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Background. Response rates and immunologic memory following measles vaccination are reduced in human
immunodeficiency virus (HIV)–infected children in the absence of highly active antiretroviral therapy (HAART).

Methods. HIV-infected children 2 to <19 years old receiving HAART and with HIV loads <30 000 copies/
mL, CD4% ≥15, and ≥1 prior measles-mumps-rubella vaccination (MMR) were given another MMR. Measles
antibody concentrations before and 8, 32, and 80 weeks postvaccination were determined by plaque reduction
neutralization (PRN). A subset was given another MMR 4–5 years later, and PRN antibody was measured before
and 7 and 28 days later.

Results. At entry, 52% of 193 subjects were seroprotected (PRN ≥120 mIU/mL). Seroprotection increased to
89% 8 weeks postvaccination, and remained at 80% 80 weeks postvaccination. Of 65 subjects revaccinated 4–5
years later, 85% demonstrated memory based on seroprotection before or 7 days after vaccination. HIV load
≤400 copies/mL at initial study vaccination was associated with higher seroprotection rates, greater antibody con-
centrations, and memory. Grade 3 fever or fatigue occurred in 2% of subjects.

Conclusions. Measles revaccination induced high rates of seroprotection and memory in children receiving
HAART. Both endpoints were associated with HIV viral load suppression.

Clinical Trials Registration: NCT00013871 (www.clinicaltrials.gov).

Early in the human immunodeficiency virus (HIV)
epidemic, it was recognized that measles can cause
severe disease in HIV-infected children [1–3]. Prior to

highly active antiretroviral therapy (HAART), HIV-
infected children had reduced response rates, lower
antibody titers, and more rapid antibody decline fol-
lowing measles vaccination; lack of recall responses;
and vaccine failures [3–17]. Endemic measles and
measles outbreaks pose a risk to HIV-infected chil-
dren, and the HIV epidemic may complicate efforts
for global measles control [18, 19]. Therefore, it is im-
portant to assess vaccine-induced immunity against
measles in HIV-infected children in the context of
HAART [20]. P1024 was a multicenter study of the
International Maternal Pediatric Adolescent AIDS
Clinical Trials Group (IMPAACT) designed to evalu-
ate immunogenicity of vaccines in HIV-infected
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children on HAART. P1061s was a substudy that evaluated
immunologic memory following vaccination in P1024. This
report focuses on immunogenicity, safety, and immunologic
memory associated with measles vaccination.

METHODS

P1024 Population
HIV-infected children 2 to <19 years old at 39 US sites were
eligible if they fit into the following strata based on pre-
HAART nadir CD4% and screening CD4% (within 30 days
before entry): stratum 1, <15% and <15%; stratum 2, <15% and
≥15%; stratum 3, 15 to <25% and ≥15%; stratum 4, ≥25% and
≥25%. Stratum 1 was excluded in the study of measles vaccina-
tion due to the requirement of a CD4% ≥15 for measles-
mumps-rubella vaccine (MMR) administration. Other inclusion
criteria included perinatal infection, treatment with the same
HAART (≥3 antiretrovirals from ≥2 classes) regimen for ≥6
months, plasma HIV RNA viral load (VL) <30 000 copies/mL
(Roche Amplicor Assay), and previous receipt of ≥1 dose of
MMR, unless contraindicated by CD4 count [21–23].

P1024 Protocol
Informed consent was obtained and human experimentation
guidelines of the US Department of Health and Human
Services and participating institutions were followed. MMR
(M-M-R II; Merck & Co, Whitehouse Station, NJ; 0.5 mL sub-
cutaneously) was administered at the week 16 visit to subjects
with a CD4% ≥15 and an absolute CD4 cell count ≥500/µL
(age <6 years) or ≥200/µL (age ≥6 years) at the 2 preceding
visits; pneumococcal polysaccharide vaccine was administered
at the same visit and additional vaccines at other visits [21–23].
Measles antibody, plasma VL, and quantitative lymphocyte
subsets were measured at entry and 8, 32, and 80 weeks post-
vaccination (study weeks 24, 48, and 96). Adverse reactions
were assessed by diary and telephone 3, 7, 14, 21, and 28 days
postvaccination, according to the Division of AIDS Standard-
ized Toxicity Table for Grading Severity of Pediatric Adverse
Experiences (http://rsc.tech-res.com/Document/safetyandphar
macovigilance/Table_for_Grading_Severity_of_Adult_Pediatric_
Adverse_Events.pdf).

