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Abstract
We consider nonparametric regression of a scalar outcome on a covariate when the outcome is
missing at random (MAR) given the covariate and other observed auxiliary variables. We propose
a class of augmented inverse probability weighted (AIPW) kernel estimating equations for
nonparametric regression under MAR. We show that AIPW kernel estimators are consistent when
the probability that the outcome is observed, that is, the selection probability, is either known by
design or estimated under a correctly specified model. In addition, we show that a specific AIPW
kernel estimator in our class that employs the fitted values from a model for the conditional mean
of the outcome given covariates and auxiliaries is double-robust, that is, it remains consistent if
this model is correctly specified even if the selection probabilities are modeled or specified
incorrectly. Furthermore, when both models happen to be right, this double-robust estimator
attains the smallest possible asymptotic variance of all AIPW kernel estimators and maximally
extracts the information in the auxiliary variables. We also describe a simple correction to the
AIPW kernel estimating equations that while preserving double-robustness it ensures efficiency
improvement over nonaugmented IPW estimation when the selection model is correctly specified
regardless of the validity of the second model used in the augmentation term. We perform
simulations to evaluate the finite sample performance of the proposed estimators, and apply the
methods to the analysis of the AIDS Costs and Services Utilization Survey data. Technical proofs
are available online.
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1. INTRODUCTION
The existing missing data literature mainly focuses on estimation methods in parametric
regression models, that is, models for the conditional mean of an outcome given covariates
indexed by finite dimensional regression parameters. However, the functional form of the
dependence of an outcome on a covariate is often unknown in advance and can be
complicated (Hastie and Tibshirani 1990; Wand and Jones 1995). For example, Zhang, Lin,
and Sowers (2000) found that the profile of progesterone level during a menstrual cycle
follows a nonlinear pattern which is hard to fit using standard parametric models and is best
fitted by nonparametric smoothing techniques. Likewise, Harezlak et al. (2007) found that
the protein intensities from mass spectrometry are very complex and need to be fit using
nonparametric smoothing methods. Limited literature is available for nonparametric
regression in the presence of missing data.

Our work is motivated by the AIDS Costs and Services Utilization Survey (ACSUS) (Berk,
Maffeo, and Schur 1993). The ACSUS sampled subjects with AIDS in 10 randomly selected
United States cities with the highest AIDS rates. A question of interest in this study is how
the risk of hospital admission one year after study enrollment is related to the baseline CD4
counts. Although it is known that a lower CD4 count is associated with a higher risk of
hospitalization, the functional form of dependence is unknown and expected to be nonlinear
with a potential threshold. We are hence interested in modeling this relationship
nonparametrically. However, about 40% of the patients did not have the first-year hospital
admission data available. As shown in Section 4, naive nonparametric regression using
complete data could only yield an inconsistent estimator of the mean curve if the missing is
not completely at random, a likely situation in this problem. It is therefore of interest to
develop flexible nonparametric regression methods to estimate the effect of baseline CD4
counts on the risk of hospitalization that adequately adjust for outcomes missing at random
(MAR), that is, missing depending on observed data (Little and Rubin 2002). In addition,
because the fraction of missing outcomes is large, it is also important that the methodology
maximally exploits the information in available auxiliary variables. The methods we
develop in this paper are also useful for nonparametric regression estimation in two-stage
studies (Pepe 1992), where the second-stage outcome is not observed for all study units and
the probability of observing the outcome depends on the first-stage auxiliaries and
covariates, but is independent of the outcome, that is, it is MAR.

Limited work has been done on nonparametric regression in the presence of missing data.
Wang et al. (1998) considered estimation of a nonparametric regression curve with missing
covariates. Liang et al. (2004) considered estimation of a partially linear model with missing
covariates and described inverse probability weighted (IPW) estimation of the
nonparametric component of the model. Chen et al. (2006) studied local quasi-likelihood
estimation with missing outcomes when missingness depends only on the regression
covariate. None of these articles considered, as we do here, the possibility that always
observed auxiliaries are available, a case that arises often in practice. Our work differs in
that we propose augmented inverse probability weighted (AIPW) kernel estimators that
exploit the information in the auxiliary variables while at the same time allowing for the
possibility that missingness may depend on them, thus making the MAR assumption more
plausible.

