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Abstract

A constrained point process filtering mechanism for prediction of electromyogram (EMG) signals
from multi-channel neural spike recordings is proposed here. Filters from the Kalman family are
inherently sub-optimal in dealing with non-Gaussian observations, or a state evolution that
deviates from the Gaussianity assumption. To address these limitations, we modeled the non-
Gaussian neural spike train observations by using a generalized linear model (GLM) that
encapsulates covariates of neural activity, including the neurons’ own spiking history, concurrent
ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of
EMGs, we reformulated the Kalman filter (KF) in an optimization framework and utilized a non-
negativity constraint. This structure characterizes the non-linear correspondence between neural
activity and EMG signals reasonably. The EMGs were recorded from twelve forearm and hand
muscles of a behaving monkey during a grip-force task. For the case of limited training data, the
constrained point process filter improved the prediction accuracy when compared to a
conventional Wiener cascade filter (a linear causal filter followed by a static non-linearity) for
different bin sizes and delays between input spikes and EMG output. For longer training data sets,
results of the proposed filter and that of the Wiener cascade filter were comparable.
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[. Introduction

Biomimetic brain-machine interfaces (BMI) [1], [2] have evolved from experimental
paradigms exploring the neural coding of natural arm and hand movements to real-time
neural firing rates decoders in both monkeys and humans [3]-[5]. In a typical BMI setup,
monkeys perform stereotyped, repeated arm or hand movements using a manipulandum, e.g.
in the classic center-out or a random target tracking task, and the firing rates of tens of
individual motor cortex neurons are fitted to arm kinematics, (e.g. position and velocity).
The estimated mapping from cortical activity to kinematics is then used to drive an effector.
While neural activity recorded from primary motor (M1) cortex is well documented to have
high correlations with kinematic parameters of movement [6]-[9], relatively few BMI
studies have addressed the kinetic component (for exceptions, see [1], [10], [11]).

A small number of previous studies have used multi-electrode recordings to predict EMG
activity. Carmena et. a/in [12] showed that accurate real-time prediction of the EMGs of
multiple arm muscles can be obtained through linear decoding of multi-unit signals recorded
from several cortical areas. Wiener cascade models were used in [13] to predict EMG
activity of arm and hand muscles from the spikes recorded from motor cortical neurons.
Although the bandwidth of the EMGs is larger than that of arm position or velocity signals,
the predictions accounted for as much as 70-80% of the actual EMG variance under various
experimental conditions [14]. Moreover, it was possible to use functional electrical
stimulation (FES) controlled by real-time EMG predictions to activate the temporarily
paralyzed forearm muscles of monkey subjects and restore their ability to use their hands
[14], [15].

Current multi-electrode recording techniques enable simultaneous registration of the neural
spiking activity from tens of neurons. A decoder can make use of the underlying functional
connectivity between the neurons, together with the individual rate codes [16]. Several
variations of the Kalman filter that reliably decode arm movement kinematics have appeared
in the literature [17]-[20]. However, a fundamental limitation in using filters from the
Kalman family is their sub-optimality in dealing with non-Gaussian observations or systems
in which the state evolution violates the linear-Gaussian Markov process assumption.

We propose an alternative approach to EMG prediction using multi-channel neural spike
recordings in the state-space. Unlike the conventional Kalman filtering based motor
decoders in the BMI literature, we have employed a point process-generalized linear model
(GLM) setting [21], [22], to estimate the instantaneous neural firing rate, and a constrained
Kalman filter to predict non-negative EMG envelopes. The point process-GLM
accommodated the neuron’s own spiking history, concurrent ensemble activity, and extrinsic
covariates such as sensory stimuli or behavioral measures such as the EMGs in this work.
The goal of the present study was to determine whether a point process-based filter can
generate more accurate estimates of EMGs than are provided by the Wiener filter-based
methods used previously.

In Section Il, we first briefly review the classic Kalman filter and then in Sections I1-A and
I1-B, we present a direct optimization-based Kalman filtering approach for EMG prediction.
Results are reported in Section Il and Section IV presents the concluding remarks.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 January 01.



syduiosnuel Joyiny sispun4 JINd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Nazarpour et al.