P1061s Protocol
Subjects enrolled in P1024 between June 2001 and March 2002
were eligible for P1061s, which enrolled between February 2006
and August 2006. Subjects who received MMR in P1024 with
no grade ≥3 vaccine-related adverse event, did not receive
MMR nor have proven measles infection since the conclusion
of P1024, and had a CD4% ≥15 and an absolute CD4 cell
count ≥200/µL on the 2 preceding measurements were eligible
to have immunoglobin G memory response to measles vaccine

evaluated in P1061s. MMR, hepatitis B, and pneumococcal
(conjugate or polysaccharide) vaccines were administered at
entry. Measles antibody was measured at entry and days 7 and
28, and VL and lymphocyte subsets were measured at entry.
Adverse reactions were assessed by diary and telephone calls or
study visits 3, 7, 21, and 28 days postvaccination.

Laboratory Assays and Immunologic Definitions
Measles neutralizing antibody concentrations were determined
by plaque reduction neutralization (PRN) at the Centers for
Disease Control and Prevention, Atlanta, GA, for P1024 serum
samples and the Center for Biologics Evaluation and Research,
Food and Drug Administration, Bethesda, MD, for P1061s
serum samples [24, 25]. PRN titers, defined as the serum dilu-
tion that reduced the number of plaques by 50%, were calculat-
ed using the Kärber method. A 1:100 dilution of World Health
Organization (WHO) II reference serum (dilution concentration
= 50 mIU/mL) was included in each run and all PRN titers
were multiplied by a correction factor equal to 50 divided by
the WHO II titer measured concurrently [25]. Seropositivity
was defined as PRN concentration ≥8 mIU/mL and seropro-
tection as PRN concentration ≥120 mIU/mL [26, 27].

Vaccine response in P1024 was defined by PRN concentra-
tion ≥120mIU/mL (protective antibody response) 8 weeks
postvaccination. Antibody increases that were ≥4-fold and geo-
metric mean concentration (GMC) were also evaluated. Sub-
jects with antibody concentrations <8mIU/mL were assigned a
concentration of 2 mIU/mL. Immunologic memory in P1061s
was defined on the basis of seroprotection (PRN concentration
≥120mIU/mL) at P1061s entry or day 7 (protective memory
response) or ≥4-fold rise in antibody concentration between
P1061s entry and day 7 in subjects seropositive at entry.
Primary response was defined in P1024 as ≥4-fold antibody
rise 8 weeks postvaccination among subjects seronegative at
entry and in P1061s as ≥4-fold antibody rise by day 28 postvac-
cination in subjects seronegative at P1061s entry.

Statistical Analysis
Subjects with results at entry and 8 weeks postvaccination
(±4 weeks) were included in P1024 analyses. P1061s MMR
recipients with results at entry, day 7 (day 5–15), and day 28
(±8 days) were included in P1061s analyses. Fisher’s exact
test was used for comparison of proportions among groups,
McNemar test for comparison of proportions between time
points, t test for comparison of geometric mean concentra-
tions (GMCs) among groups, and paired t test for compari-
son of GMCs between time points. Univariate regression
analyses were performed to identify predictors of P1024 and
P1061s measles antibody concentrations. Predictors with a
P value <.1 were included in multivariate analyses. Stepwise
regression was performed in the case of multiple collinear
predictors.
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Table 1. Characteristics of P1024 Measles Vaccine Recipients

Characteristic Total (N = 193)
Stratum 2
(N = 63)

Stratum 3
(N = 73)

Stratum 4
(N = 57) P Valuea

Age at study MMR visit

Median (y) 9.8 10.9 10.0 6.8 <.001

≥7 y (%) 70 84 77 47 <.001
Sex (%)

F 55 52 56 56 .90

Race/ethnicity (%)
White non-Hispanic 13 14 11 14 .99

Black non-Hispanic 57 57 56 58

Hispanic 30 29 32 28
Asian/Pacific Islander 1 0 1 0

CDC clinical classification (%)

N: nonsymptomatic 11 3 12 19 .001
A: mildly symptomatic 34 35 26 44

B: moderately symptomatic 35 30 45 28

C: severely symptomatic 19 32 16 9
Pre-HAART nadir CD4%

Median 18 10 19 31 NA

<15 (%) 33 100 0 0
15 to <25 (%) 38 0 100 0

≥25 (%) 30 0 0 100

Screening CD4%
Median 34 30 33 40 NA

<15 (%) 0 0 0 0

15 to <25 (%) 11 22 10 0
≥25 (%) 89 78 90 100

CD4% at study MMR visit

Median 34 30 35 40 <.001
<15 (%) 1 2 0 0 .007

15 to <25 (%) 13 22 12 4

≥25 (%) 87 76 88 96
Entry CD19%

Median 19 18 19 19 .60

CD19% at study MMR visit
Median 18 18 18 19 .42

HIV RNA level at study MMR visit

Median, copies/mL 278 386 260 245 .008
≤400 copies/mL (%) 63 51 62 77 <.001

401–5000 copies/mL (%) 22 19 32 14

>5000 copies/mL (%) 15 30 7 9
Interval from last previous MMR to study MMR visit

Median (y) 4.8 6.4 5.0 3.4 <.001

Interval >2 y (%) 84 89 86 77 .20
Number of MMR vaccines prior to entry (%)