In this paper we generalize kernel estimating equation methods (Wand and Jones 1995; Fan
and Gibjels 1996; Carroll, Ruppert, and Welsh 1998) to accommodate outcomes missing at
random in a similar spirit to IPW and AIPW methods for parametric regression (Robins,
Rotnitzky, and Zhao 1994, 1995; Rotnitzky and Robins 1995; Rotnitzky, Holcroft, and
Robins 1997; Robins 1999). After studying the properties of naive kernel estimating
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equations based on complete cases, we propose the IPW kernel estimating equations and a
class of AIPW kernel estimating equations. We present the asymptotic properties of the
solutions to these weighted kernel estimating equations and compare them in terms of
asymptotic biases and variances. We argue that clever choices of the augmentation term can
yield important efficiency gains over the IPW kernel estimators. The proposed IPW and
AIPW kernel estimators are consistent under MAR if the missingness mechanism is known
by design or can be parametrically modeled. Indeed, with one specific choice of the
augmentation term, the AIPW kernel estimator confers some protection against model
misspecification in that it remains consistent even if the model for the missingness
probabilities is misspecified provided that a parametric model for the conditional mean of
the outcome given the covariates and auxiliaries is correctly specified, a property known as
double-robustness.

2. THE GENERALIZED NONPARAMETRIC MODEL WITH MISSING
OUTCOMES

We consider a generalized nonparametric mean model when the outcome may be missing at
random. Specifically, suppose the study design calls for a vector of variables (Yi, Zi, Ui) to
be measured in each subject i of a random sample of n subjects from a population of interest.
The variable Yi denotes the outcome which may not be observed in all subjects and the
variable Zi denotes a scalar covariate that is always observed. We assume that the mean of
Yi depends on Zi through a generalized nonparametric model

(1)

where g(·) is a known monotonic link function (McCullagh and Nelder 1989) with a
continuous first derivative, μi = E(Yi|Zi), and θ(z) = g{E(Y|Z = z)} is an unknown smooth
function of z that we wish to estimate. The variables Ui, which we assume are always
observed, are recorded in the dataset for secondary analyses. However, for our purposes they
are regarded as auxiliary variables as we are not interested in estimation of E(Yi|Zi, Ui), but
rather in estimation of E(Yi|Zi). The covariates Ui are nevertheless useful in that they can
both help explain the missing mechanism and improve the efficiency with which we
estimate the nonparametric function θ(·).

We assume that outcomes are MAR (Little and Rubin 2002), which in our setting amounts
to assuming that

(2)

where Ri = 1 if Yi is observed and Ri = 0 otherwise. That is, we assume the probability that
the outcome is missing may depend on the observed data, that is, covariates and auxiliaries,
but is independent of the outcome given the observed data. This assumption automatically
holds in two stage sampling designs (Pepe 1992; Reilly and Pepe 1995) with covariates and
auxiliaries measured at the first stage and outcomes measured on a subsample at the second
stage. Using probabilities of selection into the second stage that depend on the variables
collected at the first stage can help improve the efficiency with which one estimates the
regression of Y on Z (Breslow and Cain 1988).
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3. THE KERNEL ESTIMATING EQUATIONS FOR MISSING OUTCOMES AT
RANDOM

In the absence of missing data, local polynomial kernel estimating equations have been
proposed by Carroll, Ruppert, and Welsh (1998) as an extension of local likelihood
estimation. When the data are not fully observed, one naive estimation approach is to simply
solve the local polynomial kernel estimating equations using only completely observed
units. However, as we show in Theorem 1 in Section 4, the resulting estimator θ̂naive(z) is
generally inconsistent under MAR, except when: (a) the conditional mean of E(Y|Z, U)
depends at most on Z or, (b) the selection probability Pr(R = 1|Z, U) depends at most on Z.
This result is not surprising once we connect our inferential problem to causal inference
objectives and relate it to well-known facts in causality. The MAR assumption (2) is
equivalent to the assumption of no unmeasured confounding (Robins et al. 1999) or
ignorability (Rubin 1976) for the potential outcome under treatment R = 1 in the
subpopulation with Z = z. This assumption stipulates that, conditional on Z = z, U are the
only variables that can simultaneously be (i) correlates of the outcome within treatment level
and (ii) predictors of treatment R = 1. When (a) or (b) holds, either (i) or (ii) is violated. In
such case, the effect of R = 1 on Y is unconfounded and consequently naive conventional,
that is, unadjusted, estimators of the association of Y with R = 1 conditional on Z = z are
consistent estimators of the causal estimand of interest. In fact, when (b) holds but (a) is
false, the naive estimator will be consistent but inefficient because it fails to exploit the
information about E(Y|Z = z) in the auxiliary variables U. Thus, even in such setting it is
desirable to develop alternative, more efficient, estimation procedures. The Augmented
Inverse Probability Weighted (AIPW) kernel estimators developed in this paper address this
issue.