[l. Method

Page 3

In the classic Kalman filter setting, the hidden state and observation vectors at time &,
denoted by qxand y respectively, evolve as linear and Gaussian Markov processes
completely defined by p(qx+1]d4) and p(q4qg. Therefore,

Qrlage ~ (qu:Ag,, Cq)

Yilqe NJV(Yk§BkaCy) @

where /" (a1, C) denotes a is a Gaussian distributed vector with mean vector £[a] = p. and
covariance matrix C. The system parameters A, B, Cq, and Cy are assumed to be fixed. In
the forward-backward recursive solution of the Kalman filter [23], the objective is to predict
the posterior expectation Aquy1:4), where y1-4={y1, Y2, .. » Y& },» and some related
quantities. However, the Kalman filter yields the optimal solution to £(q4y1.x) only if qxis
discrete or if it evolves continuously when the dynamics p(yk|gx1) and the observations
P(Yk|a,) are linear and Gaussian.

Kalman filters in their original formulation may not be effective in neural data analysis
unless certain requirements are satisfied. In principle, the neural spike observations are point
processes and therefore p(yds) may not be modeled by Gaussian distribution functions.
Also, in this case the conditional probability p(qy:») may be highly non-Gaussian [21],
[24].

Several different instantiations of this recursive Gaussian approximation approach with
varying degrees of accuracy versus computational efficiency have been introduced in the
motor decoding literature [17], [19]-[21], [25]. However, in order to circumvent the above
shortcomings, all of them have placed the neural and behavioral data into bins of greater
than 70 ms duration. This approach has been effective for prediction of the kinematics of
hand movements in the BMI studies where hand position and velocity may be modeled as
Markov linear-Gaussian processes.

In contrast to movement kinematics, the dynamics of EMG signals, p(Qgdx1), are not
smooth (in this paper, qxis a 12 x 1 vector of the EMG activity at time k). The power in an
EMG signal is typically computed following rectification. This constrains the state q4to be
non-negative, leading to a discontinuity in log m(qxQgs1) at gk = 0. The distribution p(q 4
Y1:4) turns out to be non-Gaussian and since there is no mechanism to constrain the
estimates to be non-negative, breakdown of the basic Kalman filter assumptions is
inevitable.

A. Direct Optimization Interpretation of Kalman Filters

A prime objective in using a Kalman filter is to compute the conditional expectation of the
hidden state path 14 given the observations y;: . In a linear-Gaussian setting,

K K
P(ql;myhk):l?(m)-kl;IZP(le(M—l)-kl;[]P(YkIQk) @)

forms a jointly Gaussian random vector, and therefore p(q1:4y1:4) remains Gaussian.
Coincidence of the mean and mode of a Gaussian distribution implies that £q1.dy1:4) iS
equal to the maximum a posteriori (MAP) estimate of p(q1:dy1:4):
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q, =argmaxp (q, .1y, ) =argmaxlogp (q,.., ¥,..) - 3)
di:x 4:x

Since arg maxq1:k 109 p(d1: k:Y1:4) is a quadratic function of in qy. 4, £(01:xly1:x) May be
solved by an unconstrained quadratic program in gq.4 - See Appendix | for details. We thus
have,

q =argr£1ax10gp (a4 1¥,.4)
1:K
=argmax [ 7q], Hq, +V7q,, ] @
1:K
=—-HV

where the Hessian H and gradient % of p(qq. dy1.4) are

V:Vw logp (q,.1y,.«) |q]:K:0 (5)
H:VVqI:K logp (q1:1< |y1:1<) |q1:K:O (6)

In practice, H™1 is never computed explicitly. Rather, we only solve the linear equation

Hgq, = — V. The Hessian H is a block-tridiagonal matrix and the matrices A and Cq are
assumed to be fixed and are estimated by their maximum likelihood solution. Appendix |
contains the details for computation of H and .

Extension to Point Process Observation

So far, we have assumed that p(y4q,) (the probability of neural firings given an external
covariate gy €.g. a sensory stimulus or a motor output such as the EMG signals in this work)
is Gaussian distributed. However, spike recordings are point processes. We extend the above
optimization approach to compute the MAP estimate of ;.4 in a general non-Gaussian
scenario. We assume that log p(q4+7qx) is a concave function of ;. «, that the initial density
log p(qo) is concave, and that the observation density log p(y4ds) is concave in g4 Hence,
the MAP estimate of ;.4 is a concave problem, see equation (21) in Appendix Il and [26],
[27]. The standard Newton’s algorithm can be applied! to optimize such an estimate as

o
a=qa,, -H ¥/ @)

where at iteration #+1, %'/ and H/ are updated at the previous g’ with

Vj:VqI:K logp (ql:K |Y1:l<) |q1:K :a{;,( (8)

szvvm logp (qI:K|YI:K) q,.« =’q{1( 9)

IThe simple Newton iteration does not always increase the objective log p(q1:y1:4); thus, we perform a simple backtracking

. s .
linesearch [28] along the Newton direction qu:,( —6’H’ V{0 determine a suitable stepsize & < 1 as the standard remedy for this

instability.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 January 01.



syduiosnuel Joyiny sispun4 JINd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Nazarpour et al.