1 20 16 16 30 .27

2 70 71 75 61
3 10 13 8 9

Data are percentages of subjects, unless otherwise indicated. Immunologic strata are as follows: stratum 2, pre-HAART nadir CD4 cell percentage <15% and
screening CD4 cell percentage ≥15%; stratum 3, pre-HAART nadir CD4 cell percentage 15% to <25% and screening CD4 cell percentage ≥15%; stratum 4, pre-
HAART nadir CD4 cell percentage ≥25% and screening CD4 cell percentage ≥25%. No subjects in study stratum 1 (pre-HAART nadir CD4 cell percentage
<15% and screening CD4 cell percentage <15%) were included in the study of measles vaccination due to the requirement of a CD4% ≥15% for MMR
administration.

Abbreviations: CDC, Centers for Disease Control and Prevention; HAART, highly active antiretroviral therapy; MMR, measles-mumps-rubella vaccine; NA, not
applicable.
a Fisher’s exact test for categorical variables and Kruskal–Wallis test for continuous variables.
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RESULTS

P1024 Study Population
Of 263 subjects enrolled, 226 received MMR per protocol
(Table 1; flow diagram online). Remaining subjects had inclusion/

exclusion criteria violations (8), did not qualify for MMR based
on CD4 criteria (19), did not receive MMR per protocol (9),
or had other violations (1). One hundred ninety-three who re-
ceived MMR per protocol had measles serology pre- and 8 weeks
post-MMR vaccination and comprised the P1024 analysis group.

Table 2. Measles Serologic Status Before and After Measles Vaccination in P1024

Endpoint and Study Time Pointa All Strata Combined Stratum 2 Stratum 3 Stratum 4

Percent with PRN ≥8mIU/mL at entry
(no. of subjects evaluated)

83 (193) 76 (63) 81 (73) 95 (57)b

(95% CI) (77–88) (64–86) (70–89) (85–99)

Percent with PRN ≥120mIU/mL
(no. evaluated)

Week 0 52 (193) 37 (63) 49 (73) 74 (57)c

(95% CI) (45–60) (25–50) (37–61) (60–84)
8 wk post-MMR (study week 24) 89 (193)d 86 (63)d 89 (73)d 93 (57)d

(95% CI) (84–93) (75–93) (80–95) (83–98)

32 wk post-MMR (study week 48) 82 (185)d,e 82 (61)e 81 (69)e 82 (55)
(95% CI) (75–87) (70–91) (70–90) (69–91)

80 wk post-MMR (study week 96) 80 (179)e 76 (59)e 77 (66)e 89 (54)e

(95% CI) (74–86) (63–86) (65–87) (77–96)
Percent with ≥4-fold PRN rise, week 0 to
8 wk post-MMR (no. evaluated)

Subjects with PRN <8mIU/mL at entry 78 (32) 60 (15) 93 (14) 100 (3)
(95% CI) (60–91) (32–84) (66–100) (29–100)

Subjects with PRN ≥8mIU/mL at entry 37 (161) 46 (48) 37 (59) 30 (54)

(95% CI) (30–45) (31–61) (25–51) (18–44)
Geometric mean antibody concentration,
mIU/mL

Week 0 108 47 86 360f

(95% CI) (77–152) (27–83) (48–153) (207–627)

8 wk post- MMR (study week 24) 695g 571g 627g 983g

(95% CI) (556–868) (360–903) (453–868) (668–1445)
32 wk post-MMR (study week 48) 401g,h 317g,h 397g,h 526g

(95% CI) (312–515) (188–536) (282–558) (336–825)

80 wk post-MMR (study week 96) 361g,h 247g,h 361h 544
(95% CI) (279–467) (145–423) (255–510) (343–864)

Study MMR vaccine administered at study week 16. Immunologic strata are as follows: stratum 2, pre-HAART nadir CD4 cell percentage <15% and screening
CD4 cell percentage ≥15%; stratum 3, pre-HAART nadir CD4 cell percentage 15% to <25% and screening CD4 cell percentage ≥15%; stratum 4, pre-HAART
nadir CD4 cell percentage ≥25% and screening CD4 cell percentage ≥25%.