When the outcomes are missing at random, Robins, Rotnitzky, and Zhao (1995) and
Rotnitzky and Robins (1995) proposed an inverse probability weighted (IPW) estimating
equation for parametric regression, that is, when θ(·) is parametrically modeled as θ(·; ν)
indexed by a finite dimensional parameter vector ν, where ν ∈ Rk. Robins and Rotnitzky
(1995) showed that one can improve the efficiency of the IPW estimator by adding to the
IPW estimating function a parametric augmentation term. We extend their idea and propose
a class of AIPW kernel estimating equations for estimating the nonparametric function θ(·).
We weight the units with complete data by either the inverse of the true selection probability
πi0 = Pr(Ri = 1|Zi, Ui) (if known, for instance, as in two-stage sampling designs) or the
inverse of an estimator of it, and add an adequately chosen augmentation term. We show
that, just as for estimation of a parametric model for θ(·), inclusion of the augmentation term
can lead to efficiency improvement for estimation of the nonparametric regression function
θ(·). Unlike parametric regression, the augmentation term depends on a kernel function.

Specifically, let Kh(s) = h−1K(s/h), where K(·) is a mean-zero density function. Without loss
of generality, we here focus on local linear kernel estimators. For any scalar x, define G(x) =
(1, x)T and α = (α0, α1)T. For any target point z, the local linear kernel estimator
approximates θ(Zi) in the neighborhood of z by a linear function G(Zi − z)T α. Let μ(·) =
g−1(·). Suppose we postulate a working variance model var(Yi|Zi) = V[μ{ θ(Zi)}; ζ], where
ζ ∈ Rr is an unknown finite dimensional parameter and V(·, ·) is a known working variance
function. To estimate πi0 we postulate a parametric model

(3)
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where π(Z, U; τ) is a known smooth function of an unknown finite dimensional parameter

vector τ ∈ Rk. For example, we can assume a logistic model ,

where . We compute τ̂, the maximum likelihood estimator of τ under model
(3) and then we estimate πi0 with π̂i = π (Zi, Ui; τ̂). Then we define the augmented inverse
probability weighted (AIPW) kernel estimating equations as

(4)

where

(5)

with  is the first derivative of μ(·) evaluated at G(Zi − z)T α, δ(Zi, Ui) is any arbitrary,
user-specified, possibly data-dependent, function of Zi and Ui, and Vi = V[μ{G(Zi − z)Tα};
ζ]. As ζ is unknown in practice, we estimate it using the inverse probability weighted

moment equations , where

, and α̂j(ζ) = {α̂0,j(ζ), α̂1,j(ζ)}T solve (4) with z = Zj, j = 1, …, n.
Denote the resulting estimator by ζ̂. The AIPW estimator of θ(z) is θ̂AIPW (z) = α̂0,AIPW(ζ̂)
where α̂AIPW = {α̂0,AIPW(ζ̂), α̂1,AIPW(ζ̂)} solves (4) with Vi replaced by V[μ{G(Zi − z)T

α}; ζ̂].

In the AIPW kernel estimating equations (4), the term UIPW,i(α) is zero for subjects with
missing outcomes and for those with observed outcomes it is simply equal to their usual
contribution to the local kernel regression estimating equations weighted by the inverse of
their probability of observing the outcome given their auxiliaries and covariates. The term
Ai(α), which is often referred to as an augmentation term, differs from that used in
parametric regression [equations (38) and (39), Robins, Rotnitzky, and Zhao 1994] in that it
additionally includes the kernel function Kh(·), and in that it approximates μ{θ(Zi)} =
g−1{θ(Zi)} by the local polynomial μ{G(Zi − z)T α}.

Two key properties, formally proved in Section 4, make the AIPW kernel estimating
equation methodology appealing, namely: (1) exploitation of the information in the auxiliary
variables of subjects with missing outcomes and (2) double robustness.