Page 5

Now, let N,{,_l be the counting process giving the total number of spikes fired by neuron 7in
the time interval [0, (k—1) A § where Atrepresents the bin size. Then, the probability of

observing AN‘=N; — N;_, spikes in the -th time bin from the /th neuron is

p (Gilge) =exp (AN'log (2,A1) - A1) (10)

where 1, denotes the conditional intensity function of neuron 7in the -th time bin fully
characterized with a stochastic neural point process [21]. Therefore, for an ensemble of C
neurons

c
logp (yilqw) :Zlog ((/l;;At)AN

iexp (—/l};At)). (11)
i=1

We determine /12, using a GLM that accounts for the neuron’s firing history, its functional
coupling with other neurons, and a linear regression from the extrinsic covariate to
individual neurons passed through a log-concave function f.) = exp(.). This GLM setting is
of the form

c J
A= [bi"'%iqu"'ZZhi,i/, W k= j] (12)

i=1Jj=1

where 4 represents the EMG activity in the Ath time bin, b;is the baseline firing rate of the
/~th neuron and the /th row g3, of the observation matrix 8 encapsulates the /~th neuron’s
preference for target muscles. For instance, if the ~th neuron fires more frequently when a
subset of muscles are activated, then the elements of g, corresponding to those muscles are
positive. Here, #; ;- jcaptures the i -th neuron’s spike history effects on neuron jand J
represents the length of the /; ;- . The history of the neuron /is included when i=i
Parameters of this point process model were fitted by maximum likelihood [29]. This model
fitting imposes a little additional computational expense to estimate the parameters (b, 3,),
but since both y,and qy are fully observed, no expectation maximization is needed.

The derivatives of log p(ya) are required in computation of %'/ and H/ in equations (8)
and (9) and are provided in Appendix Il.

B. Log-Barrier Method for Constrained Optimization

The forward-backward methods based on Gaussian approximations of forward distribution
P(akly1:» cannot accurately predict the strictly positive envelope of the EMGs unless a non-
negativity constraint is incorporated. We employed the standard log-barrier method [26],
[30], [31] by replacing the constrained concave problem

—MAP_
q,.« _argqlzl:?]igologp(ql:K|YI:K) (13)

with a sequence of unconstrained concave problems
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aiK:argr(IllaXIng (ql:K |y1;1<) +EZ]0qu. (14)
1:K T

Incorporating the penalty term enforces q7, to satisfy the non-negativity constraint and if

q"4" is unique, then q°, converges to ¢**” as e — 0.

The Hessian H of the objective function 108 (q,.¢1y.x) +EZ,£10ng retains the block-
tridiagonal structure of the original objective log p(d1: dy1: k) as the barrier term contributes
only to the diagonal elements of H. For instance, the /th diagonal element of H is increased

by —eq?.
The mean of a truncated Gaussian distribution will not necessarily coincide with the mode

unless the mode is sufficiently far from the non-negativity constraint [31]. Therefore, the

approximation arg maxq1: x Xd1:Y1:x) ~ E(A1:4Y1:x) does not typically hold in the
constrained case.

C. The Wiener cascade filter

Briefly, in the Wiener filter approach, the EMG activity recorded from 12 channels is
predicted using a linear system with multiple inputs and a single output [32]. The filter is
fitted using the classic least mean squares (LMS) method. In such a filter, each of the N/
neural inputs is convolved with a causal finite impulse response function, and combined to
produce a single output. This linear system can be followed by a static non-linearity to form
a Wiener cascade model [13]. Hence, the output of such a system is a linear, weighted
combination of the recent history of neural signals, transformed by a static non-linearity, in
our case, a third order polynomial. The non-linearity acted as a threshold that eliminated
fluctuations in the predictions when muscles were quiescent. Also it amplified the estimated
peaks of the EMG activity. In principle, the non-linearity could have been cascaded
following the proposed filter to further improve those estimates; however we did not pursue
this direction here.