Abbreviations: CI, confidence interval; HAART, highly active antiretroviral therapy; MMR, measles-mumps-rubella vaccine; PRN, plaque reduction neutralization
antibody concentration.
a Week 0 serological results were included if obtained any time prior to study MMR vaccine administration. Serological results at 8, 32, and 80 weeks post-
vaccination (study weeks 24, 48, and 96) were included if they were obtained within windows of ±4, ±8, and ±12 weeks, respectively.
b P = .01 (Fisher’s exact test) for the difference of the proportions with measles antibody concentration ≥8mIU/mL among immune strata.
c P < .001 (Fisher’s exact test) for the difference of the proportions with measles antibody concentration ≥120mIU/mL among immune strata. Pairwise
comparisons between stratum 4 and strata 2 and 3 were statistically significant (P ≤ .007), but pairwise comparisons between strata 2 and 3 were not.
d P≤ .004 (McNemar test) for the comparison of the proportion of subject with measles antibody concentration ≥120mIU/mL vs the previous time point.
e P≤ .04 (McNemar test) for the comparison of the proportions of subjects with measles antibody concentration ≥120mIU/mL at 32 weeks postvaccination
(study week 48) and 80 weeks postvaccination (study week 96) vs week 0.
f P < .001 (t test) for the difference among immune strata. Pairwise comparisons between stratum 4 and strata 2 and 3 were statistically significant (P < .001), but
pairwise comparisons between strata 2 and 3 were not.
g P≤ .02 (paired t test) for the comparison of geometric mean antibody concentration vs the previous timepoint.
h P < .001 (paired t test) for the comparison of geometric mean antibody concentration at 32 weeks postvaccination (study week 48) and 80 weeks
postvaccination (study week 96) vs week 0.
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P1024 Measles Antibody Concentrations—Immunologic Strata
Combined
At entry, 83% were seropositive and 52% had protective PRN
concentrations (Table 2). The percentage with protective con-
centrations increased to 89% 8 weeks postvaccination and 80%
had protective concentrations 80 weeks postvaccination.
Between entry and 8 weeks postvaccination, ≥4-fold antibody
rises occurred in 44%, including 78% of those seronegative at
entry (primary responses). The GMC increased from entry to
8 weeks postvaccination, then decreased 32 and 80 weeks post-
vaccination but remained greater than at entry.

P1024 Measles Antibody Concentrations According to
Immunologic Strata
At entry, the percentages in stratum 4 who were seropositive
(95%) and seroprotected (74%) were higher than for strata 2
and 3 (Table 2; Figure 1). The percentage with protective anti-
body concentrations increased in each stratum to similar levels
8 weeks postvaccination (86%–93%) and decreased modestly
thereafter, with all strata maintaining higher proportions with
protective levels 80 weeks postvaccination compared with
entry. There were no significant differences among strata in
the percentage with protective antibody values at any post-
vaccination time point. The GMC at entry of stratum 4 was
significantly higher than that of strata 2 and 3, with only
stratum 4’s GMC exceeding the seroprotective threshold.
GMCs of all strata increased 8 weeks postvaccination and then
decreased between 8 and 32 weeks postvaccination. By 80

weeks postvaccination, GMCs of strata 2 and 3, but not of
stratum 4, remained significantly greater than baseline; all ex-
ceeded the seroprotective level. GMCs of stratum 4 were con-
sistently higher than those of strata 2 and 3, but differences
were not significant at 8 and 32 weeks postvaccination and
marginally significant at 80 weeks postvaccination.

P1024 Measles Antibody Concentrations and VL
At entry, the proportion of subjects with PRN ≥120 mIU/mL
was inversely related to VL group, but differences were not
significant (Figure 2). Eight weeks postvaccination, this
inverse relationship was significant and differences remained
significant at 32 and 80 weeks postvaccination; pairwise com-
parisons revealed differences between VL ≤400 copies/mL
versus VL 401–5000 and >5000 copies/mL, but not between
the latter 2 groups. GMCs varied inversely with VL at entry
and each time point following vaccination. Pairwise analyses
showed that subjects with VL ≤400 copies/mL had a higher
GMC versus those with >5000 copies/mL at entry and versus
those with 401–5000 or >5000 copies/mL postvaccination; dif-
ferences between the latter groups were not significant.

Predictors of P1024 Entry Measles Antibody Concentration
Univariate analyses identified the following predictors of
higher entry antibody concentration: age <7 years; nadir
CD4% prior to HAART ≥25; CD4% ≥25 and VL ≤400
copies/mL at the last MMR vaccination prior to entry; shorter
interval from last MMR to entry; shorter duration of the entry
HAART regimen; immune stratum 4; and CD4% ≥25, VL
≤400 copies/mL, or 401–5000 copies/mL, and higher total
lymphocyte count at entry. Sex, race/ethnicity, and CD19% at
entry were not associated with entry antibody concentration.
In a multivariate analysis, age <7 years and entry VL ≤400
copies/mL or 401–5000 copies/mL remained associated with
higher entry antibody concentration (P≤ .02).