Informally, property (1) is seen because both the subjects with complete data and those with
missing outcomes in a local neighborhood of Z = z have a nonnegligible contribution to the
AIPW kernel estimating equations. Consider the alternative IPW kernel estimator θ̂IPW(z),
which is obtained by simply solving the IPW kernel estimating equations Σi UIPW,i(α) = 0,
that is, ignoring the augmentation term in the estimating equations (4). Although θ̂IPW(z)
depends on the auxiliary variables U of the units with missing outcomes through the
estimators τ̂ that define the π̂i’s, this information is asymptotically negligible. Specifically,
in Theorem 2, we show that when the support of Z is compact, under regularity conditions,
the asymptotic distribution of θ̂IPW(z) as h → 0, n → ∞ and nh → ∞ is the same
regardless of whether one uses the true πi0 (and hence do not use auxiliary data of
incomplete units) or the fitted value π̂i computed under a correctly specified parametric
model (3). This is different from inference under a parametric regression model for E(Y|Z)
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where, as noted by Robins, Rotnitzky, and Zhao (1994, 1995), estimation of the missingness
probabilities helps improve the efficiency in estimation of regression coefficients. The
reason is that the convergence of the ML estimator of πi0 under a parametric model is at the

-rate while nonparametric estimation of θ(z) is at a slower rate. To see this note that only
the O(nh) units that have values of Z in a neighborhood of z of width O(h) contribute to the
IPW kernel estimating equations for E(Y|Z = z), so only the auxiliary variables of these
units are relevant. However, as n → ∞, the data of these units could not enter into the IPW
kernel estimating equations via the estimation of πi0 through the estimation of the finite
dimensional parameter τ. This is so because for computing τ̂ parametrically all n units are
used and the contribution of the O(nh) relevant units is asymptotically negligible. The above
discussions suggest that compared to the IPW kernel estimator, the AIPW kernel estimator
of θ(z) can better explore the information in the auxiliary variables of subjects with missing
outcomes.

To construct AIPW estimators with property (2), the double-robustness, we specify a
parametric model

(6)

where η is an unknown finite dimensional parameter vector, and we estimate η using the
method of moments estimator η̂ based on data from completely observed units. Under the
MAR assumption (2), η̂ is -consistent for η, provided model (6) is correctly specified
(Little and Rubin 2002). We then compute θ̂AIPW(z) using δ(Zi, Ui) = δ(Zi, Ui; η̂). In
Theorem 3 in Section 4, we show that such estimator θ̂AIPW(z) is doubly robust, that is, it is
consistent when either model (3) for πi0 is correct or model (6) for E(Yi|Zi, Ui) is correct,
but not necessarily both. The practical consequence of double-robustness is that it gives data
analysts two opportunities of carrying out valid inference about θ(z), one for each of the
possibly correctly specified models (6) or (3). In contrast, as shown in Theorem 1 in Section
4, consistency of the IPW kernel estimator θ̂IPW(z) requires that the selection probability
model (3) for πi0 must be correctly specified. One may question the possibility that the fully
parametric model (6) for E(Yi|Zi, Ui) is correct when in fact the model of scientific interest
for E(Yi|Zi) is left fully nonparametric precisely because of the lack of knowledge about the
dependence of the mean of Y on Z. This valid concern is dissipated when it is understood
that model (6) is only a working model that simply serves to enhance the chances of getting
nearly correct (and indeed, nearly efficient) inference. Aside from this, it should also be
noted that it is possible that data analysts may have refined knowledge of the conditional
dependence of Y on Z within level of U, but not marginally over U.

In addition, in Section 4 we show that the preceding double-robust estimator θ̂AIPW(z) has
an additional desirable property. Specifically, if model (6) is correctly specified then the
double-robust estimator θ̂AIPW(z) has the smallest asymptotic variance among all estimators
solving AIPW kernel estimating equations with πi0 either known or estimated from a
correctly specified parametric model (3). That is, the asymptotic variance of the resulting
double-robust estimator θ̂AIPW(z) that uses δ(Zi, Ui) = δ(Zi, Ui; η̂) with η̂ a -consistent
estimator of η under a correct model (6), is less than or equal to that of an AIPW kernel
estimator using any other arbitrary function δ(Zi, Ui) when the selection probability model
(3) is correct.