D. Experiment

The experiment involved one rhesus macaque monkey, chronically implanted with a multi-
electrode array (Blackrock Microsystems) in the arm area of motor cortex. Details of the
surgical procedure have been described previously in [13]. All animal care, surgical, and
research procedures of this work were approved by the Institutional Animal Care and Use
Committee of Northwestern University. Neural data were collected at 25 KHz sampling rate
using a Cerebus acquisition system (Blackrock Microsystems). The monkey was also
implanted with chronic intramuscular EMG electrodes in twelve forearm and hand muscles
(see Table I) routed subcutaneously to a percutaneous connector. The EMG activity from all
muscles was sampled at a rate of 2 KHz.

The monkey’s behavioral task consisted of applying a grip force to a ball to control the
vertical movement of a small circular cursor on a screen. The monkey placed its hand on a
touch pad to start each trial, until receiving a Go tone. The ball, which was held by the
experimenter in front of the monkey, was connected by a flexible tube to a pressure
transducer which provided a measure of grip force. The monkey was allowed five seconds
after the Go tone to reach for and squeeze the ball, and then was required to hold the cursor
inside a force target for 0.8 seconds. Following successful trials, the monkey received a
controlled amount of fruit juice.
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We recorded spike and EMG activity in four days. On each of the first two days, we
recorded three, six-minute data files, comprising dataset I. On each of the second two days,
we recorded one, 20 minute long data file (dataset 11). There was a relatively long interval
(30 days) between recordings of Dataset Il. In each dataset, single and multi-unit spike
signals were sorted on the first day using 2D PCA-space visualization computed with the
Cerebus software. This sorting was kept constant in the second day.

Following [13], the EMG envelopes in each channel were extracted by highpass filtering at
50 Hz, rectification, and lowpass filtering at 10 Hz. During the task, the neural data and the
EMG activity were recorded simultaneously along with task relevant sensor signals, e.g.
pressure. Both spike recordings and EMG signals were downsampled to appropriate bin
sizes (2, 5, 10, and 20 ms) for further analysis. For dataset I, we also considered bin sizes of
50 ms.

[1l. Results

A. Dataset |

We tested the proposed point process-based filtering approach and compared it with the
Wiener cascade filter in which the length of the impulse response was set to 250 ms. In this
paper both prediction and stability (over time) rates are reported. In computing the
prediction rates for each data file, 20 fold cross-validation was performed, in which 19 folds
were used for training the model and one fold for testing. Tests were repeated 20 times, each
with a different test fold. All reports of prediction rates are based on evaluations of the test
data sets only. However, for evaluating the stability of the proposed predictor, the model
was fitted in one data file and tested on another data file - from the same or the second day
in dataset | and from the second day in dataset 1. Mean prediction rates are presented in
terms of the mean coefficient of determination /2 and mean squared error (MS E) and either
standard deviation (SD) or standard error of the mean (SEM) where appropriate.

For all statistical analysis (otherwise specified), we tested the main effects of the bin size
and predictor type by a 4 x 4 repeated measures ANOVA in which the degrees of freedom
were corrected using the Greenhouse-Geisser method when required. We also report
bonferroni-corrected post-hoc pairwise comparison results.

We first verify the GLM-point process modeling. Then, we present the prediction results of
Wiener cascade and constrained Kalman-based filters. In the constrained Kalman filter case,
two cases are investigated: first in equation (12), only the first two terms are considered, that
is no firing history or neural coupling components /; ;- ;were included. This simplifies
equation (12) to

A=f (pi+B]q). 5

In a simplified constrained Kalman filter (SCKF) setting, /l; is estimated by equation (15). In
the full constrained Kalman filter (FCKF) setting the history and neural coupling

components are also taken into account and hence equation (12) is used to estimate ;. We
will report the effects of the bin size, and the delay between spike discharge and EMG on
the prediction performance. Finally, we will test the stability of the SCKF and FCKF
methods across different recordings sessions and compare it to the Wiener cascade filter.

1) GLM Validity—In the GLM, we used an exponential non-linearity to estimate the
instantaneous spike rate of each recorded unit, equations (12 and 15). We assessed the
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adequacy of the exponential function fby comparison with the reconstructed non-linearity.
The reconstructed non-linearity was computed using the raw distribution of model inputs
and the observed spike responses. The reconstructions were reasonably log-linear. Fig. 1

shows the results for one typical motor cortex cell. In this example, /ljc was estimated using
the simplified model in eq. (15) used previously in [22], [33], and many others, and serves to
verify the model.

