Fur-
thermore, increased IL-7 levels are detected in vivo after TLR
activation (38) and in autoimmune diseases, such as rheumatoid
arthritis (39), systemic juvenile rheumatoid arthritis (40), multi-
ple sclerosis (41), and psoriasis (42), suggesting scenarios where
potential dysregulation of IL-17-competent γδ cells should be
investigated. Indeed, IL-17–producing γδ cells were recently
described in psoriatic skin (11, 20, 43).
γδ cells are not confined to T-cell zones and may access re-

ticular stromal cells that express IL-7 (44), potentially in the
context of tissue-draining antigens. Thus, the capacity of IL-7 to
promote γδ27− cell activation in response to TCR agonists pro-
vides an important perspective on cells commonly assigned to
innate immunity. Additionally, we have shown that IL-7 selec-
tively expands CD44hi γδ27− cells from the peritoneum, where
CD44hi γδ T cells are strongly implicated in defense against
bacterial infection (45).
Finally, IL-7 appears most abundant in neonatal mice, which is

when lymphoid compartments are being filled according to ho-
meostatic mechanisms and when murine IL-17–producing γδ
cells, largely derived from fetal progenitors, are most abundant.
Indeed, IL-7 may throughout life mobilize IL-17–producing γδ
cells from a “self-renewing” pool set down in the fetus. It is also
striking that the major evocation of human IL-17–producing γδ
cells is from CB. Interestingly, two studies using cytokines
established to promote Th17 cells used CB to evoke small
numbers of IL-17–producing γδ cells (46, 47). γδ cells are func-
tionally precocious relative to αβ T cells in mice and in humans,
and one of their major biological contributions may be to protect
neonates (29, 48, 49). Moreover, inflammatory immunopathol-
ogies may reflect inappropriate mobilization of cells laid down in
the fetal/neonatal period. In pursuing this hypothesis, the major
and selective potential of IL-7 needs now to be considered in
immunoprotection and immunopathologies. This study also
implies reciprocal selective roles of IL-2 and IL-15 in regulating
IFN-γ–competent γδ cells, which may be germane to the re-
surgent clinical use of these reagents.

Materials and Methods
Cell preparation, flow cytometry, PCR, and cytokine measurements were
performed as described in SI Materials and Methods.

Fig. 6. Evocation of IL-17–producing γδ T cells from human cord blood.
Representative plots from n ≥ 4 donors. (A and B) Intracellular staining for
IFN-γ and IL-17 in Vδ1+ (Upper) and Vδ2+ (Lower) cells from CB and adult
PBMC freshly isolated (A), or cultured for 1 wk (B) with IL-7 and pan γδTCR
antibody: In each case, cells were prestimulated with PMA + ionomycin for
6 h. (C) pSTAT3 and pSTAT5 levels assessed by flow cytometry in gated Vδ2+

cells from fresh CB or adult PBMC (Left), or after 1 wk of culture with anti-
CD3 + IL-2 (Right), in each case followed by 30-min IL-7 stimulation (open
areas) or control (ctrl, shaded areas).
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Murine and Human Samples. For methods related to animals and human
samples, see SI Materials and Methods. In some experiments, mouse in vivo
i.p. injections included PBS or recombinant mouse IL-7 [rmIL-7 (R&D Systems),
5 μg per mouse every 2 d for 1 wk]. In other experiments, a daily dose of 50
mg of Imiquimod (5% IMQ cream; Meda AB) or control cream (Vaseline) was
applied to shaved backs of mice for 3 d. Anti–IL-7R (clone A7R34) or rat IgG
control treatment was performed by i.p. injection (1 mg per mouse) on days
−1 and +2 relative to IMQ application. A7R34 was obtained from Biolegend
or, for some experiments, we made A7R34 from hybridoma (50).

Cell Culture. Cells were incubated for 1, 2, 3, or 4 d with IL-2 (100 U/mL;
Immunotools), IL-7, IL-6, IL-15, and IL-21 (all 20 ng/mL; R&D Systems). Where
indicated, anti-TCRγδ (GL3: 1 or 10 μg/mL), IgG1κ isotype control, and anti-
CD107a/b antibodies (1D4B, M3/84; Biolegend) were also added. After culture,
dead cells were removed by Ficoll-Hypaque centrifugation (GE Healthcare).
In some experiments, cells were preincubated with STAT3 inhibitor VII
(Calbiochem) for 1 h before addition of IL-7. For human studies, cells were
cultured for 1 wk with IL-7 (20 ng/mL; R&D Systems) or IL-2 (100 U/mL;

Immunotools) in wells coated with pan anti-γδTCR (1 μg/mL, IMMU510;
Beckman).

ImageStream Acquisition and Analysis. Samples (4 × 107 cells per mL in 60 μL
of wash buffer with 1 μg/mL PI) were acquired on a 5-laser 6-Channel ISx
Imaging Flow Cytometer with 40× magnification controlled by INSPIRE
software and fully ASSIST calibrated (Amnis).
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