Predictors of P1024 Measles Antibody Concentration 8 Weeks
Postvaccination
After adjusting for baseline antibody concentration, VL ≤400
copies/mL at entry (vs >5000 copies/mL) and VL ≤400 copies/
mL at the MMR study visit (vs 401–5000 copies/mL and
>5000 copies/mL) were associated in univariate analyses with
higher antibody concentration 8 weeks after MMR vaccina-
tion. Longer duration of the entry HAART regimen was mar-
ginally associated with higher antibody concentration
(P = .06). Age; sex; race/ethnicity; nadir CD4% prior to
HAART; interval from last previous MMR to study MMR
visit; immune stratum; CD4% at entry; and CD4%, CD19%,
and total lymphocyte count at the MMR study visit were not
associated with the antibody concentration 8 weeks after vac-
cination. Multivariate analysis found only VL ≤400 copies/mL
at the MMR study visit (vs 401–5000 copies/mL and >5000
copies/mL) associated with higher measles antibody

Figure 1. P1024 geometric mean concentration (GMC) according to
immunologic strata. GMCs of measles neutralizing antibody are shown at
each P1024 study visit for all subjects combined and according to immu-
nologic stratum. The GMC of stratum 4 was higher than that of strata 2
and 3 at entry (P < .001); differences among strata were not significant
after study MMR vaccination, administered at study week 16. Time point
0 on the x-axis reflects the GMC of serum samples obtained at entry.
Eight, 32, and 80 weeks postvaccination correspond to study weeks 24,
48, and 96, respectively. Abbreviations: Ndr, nadir; Scr, screening.
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concentration 8 weeks postvaccination, after adjusting for
baseline antibody concentration (P≤ .03).

P1061s Study Population
Of 224 eligible P1024 subjects, 101 were enrolled in P1061s
(flow diagram online). Of these, 80 met inclusion criteria, ful-
filled CD4 criteria to receive MMR in P1024 and P1061s,
lacked grade ≥3 adverse events following the P1024 dose of
MMR, and received MMR per protocol in both studies; 65 of
80 had entry, day 7, and day 28 measles antibody data and
were included in P1061s analyses. Their characteristics at
P1024 entry and rates of measles seroprotection and GMCs at
each P1024 time point were similar to those of the entire
P1024 analysis group. Their median CD4% at P1061s entry
was 35%; 12% had a CD4% 15%–<25% and 88% had a CD4%
≥25%, and for all 65, the CD4% at P1061s entry was
consistent with their original P1024 immunologic stratum as-
signment (32%, 38%, and 29% in strata 2–4, respectively).
Ninety-five percent were on HAART, 3% were on non-HAART
antiretroviral therapy, and 2% were not receiving antiretroviral
treatment. Sixty-eight percent had a VL ≤400 copies/mL, 18%
were between 401–5000 copies/mL, and 13% had >5000 copies/
mL. Median time from P1024 MMR vaccination to P1061s
entry was 4.24 years (interquartile range, 4.13–4.38 years).

P1061s Measles Antibody Concentrations
Ninety-eight percent were seropositive and 75% had seropro-
tective antibody concentrations at entry, higher than the sero-
protection rate at P1024 entry and only slightly lower than
seroprotection rates following P1024 vaccination (Table 3). At
day 7, 83% were seroprotected, and 85% had protective
memory defined by PRN concentrations ≥120 mIU/mL at
entry or day 7. By day 28, 95% achieved seroprotective anti-
body concentrations. Of the 64 subjects seropositive at entry,
only 5% demonstrated memory defined by ≥4-fold antibody
rise between entry and day 7, while 25% manifested ≥4-fold
antibody rises between entry and day 28. The single subject
seronegative at P1061s entry (and before and after P1024 re-
vaccination) experienced a ≥4-fold seroprotective response by
day 28.

Differences according to immune strata in the percentages
seroprotected at entry, day 7, or day 28 or in the proportions
with memory (76%, 88%, 89% for seroprotection at entry or
day 7 and 5%, 4%, 5% for ≥4-fold rise between entry and day
7, for strata 2–4, respectively) were not significant. The trend
toward higher GMCs at entry and day 7 with increasing
immune stratum was also not significant (Figure 3). There
were no differences based on P1061s VL in the percentages
seroprotected at entry, day 7, or day 28; proportions with
memory; or in GMCs (data not shown). However, there were
differences according to VL at the P1024 MMR vaccination
visit in rates of seroprotection at day 7 (91% vs 67% for VL
≤400 copies/mL vs >400 copies/mL, respectively, P = .03;
Fisher’s exact test) and memory defined as seroprotection at

