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Biomarkers for Alzheimer’s disease: ready for
the next step

As potential disease-modifying treatments for Alzheimer’s disease

advance into phase II and III human trials, it is apparent that

biomarker development will be needed for several reasons. The

most relevant of these include the ability to detect treatment

response sensitively, to improve understanding of the effect

of drugs that target disease mechanisms, and to identify

Alzheimer’s disease in its pre-clinical stage. We have reviewed

several recent papers published in Brain, which address biomarker

development in Alzheimer’s disease, and use their findings to

suggest further research.

Some of these studies are early results from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), a large multi-centre trial

of biomarker modalities in patients with Alzheimer’s disease, mild

cognitive impairment (MCI) and cognitively healthy older controls

with an emphasis on standardized imaging techniques across

centres. Nestor et al. (2008) measured ventricular volume changes

over time and found that MCI subjects had a faster rate of

ventricular enlargement than controls, and that Alzheimer’s

disease subjects had an even faster rate. Most importantly,

among participants with MCI, the rate of ventricular enlargement

was higher in those who progressed to Alzheimer’s disease than in

those who did not. The authors estimate that using ventricular

enlargement as a surrogate marker of treatment outcome could

improve the power of a treatment trial significantly versus

standard cognitive outcomes. Desikan et al. (2009) developed

methods of automated MRI analysis of regional brain volumes

with the goal of identifying differences between patients with

MCI and healthy controls. Entorhinal and supramarginal gyrus

cortical thickness and hippocampal volumes afforded the best

discrimination between these two groups. The automated analysis

tools were impressively reliable and yielded replicable results in

two different cohorts and with many different MRI scanners.

Querbes et al. (2009) developed a rapid automated method for

measuring cortical thickness and found that these changes were

good predictors of an alteration in diagnosis from normal to MCI,

or from MCI to overt Alzheimer’s disease up to 24 months prior to

that change. Their method is particularly attractive as it is relatively

simple and builds on a reasonably robust literature on cortical

thickness assessed by manual methods. Interestingly enough,

more educated subjects had a thinner cortex than those who

had the same level of cognitive performance, supporting the

notion that they have greater cognitive reserve. Davatzikos

et al. (2009) identified a characteristic spatial pattern of atrophy

across brain regions in Alzheimer’s disease patients in the ADNI

cohort. In a separate cohort (Baltimore Longitudinal Study of

Aging), they found that although this pattern increased over

time in healthy older persons, the change was accelerated in indi-

viduals with MCI. Whitwell et al. (2007) examined similar hypoth-

eses, reporting a characteristic pattern of regional brain atrophy

during the 3 years prior to the diagnosis of incident Alzheimer’s

disease, starting in medial temporal lobes and spreading in poste-

rior and anterior directions through the brain, in a temporospatial

pattern similar to the spread of neurofibrillary tangles, by the time

of diagnosis. These findings increase our confidence that regional

brain volume loss parallels known pathological processes in

Alzheimer’s disease.

Other recently published papers in Brain have examined the

association between brain amyloid load and clinical measures or

other biomarkers, which may be increasingly important now that

putative amyloid-lowering agents are undergoing human trials.

Jack et al. (2008) found the areas of concordance and discordance

between the b-amyloid marker Pittsburgh compound B (11C-PIB)

uptake and grey matter volume loss in Alzheimer’s disease, con-

firming pathological findings that plaque deposition and neuronal

loss proceed at different rates in different regions of the

Alzheimer’s disease brain. Grey matter volume loss correlated

more strongly with cognitive deficits than PIB uptake. The authors

propose that PIB uptake occurs early in Alzheimer’s disease and

does not track disease severity closely at later stages. Two other

recent Brain publications support this model. Pike et al. (2007)

report that 11C-PIB uptake is robustly associated with poorer

episodic recall in MCI and normal controls, but not in

Alzheimer’s disease. This constitutes the first published report of

an association between amyloid load and cognition. Mormino

et al. (2008) report that 11C-PIB uptake, hippocampal volume

loss and deficits in episodic recall are associated in MCI and

control subjects, whereas in multivariate models, hippocampal

volume loss is more strongly associated with memory loss than
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11C-PIB uptake. They propose a model in which amyloid

deposition precedes hippocampal volume loss, which is then

followed by memory loss. An alternative marker of brain amyloid,

‘b-site amyloid precursor protein-cleaving enzyme 1’ (BACE1), is

the major b-secretase of the brain that catalyses the first step in

the synthesis of amyloid-b 1–42 (Ab1–42). Ewers et al. (2008)

reported that ApoE4 allelotype is associated with elevated

BACE1 activity in both Alzheimer’s disease and MCI, complement-

ing their earlier finding that BACE1 activity (not BACE1 protein

levels) in cerebral spinal fluid is increased in MCI and

Alzheimer’s disease, relative to controls. Cerebral spinal fluid

BACE1 enzymatic activity is likely to reflect the rate of Ab1–42

synthesis rather than the current load and it may have an

advantage over other biomarkers since Ab1–42 has very rapid

brain turnover (Bateman et al., 2006). This biomarker will be

crucial for determining whether BACE1 inhibitors affect their

intended target. Additionally, the new findings of Ewers and

colleagues (2008) shed light on the still-enigmatic mechanisms

by which ApoE4 increases incident risk of Alzheimer’s disease.