2) Prediction rates—Fig. 2 depicts an example for the predicted EMG signals using both
the Wiener cascade filter and the SCKF. In this example, EMG envelopes were better
predicted using the SCKF (eg. (15)). The SCKF predictions were also smoother than the
Wiener cascade filter predictions.

We computed the prediction accuracy of the simplified and full constrained Kalman filter to
that of the Wiener cascade filter for four bin sizes within each data file (Fig. 3). On average,
the SCKF performance was about 8% higher than the Wiener cascade filter. The prediction
difference between the SCKF and the Wiener filter when the bin size was 2 ms was
marginally significant (paired t-test: #; = 2.13, p=0.056). In order to incorporate the
history and coupling components for FCKF, we examined the inter-spike interval (1SI)
histograms and empirically concluded that a history window of 20 ms should accommodate
enough spikes for each neuron so that the GLM fit would converge. Incorporating the full
GLM model further increased the prediction scores by about 4% on average. In the smaller
bin sizes, the FCKF predicted the EMG activity more accurately than did the SCKF (e.g. 2
ms bin size: paired t-test: 1 = 4.28, p=0.001). However this difference diminished when
the bin size was 20 ms (paired t-test: 1 = 0.65, p=0.52). The performance of the
constrained Kalman filter estimators increased monotonically when bin size increased.

3) Bin size, delay, and kernel width—We studied the effect of bin size (4 bin-sizes)
and EMG delay lag (3 lags: 20, 40, and 60 ms) on the prediction accuracy of the SCKF
using non-overlapping bins. The EMG prediction accuracy was improved by increasing the
bin size from 2 ms to 20 ms, Fig. 3. The results for 40 ms delay were slightly higher than the
20 ms and 60 ms delays for all bin sizes.

For the FCKF, we used 20 ms and 40 ms wide rectangular kernels (/7= 1) in (12) and
two delay values of 20 ms or 40 ms. For instance, when the bin size and the delay were
respectively 5 ms and 40 ms, the rectangular kernel window covered 8 previous data points.
Including the history and coupling components improved the prediction results by about 4%
on average, when compared to the no kernel (SCKF) condition, at smaller bin sizes of 2 ms
and 5 ms. Such an improvement was statistically significant for almost all different
configurations. For instance, at 5 ms bin size and 20 ms delay, FCKF (40 ms kernel size)
and SCKF prediction scores were 59% and 53%; a 2-tailed t-test across muscles confirms
the significance £, = 4.56, p= 0.001. Such differences diminished with larger bin sizes.

The size of the bins did not influence the performance of the Wiener cascade filter (see Fig.
3). The SCKF and FCKF prediction rates improved monotonically when bin size increase.
For large bins the effect of the kernel was smeared irrespective of its size and the SCKF and
FCKEF results were comparable.

4) Stability—We analyzed the prediction stability of both the Wiener cascade and the
constrained Kalman filter over time using the six data files of dataset | in terms of both /2
and MS E. We used the filter parameters determined from one data file to predict EMG
signals from the remaining data files from either the same or a different day. The predictions
used only those neurons that were common to both data files. This included approximately
80-90% of units. The process was carried out for bin sizes of 2 ms, 5 ms, 10 ms, and 20 ms,
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delay values of 20 and 40 ms. The kernel width for FCKF was set to 40 ms. Fig. 4 and Fig. 5
report the EMG prediction accuracy scores (R2 and MS E, respectively) using four different
bin sizes.

Fig. 4 shows that the SCKF predictions accounted on average 55% of the actual EMGs
which was on average 15% more accurate than the Wiener cascade filter. A repeated
measures ANOVA was used to test the statistical significance of the differences in
prediction rates in terms of /2. Tests confirmed the main effect of the predictor (F1.19.13.08 =
62.67, p< 107%). However, the bin size did not influence the prediction scores (F1.071875 =
1.22, p=0.31. Post-hoc analysis revealed rates achieved by SCKF (delay 20 ms), SCKF
(delay 40 ms), and FCKF (delay 40 ms) were higher than those scored by the Wiener
cascade filter (p< 1074, p< 1074, and p = 0.01, respectively).

Fig. 5 shows that the MS £s between the predicted EMGs and actual EMGs were smaller
using the proposed point-process filters specially for larger bin sizes. We used a 4 x 2
ANOVA repeated measures to test the statistical significance of the differences in prediction
stability in terms of MS E. Tests revealed that the main effects of type of predictor and bin-
size were statistically significant (1741921 = 5.22, p=0.01 and £ 25 13,84 = 21.36, p<
1074, respectively). Bonferroni corrected post-hoc analysis showed the predictions of the
SCKEF (delay 40 ms) were marginally more accurate than that of the Wiener cascade filter (p
=0.08).