Figure 2. P1024 proportion of subjects with antibody concentration
≥120 mIU/mL according to P1024 HIV RNA group and P1024 geometric
mean concentration (GMC) according to P1024 HIV RNA group. Propor-
tion of subjects with protective measles neutralizing antibody concen-
trations (top panel, A) and GMCs of measles neutralizing antibody
(bottom panel, B) are shown at each P1024 study visit according to
P1024 HIV viral load group. The proportion with protective (≥120 mIU/
mL) antibody concentrations was higher for subjects with ≤400 copies/
mL than for each of the other viral load groups at each time point
after study MMR vaccination, administered at study week 16. The GMC
of subjects with a viral load ≤400 copies/mL was higher than that of
subjects with a viral load >5000 copies/mL at entry (P = .004) and
higher than that of each of the other 2 viral load groups at each time
point after study MMR vaccination (P≤ .004). Time point 0 on the x-
axis reflects results of serum samples obtained at entry. Eight, 32, and
80 weeks postvaccination correspond to study weeks 24, 48, and 96,
respectively. Bars represent 95% confidence intervals.
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day 0 or day 7 (91% vs 71%, P = .06) and in GMCs at P1061s
entry and day 7 (Figure 4).

Univariate analysis identified the following predictors of
higher day 7 measles antibody concentration in P1061s: anti-
body concentration 8 weeks post-P1024 MMR vaccination
(P < .001), antibody concentration at P1061s entry (P < .001),
and VL ≤400 copies/mL at P1024 MMR vaccination (P = .007).
Age; race; sex; interval from previous MMR to P1024 vaccina-
tion; nadir CD4% prior to HAART; duration of the entry
HAART regimen prior to P1024 vaccination; immune stratum;
measles antibody concentration at P1024 entry; total lympho-
cyte count, CD4%, and CD19% at the P1024 MMR visit; being
on HAART at P1061s entry; and total lymphocyte count,
CD4%, CD19% and VL ≤400 copies/mL at P1061s entry were
not significantly associated with day 7 antibody concentration.

Safety (P1024 and P1061s)
Among 193 subjects in the P1024 dataset, 4 (2%) experienced
grade 3/severe systemic events (3 fever, 1 fatigue) judged pos-
sibly or probably related to MMR. One MMR recipient with
insufficient serologic data experienced grade 3 fever and phar-
yngitis possibly or probably related to vaccination. No grade

Figure 3. P1061s geometric mean concentration (GMC) according to
immunologic strata. GMCs of measles neutralizing antibody are shown at
each P1061s study visit for all subjects combined and according to
immunologic stratum. A trend toward higher GMCs with increasing
stratum was present at P1061s entry and day 7, but differences were
not significant. MMR vaccine was administered on P1061s day 0. Abbre-
viations: Ndr, nadir; Scr, screening.

Table 3. Measles Serologic Status Before and After Measles Vaccination in P1061s

Endpoint and Study Time Pointa All Strata Combined Stratum 2 Stratum 3 Stratum 4

N 65 21 25 19

Percent with PRN ≥8mIU/mL on day 0 (95% CI) 98 (92–100) 95 (76–100) 100 (86–100) 100 (82–100)
Percent with PRN ≥120mIU/mL

Day 0 (MMR administration) (95% CI) 75 (63–85) 71 (48–89) 72 (51–88) 84 (60–97)

Day 7 postvaccination (95% CI) 83 (72–91) 76 (53–92) 88 (69–97) 84 (60–97)
Day 28 postvaccination (95% CI) 95 (87–99)b 95 (76–100) 92 (74–99) 100 (82–100)

Percent with ≥4-fold rise in measles antibody concentration
among subjects seropositive at entryc

Day 0 to day 7 (95% CI) 5 (1–13) 5 (0–25) 4 (0–20) 5 (0–26)
Day 0 to day 28 (95% CI) 25 (15–37) 20 (6–44) 32 (15–54) 21 (6–46)

Geometric mean antibody concentration, mIU/mL (95% CI)

Day 0 (MMR vaccination) 295 238 316 342
(213–409) (122–465) (182–547) (196–599)

Day 7 postvaccination 407d 338d 379 550d

(296–561) (172–662) (228–631) (314–965)
Day 28 postvaccination 834d,e 839d,e 812d,e 857d,e

(636–1093) (503–1401) (486–1358) (560–1311)

Immunologic strata are as follows: stratum 2, pre-HAART nadir CD4 cell percentage <15% and screening CD4 cell percentage ≥15%; stratum 3, pre-HAART
nadir CD4 cell percentage 15% to <25% and screening CD4 cell percentage ≥15%; stratum 4, pre-HAART nadir CD4 cell percentage ≥25% and screening CD4
cell percentage ≥25%. No statistically significant differences according to immune stratum were observed.