Another paper recently published in Brain capitalized on the

increasing availability of [18F]-fluorodeoxyglucose (FDG) positron

emission tomography (PET) imaging of glucose metabolism for

clinical use and the accumulating evidence for its reliability and

validity as a predictor of progression in Alzheimer’s disease

(Mosconi et al., 2007, 2008). Fouquet et al. (2009) assessed lon-

gitudinal changes in FDG regional brain uptake in MCI, reporting

that conversion to Alzheimer’s disease was associated with a faster

decline of FDG uptake in two medial brain regions (left anterior

cingulate and subgenual region) that have been implicated in early

Alzheimer’s disease.

Taken together, these recent publications demonstrate the

potential for new biomarkers of Alzheimer’s disease staging

within a variety of modalities including imaging and cerebral

spinal fluid studies. However, our enthusiasm for these novel

biomarkers must be tempered with caution. First, the MRI

analyses presented are complex. It is widely agreed that manual

methods for measuring regional brain volumes will need to be

replaced by automated methods and major improvements have

been made in this area in recent years. The automated MRI

methodologies are, however, highly sophisticated, sometimes

effectively requiring access to a supercomputer (Desikan et al.,

2009), very advanced data analysis (Davatzikos et al., 2009) or

sophisticated manual pre-processing prior to automated analysis

(Nestor et al., 2008; Querbes et al., 2009). Future studies

should be directed at validating simpler, more efficient methods

for clinical use. Another challenge is that the longitudinal

studies reported an association between changes in biomarkers

(as opposed to a single assessment) and prognosis (Nestor et al.,

2008; Querbes et al., 2009). A measure requiring only one MRI

scan, instead of two spaced 6–24 months apart, would be far

preferable for translation to clinical work.

Secondly, it is not clear what the optimal method will be for

quantifying brain amyloid load. 11C-PIB-PET has been most widely

studied and validated but the short half-life of 11C renders it a

boutique investigative tool, limited to major research centres.

A major industry and academic effort is being made to develop
18F agents for PET amyloid (Cai et al., 2004; Zhang et al., 2007;

Zheng, et al., 2008). FDG-PET is already widely available and

validated but does not measure a specific disease mechanism or

treatment target. Given the expense of PET, clinicians are likely

to turn to cerebral spinal fluid biomarkers that may be equally

sensitive and specific for predicting cognitive decline in older

adults at lower cost, although requiring the invasiveness of

lumbar puncture (Fagan et al., 2006, 2007). Cerebral spinal fluid

BACE1 activity may become a useful addition to this profile but

remains to be fully validated. Future studies must determine

which biomarkers independently predict pathological diagnosis or

narrow the treatment options.

Thirdly, there is an urgent need for less invasive and potentially

less costly peripheral blood-based markers. Potential markers

include the Ab1–40/1–42 ratio (Hansson et al., 2008; Schupf

et al., 2008), signalling moieties such as sphingomyelin and

ceramides (Mielke et al., 2008) and mediators of neuroinflamma-

tion including pro-inflammatory cytokines (Rosenberg, 2005;

Kaplin et al., 2008). Unfortunately, to date the sensitivity, speci-

ficity and validity of these markers is suboptimal and it is not yet

clear to what extent peripheral blood mechanisms reflect

CNS mechanisms.

Fourthly—and most importantly—much of the effort cited

before involves assessing the sensitivity and specificity of biomar-

kers to distinguish diagnostic groups. These are merely preliminary

efforts for the more important issue of using biomarkers to predict

who will develop Alzheimer’s disease. Logically, this effort starts

with a high-risk group (amnestic MCI) and proceeds backwards

into studies of cognitively healthy persons. To this end, three of

the aforementioned papers (Whitwell et al., 2007; Nestor et al.,

2008; Fouquet et al., 2009) must be applauded for addressing

risk factors for MCI progression to clinical Alzheimer’s disease.

However, future studies must confirm the pathological diagnoses.

When the right combination of biomarkers has high sensitivity,

specificity and availability for identifying cognitively healthy

persons at-risk for developing Alzheimer’s disease or cognitive

decline, we will be able to develop truly preventive strategies—

the ‘holy grail’ of intervention. We are ready for this next step.
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