B. Dataset Il—We repeated the analysis for dataset Il considering bin sizes of 5, 10, 20,
and 50 ms. The mean prediction and stability rates are depicted in Fig. 6. Results show that
for this long dataset, prediction rates obtained by the Wiener and Kalman-based filters were
comparable (4 x 2 ANOVA repeated measures, n=12, main effect of predictor 1 11 =0, p=
0.98).

We compared the stability of the Wiener cascade filter and the SCKF (delay 40 ms). When
the bin size was 10 ms or 20 ms bin sizes, the SCKF prediction performance was higher than
that of the Wiener cascade filter as confirmed by paired t-tests across muscles: at 10 ms 1 =
4.65, p=0.001 and at 20 ms #1 = 2.69, p=0.021. Otherwise, the Wiener cascade filter
performance matched that of the SCKF.

IV. Concluding Remarks

The ultimate motivation behind this work is to decode attempted muscle activity in
paralyzed patients from motor cortical activity and to utilize the decoded signals as a mean
to restore motor deficit. To that end, we proposed a non-negatively-constrained point
process filter for the prediction of EMG signals from multi-channel spike recordings in M1.
We employed the generalized linear model to estimate the instantaneous firing rate of the
cells as a function of the EMG activity. This model provided reasonable characterizations
between neural activity and motor behavior. Using an optimization interpretation of the
conventional Kalman and point-process filters, we accommodated the state non-negativity
constraint of the EMG envelopes by the log-barrier method. In the constrained point process
filtering setting, the neural non-linear, non-Gaussian, spiking pattern and the inherent non-
negative nature of the EMG envelopes were explicitly modeled.

We showed that the GLM could be readily fitted using a few minutes of training data and
the constrained point process filter provided reasonably accurate estimates of EMG activity
given the instantaneous firing rates of a population of cells in M1. The prediction rates
achieved for the SCKF and FCKF were higher than those of the Wiener cascade filter by
about 8% and 12%, respectively. In the stability tests, the predictions of the SCKF were
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about 12% more stable than those of the Wiener cascade filter. The stability scores achieved
by the FCKF were on average 5% higher than those given by the Wiener cascade filter.
When the amount of training data increased, using the longer data files of dataset 1, the
constrained point process filter did not achieve consistently better performance rates than the
Wiener cascade filter.

The size of the filter parameter space relative to the amount of training data is an important
factor in fitting both Wiener- and GLM-based models. The improved performance of the
proposed constrained point process filter when compared to the Wiener cascade filter may
be due to its smaller number of parameters and compact Bayesian nature. For instance, for
prediction of M= 12 EMGs from the activity of C= 100 cells using the proposed filters, one
needs to compute Cx (M + 1) + 22 = 1588 parameters (including b, and g, for each
neuron, A, and Cq). However, where 7 denotes the length of the impulse response (in bin),
for the same setting the Wiener cascade filter requires 7 x C x M= 14400 parameters (7=
12 for a bin size of 20 ms and a filter length of 240 ms). Therefore, the Wiener cascade
filters suffers dramatically from substantial model overfitting if the training data are limited.
It is often recommended to regularize the fitting process by taking into account prior
mathematical (e.g. sparsity of the filter) constraints [34]. This can improve the performance
of the model when the training data are limited and the feature space is high-dimensional
[35] by trading prediction accuracy on the training set for a smoother prediction surface.
However, we believe that any gains achieved through the addition of a regularization
component to the Wiener-based decoders would transfer, at least partially, to systems using
the proposed filters. For instance, in our full GLM setting, for simplicity, we used
rectangular history kernels /; ;- ;and that led to lower performance of the FCKF when
compared to the SCKF in the stability test. However, a physiologically-inspired prior for the
model would be the temporal smoothness of the history kernels. For example, the raised
cosine kernels can provide a fine temporal structure near the time of a spike and a coarse
temporal structure at longer delays using a limited number of parameters [22].