Abbreviations: CI, confidence interval; MMR, measles-mumps-rubella vaccine; PRN, plaque reduction neutralization antibody concentration.
a Day 7 serological results were included if they were obtained within days 5–15 after day 0 and day 28 serological results were included if they were obtained
within a window of ±8 days.
b P = .02 (McNemar test) for the comparison of the proportion of subjects with measles antibody concentration ≥120mIU/mL at day 28 vs day 7 and P≤ .001
(McNemar test) for the comparison of the proportions of subjects with measles antibody concentration ≥120mIU/mL at day 28 vs day 0.
c N = 64 subjects seropositive at entry, including 20 in stratum 2, 25 in stratum 3, and 19 in stratum 4.
d P≤ .03 (paired t test) for the comparison of geometric mean antibody concentration vs the previous time point.
e P≤ .004 (paired t test) for the comparison of geometric mean antibody concentration at day 28 vs day 0.
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≥3 adverse events were reported among 10 other subjects who
received MMR vaccine but were excluded from analyses for
protocol violations (4) or not fulfilling protocol CD4 criteria
(6). No grade ≥3 adverse events related to MMR were report-
ed in P1061s. No vaccine-related potentially life-threatening
events or deaths were observed.

DISCUSSION

At P1024 entry, approximately half of subjects lacked protec-
tive antibody levels against measles, despite all having received
MMR previously and 80% having received ≥2 doses. This re-
flects that most subjects were >2 (median 4.8) years removed
from their last MMR, and many likely were not receiving
HAART when previously vaccinated. The low seroprotection
rate is consistent with low response rates to measles (re)vacci-
nation (25%–75%) and of measles seroprevalence (5%–79%)
in HIV-infected children not on HAART and reflects poor
primary responses, impaired avidity, rapid waning of immuni-
ty, and defective memory [4–17]. Low levels and ongoing
decline of measles antibody continue to be characteristic of
children treated with HAART subsequent to vaccination [9,
28–32]. The low seroprotection rate prior to revaccination is
also consistent with low antibody concentrations for Strepto-
coccus pneumoniae, Bordetella pertussis, and hepatitis B virus
at P1024 entry [21–23], and the assessment that HAART is
unlikely to restore immunologic memory for vaccinations ad-
ministered prior to HAART [32].

In contrast, measles seroprotection increased to 89% after
revaccination in the context of HAART. Furthermore, we ob-
served ≥4-fold antibody rises in 44% of subjects, including
primary ≥4-fold responses in 78% of subjects seronegative at
entry. Seroprotection rates of 93% in the highest immune
stratum and 95% among subjects with VL <400 copies/mL
rival ≥95% protection rates following 2 vaccine doses in HIV-
uninfected children [33]. Although antibody concentrations
fell beyond 8 weeks postvaccination, seroprotection fell only
slightly, with 80% seroprotected 80 weeks postvaccination.
These findings are consistent with smaller studies that showed
response rates of 60%–90% in children revaccinated against
measles after HAART [6, 28, 29, 31–32]. Some studies demon-
strated persistence of antibody for 12–36 months, while others
reported rapid declines and loss of detectable levels [31, 34].

In P1061s, 75% had measles antibody concentrations ≥120
mIU/mL at entry, only slightly lower than the percentage sero-
protected at the conclusion of P1024. Memory was further ev-
idenced by 85% having seroprotective antibody levels at entry
or 7 days after the P1061s MMR dose. Parenthetically, the
P1061s MMR dose likely stimulated a primary response in the
single seronegative subject and produced antibody increases in
several others who had antibody concentrations below the
protective level at entry and day 7, indicating that an addition-
al dose may induce and/or boost immunity in subjects who,
despite HAART, had no or limited response or lacked
memory following previous vaccination. Overall, we observed
a surprisingly high seroprotection rate of 95% by day 28. Al-
though studies are mixed as to persistence of memory follow-
ing revaccination while on HAART, our finding of persisting
memory 4–5 years after measles revaccination is consistent
with studies which demonstrated protective antibody levels
and measles-specific memory B cells several years after vacci-
nation while on HAART [32, 34–36].

Responses to MMR in P1024 and detection of immunologic
memory in P1061s were greatest in children with an undetect-
able VL at the time of P1024 vaccination and were not related
to CD4% or CD19% measurements. For inactivated vaccines
studied in P1024, both concurrent CD4% and VL were signifi-
cant predictors of response [21–23]. Other studies found that
response to measles and varicella-zoster vaccines in children
on HAART was related more to suppression of VL than to
CD4 values [29, 37, 38]. This suggests that responses to live
vaccines may be particularly influenced by adverse effects of
HIV replication on number and function of B (including
memory cells) and T cells. HAART may mitigate these effects,
reinforcing the importance of vaccinating when VL is maxi-
mally suppressed [14, 32, 35, 36, 39].

We observed varying immune responsiveness to different
vaccines in the same population of HIV-infected children.
P1024 responses were high for measles and pneumococcal
conjugate vaccines, modest for pertussis vaccine, and weak for

Figure 4. P1061s geometric mean concentration (GMC) according to
P1024 HIV RNA group. GMCs of measles neutralizing antibody are
shown at each P1061s study visit for all subjects combined and accord-
ing to HIV viral load ≤400 copies/mL vs >400 copies/mL at the P1024
MMR visit. The GMC of subjects with a viral load ≤400 copies/mL was
higher than that of subjects with a viral load >400 copies/mL at P1061s
entry and day 7. MMR vaccine was administered on P1061s day 0.

Measles Vaccine in HIV-Infected Children • JID 2012:206 (15 August) • 519



hepatitis B virus vaccine [21–23]. In P1061s, immunologic
memory was demonstrated 4–5 years later for measles and
pneumococcal vaccines, but in only a minority after hepatitis
B vaccination [23, 40]. This demonstrates variability in re-
sponse and memory induction to different immunogens in
HIV-infected children on HAART.

Limitations of our study included that we did not know
what antiretroviral therapy subjects may have received when
given MMR prior to P1024, whether subjects who lacked
measles antibody at entry had responded to previous MMR,
and if subjects who lacked seroprotective antibody levels had
ever attained seroprotective levels. Antibody measurements 8
weeks after P1024 vaccination may have missed peak respons-
es. In P1061s, despite a high rate of memory based on sero-
protection, far fewer subjects fulfilled the memory criterion
based on ≥4-fold antibody rise by day 7 postvaccination, and
only a minority manifested ≥4-fold rises by day 28. This sug-
gests that neutralizing antibody present at entry in the majori-
ty was sufficient to inhibit replication of vaccine virus,
consistent with memory but precluding rapid, large anamnes-
tic responses, similar to HIV-uninfected children who most
often do not attain ≥4-fold rises after revaccination. It is also
consistent with our finding in P1024 that ≥4-fold rises were
more frequent among initially seronegative subjects and that
the magnitude of antibody rises tended to be lower in subjects
with higher entry antibody concentrations (data not shown).
Thus, the ≥4-fold rise criterion likely underestimated
memory, and memory B cell assays would have been informa-
tive. It is also possible that, despite HAART, deficiencies in B
cell memory and/or CD4 cell help in HIV-infected children
limit the rate and/or magnitude of secondary antibody re-
sponses [32]. If memory kinetics are delayed, definitions of
memory focused on seroprotection and ≥4-fold antibody rise
by day 7 may have underestimated true proportions with
memory, and antibody increases between days 7 and 28 in
subjects seropositive at entry may have represented memory
responses. Furthermore, it can be argued that all subjects sero-
positive at entry were immunologically primed and had some
memory. Finally, the number of subjects in the datasets may
have limited the power to discern predictors of vaccine re-
sponse other than VL, multiple comparisons may have intro-
duced chance associations in our exploratory analyses of
predictors, and follow-up duration may have been inadequate
to detect late adverse events (eg, pneumonitis or encephalitis).

Geographic overlap of the HIV epidemic and endemic
measles transmission place HIV-exposed and HIV-infected
children at risk [39, 41]. Infants born to HIV-infected
mothers, regardless of whether they are HIV-infected, are at
increased risk of measles infection, possibly related to lower
levels of maternal measles antibody. HIV-infected children are
at high risk of measles infection due to poor immunologic
memory despite prior vaccination [39]. Measles morbidity and

mortality are enhanced in HIV-infected populations, even
among children receiving HAART [18, 19]. Although model-
ing suggests that the HIV epidemic has had limited impact on
dynamics of measles transmission in developing countries
because of the high mortality associated with HIV in the
absence of antiretroviral therapy, the HIV epidemic may be
expected to contribute more heavily to an increase in measles
with escalating use of antiretroviral therapy and survival of
HIV-infected children, if unprotected against measles [20].
Therefore, protecting HIV-infected children against measles
with vaccination while on HAART is important not only for
their own health, but also for global measles control. The
present study reinforces the safety and potential value of
measles (re)vaccination, when administered with an adequate
CD4% in the context of HAART, to achieve high response
rates with persisting immunologic memory [18, 20, 39, 41].
This strategy is of great importance to areas threatened simul-
taneously by both highly pathogenic viruses.
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