In a real-time implementation of the constrained point process filter, the block-tridiagonal

structure of H implies that Q= — H~'v may readily be solved in O(K) time, e.g., by block-
Gaussian elimination [36]. One should note that there is no need to compute H=1 explicitly.
The matrix formulation of the Kalman filter is equivalent, both mathematically and in terms
of computational complexity, to the forward-backward method. Therefore, in contrast to the
original Kalman filter, the computation of q4 requires at least a partial forward-backward
sweep making the real-time implementation complicated. A potential solution to this
problem is suggested in [37]. In addition, in the proposed constrained point process filter,
the computational cost incurred in updating H, % in each iteration of the Newton
optimization and the best tuning of e in equation (14) have to be taken into account. The
Newton’s optimization method converges in only one step [31] for the original linear-
Gaussian setting, but for the point process observations, the optimum {|1:k is obtained after a

few iterations - still of order O(K) time computations. To compute iif‘zj‘”, we initiated the

optimization with e = 0.2 and after few iterations halved the e in an outer loop. The iteration
process stopped if the improvement in the log-likelihood was smaller than an empirical
threshold. Further work will be necessary to develop a real-time implementation of the
constrained point process filter proposed here.

An alternative way to decrease the computational cost of our algorithm is to reduce the
dimension of the observation vector by ranking the neurons with respect to the information
they provide and discarding those that are not influential. One such iterative ranking method
has been proposed, but it is itself rather complex computationally [32].
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Despite the apparent success of the biomimetic BMI, the requirement for training data
remains a challenge for ultimate clinical applications with paralysed patients. Motor imagery
may provide a suitable substitute for actual movement in patients suffering from cervical
spinal cord injury. Hochberg et a/. [38] showed that the imagined limb motions modulate
neural firing discharge in M1. In their experiment, the paralyzed subject was asked to
imagine tracking a cursor on the computer screen that was moved by a technician through a
succession of randomly positioned targets - only the cursor and targets were visible on the
screen. A linear filter decoder was computed from four minutes of data collected during
these imagined movements. Subsequently, the subject used this initial decoder to control
movement of a neural cursor. Data generated during these movements were used to update
the linear filter estimate. Related approaches have also been used with monkey subjects
[39]-[41].

The problem is more complicated in the case of decoding EMG signals, as the idea of
imagining the activity of individual muscles is much less intuitive than imagining the
kinematics of hand movement. The problem is exacerbated by the high degree of
musculoskeletal redundancy of the arm. There are unlimited combinations of muscles by
which the same motor output at the fingertips may be achieved which leads to very slow
convergence of a decoder and potentially unstable performance. However, muscles exhibit
rather stereotyped EMG activity patterns across subjects [42]. Therefore, it might be
possible to train an initial filter using “template” EMGs collected from able-bodied subjects
during execution of the movements that the patient observes. This initial decoder can then be
improved by further mathematical optimization or reinforced via training. Implementing this
procedure may be challenging in a clinical environment where collecting enough high
quality training data is challenging. In this case, the proposed decoder may play an
important role by providing better performance despite limited training data.

In conclusion, we have shown that the constrained point process-based models improve
prediction of the envelope of EMG signals from multi-channel neuronal firing rate records
with a better stability when the training data are limited. Improvement in the prediction of
EMG signals from neural recordings by appropriately regularized Wiener- and Kalman-
based filters remains to be studied further.
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In a linear-Gaussian setting, (d1.x: Y1:x) in eq. (2) forms a jointly Gaussian random variable,
and therefore the conditional expectation of the hidden state path ;.4 given the observations
Y1:4 E(Q1:KdY1: k) remains Gaussian. Coincidence of the mean and mode of a Gaussian
distribution implies that £(q1: «Yy1:x) is equal to the maximum a posteriori (MAP) estimate
of A(d1:KY1:x)
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E1\1;1< =argmaxp (qI:K|YI:K) =argmaxlogp (q1;1< > yl:K)
q];]( qI:K

K K
=argmax (logp (q1) + X logp (qklgr-1) + 2. logp (yrlqx) (16)
4. k=1 k=1

K K
=argmax |3 | (a1 - £ (@) €5/ (@1 - E (@) +3 (q - Aq )" €' (qu — Aqi_)) +Z - Bq) C, ! (qi - qu))} :
1:K k= —

The right-hand-side here is a simple quadratic function in q;.«. Since p(d1:dy1: ) iS
Gaussian, that is p(q1: dY1: k) IS quadratic, £(q:«Y1: k) may be solved by an unconstrained
quadratic program in gq.4as in equation (4) where the Hessian H matrix is a block-
tridiagonal matrix of form

D, R, 0 0
Ry; Dy Ry3 0 :

H=| 0 Rix Di Rige a7

0 DK—I,Kfl kal’
0 RK’K_I D,

and its elements may be computed (for k=1, 2, ..., K) with

Dy 62108P(YI|(11<)+  logp (qulqu- N+L IOgP(anlqw

oq?
Riwi =R[, = Wlogp(%nl%)-

For instance, D1=— (Cy! +A” C4A+B"C}") and Ry,1=C;'A”. In (4) V is a vector in which
the ~th element is

v [)]ng(q] %Y1 K)
‘ 6% T (-1 T -1 (19)
=-Cy' (qr — Aq,_) +ATC.' (qus1 — Aqy) +B7C; ! (yi — Bgy).

Appendix Il

The first and second derivatives of log p(y4dx) are

Ologp (yilqi)

C
dqy =Z (AN,'; - /liAfk) B, (20)
i=1

d*logp (yrlqr) _Z A AtﬂST%' (21)

oq; =1

Equation (21) demonstrates directly that log o(yqy) is concave since /l} > 0.
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A comparison between an exponential function (dashed) with direct reconstructed estimates
of the non-linearity; computed using the raw distribution of Ln A and the observed spike

responses. Lndenotes the natural logarithm operator. The exponential non-linearity

employed here represents the probability of observing a spike for each bin. The assumed
exponential non-linearity for the model provides a reasonable approximation except at low
lambda. Error bars represents the SDs. The vertical (Firing rate) axis is on a logarithmic

scale.
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Fig. 2.

An example of actual (black) and predicted EMG signals using the Wiener cascade filter
(blue) and the simplified constrained Kalamn filter (SCKF, red) during the ball-grip task.

The R2 values were calculated from a 40 second segment of data in this example.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 January 01.



s1duosnuBlA Joyny sispund OINd edoin3 g

s1dLIOSNUBIA JouIny sispund OINd 8doin3 ¢

Nazarpour et al.

Page 17

0.7

[__] Wiener cascade
[ SCKF — 40 ms
I FCKF — 40 ms

0.65

0.6

" 0.55

0.5

0.45

04
2ms 5ms 10ms 20 ms
Bin Size

Fig. 3.

Summary of EMG prediction accuracy with the Wiener cascade, simplified (the generalized
linear model without the coupling and history components: eq. (15)), and full constrained
Kalman filters (the generalized linear model with the coupling and history components: eq.
(12)). Predictions (/2 + S EM) accounted for 49-65% of the variance of the EMGs. The
Wiener cascade filter was insensitive to the bin size. However, the prediction accuracy of
the constrained Kalman filter improved for larger bin sizes. Including the history and
coupling component terms in the GLM improved the prediction rates further. The time delay
was set to 40 ms.
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Fig. 4.

Summary of EMG prediction stability rates (F2 + S EM) using Wiener cascade filter, SCKF
(time delay: 20 ms and 40 ms), and FCKF (time delay: 40 ms time delay and kernel width:
40 ms). Predictions accounted for about 55% of the actual EMGs using SCKF, (eg. (15)),
and about 45% using FCKF, (eq. (12)). Prediction rates obtained by SCKF were higher than
that of the Wiener cascade filter by about 12% on average.
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Summary of EMG prediction stability scores (MS E + S EM) using Wiener cascade filter,
SCKEF (time delay: 20 ms and 40 ms), and FCKF (time delay: 40 ms time delay and kernel
width: 40 ms). The EMG predictions using the proposed filters were closer to the actual
EMGs (smaller MSEs) than the predictions of the Wiener cascade filter.
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Summary of EMG prediction and stability rates (/% + S EM) with the Wiener cascade filter
and SCKEF (eq. (15)) for the large-file dataset. The average A2 and their standard error of
means for Dataset 1l are reported. Wiener cascade filter and SCKF results were comparable
when large training data was used. Only when the bin sizes were 10 ms and 20 ms the
difference in prediction rates were statistically significant, shown with asterisk.
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EMG signals were recorded from the electrodes implanted in these muscles. We recorded from two sites in

FCR.
Abbreviation Name
1 FDS, Flexor digitorum superficialis (radial aspect)
2 FDS, Flexor digitorum superficialis (ulnar aspect)
3 FDP, Flexor digitorum profundus (radial aspect)
4 FDP, Flexor digitorum profundus (ulnar aspect)
5 FCRy Flexor carpi radialis
6 FCR, Flexor carpi radialis
7 PAL Palmaris longus
8 FCU Flexor carpi ulnaris
9 ECR Extensor carpi radialis
10 EDC Extensor digitorum communis
11 ECU Extensor carpi ulnaris
12 FDI First dorsal interosseous
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