Remark 1—Our estimators θ̂AIPW(z) use the IPW method of moments estimator of the
variance parameter ζ. Although one could construct an AIPW method of moments estimator
of ζ, this is unnecessary because improving the efficiency in estimation of the parameters ζ
does not help improve the efficiency in estimation of the nonparametric function θ(z). This
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is in accordance to estimation of parametric regression models for E(Y|Z), where it is well
known that the efficiency of two-stage weighted least squares is unaffected by the choice of

-consistent estimator of var(Y|Z) at the first stage. In fact, Theorem 3 in Section 4 asserts
that the efficiency with which θ(z) is estimated is unaltered even if the working model for
var(Y|Z) is incorrectly specified. This is in contrast to parametric regression models where
incorrect modeling of var(Y|Z) results in inefficient estimators of the regression parameters.
The reason is that nonparametric regression is local and variability in a diminishing neighbor
of z is constant asymptotically.

4. ASYMPTOTIC PROPERTIES
4.1 Asymptotic Properties of the Proposed Estimators

In this section, we investigate the asymptotic properties of the AIPW local linear kernel
estimator introduced in the preceding section and compare it with the naive and IPW
nonparametric estimators. In our developments we make the following assumptions: (I) n →
∞, h → 0, and nh → ∞; (II) z is in the interior of the support of Z; and (III) the regularity
conditions (i) and (ii) stated at the beginning of the web Appendix hold.

Denote by θ̃naive(z), θ̃IPW(z), θ̃AIPW(z) the asymptotic limits of θ̂naive(z), θ̂IPW(z), θ̂AIPW(z).
The AIPW kernel estimator θ̂AIPW(z) solves (4). The IPW kernel estimator θ̂IPW(z) solves

, where UIPW,i(α) is defined in (5). The naive estimator θ̂naive(z) is the
standard kernel estimator using only the complete data and solves a kernel estimating

equation similar to the IPW kernel estimating equation  except that π̂i is set
to be 1 for all units. Standard arguments on the convergence of solutions to kernel
estimating equations imply that under assumptions (I)–(III) there should exist a sequence of
solutions (α̂0,naive, α̂1,naive) of the naive kernel estimating equations at z such that as the
sample size n → ∞, the sequence converges in probability to a vector (α̃0,naive, α̃1,naive)
with the first component α̃0,naive, through-out denoted as θ̃naive(z), satisfying

(7)

where ζ̃ is the probability limit of ζ̂.

Likewise, the IPW kernel estimating equations should have a sequence of solutions (α̂0,IPW,
α̂1,IPW) that converge in probability to a vector (α̃0,IPW, α̃1,IPW) with the first component
α̃0,IPW, throughout denoted as θ̃IPW(z), satisfying

(8)

where π̃ = π(Z, U; τ̃), and τ̃ is the probability limit of τ̂.

Similarly, the AIPW kernel estimating Equations (4) should have a sequence of solutions
(α̂0,AIPW, α̂1,AIPW) that converge in probability to a vector (α̃0,AIPW, α̃1,AIPW) with the first
component α̃0,AIPW, throughout denoted as θ̃AIPW(z), satisfying

(9)
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where δ̃(Z, U) = δ(Z, U; η̃), and η̃ is the probability limit of η̂.

Throughout we assume that such sequences exist. Theorem 1 exploits the form of (7), (8),
and (9) to derive concise expressions for the probability limits of θ̂naive(z), θ̂IPW(z), and
θ̂AIPW(z) under MAR.

Theorem 1—Under the MAR assumption (2), the following results hold:

I. The probability limit θ̃naive(z) of the naive kernel estimator defined in (7) satisfies
θ̃naive(z) = μ−1[μ{ θ(z)} + cov(R, Y|Z = z)/E(R|Z = z)];

II. The probability limit θ̃IPW(z) of the IPW kernel estimator defined in (8) satisfies
θ̃IPW(z) = θ(z) when π̂i is either computed under a correctly specified model (3) or
is replaced by the true πi0 in the IPW kernel estimating function (5);

III. The probability limit θ̃AIPW(z) of the AIPW kernel estimator defined in (9) satisfies
θ̃AIPW(z) = θ(z) when the AIPW kernel estimating equations (4) use either (i) the
true πi0 or π̂i computed under a correctly specified model (3); or (ii) δ(Z, U) =
E(Y|Z, U), or δ(Z, U) = δ(Z, U; η̂) with η̂ calculated under a correctly specified
model (6).

The proof of Theorem 1 is given in web Appendix A.1. It follows from Theorem 1 that
θ̂naive(z) is generally inconsistent for θ(z) except when R and Y are conditionally
uncorrelated given Z. In particular, this implies that when missingness depends on variables
U other than Z which further predict Y, θ̂naive(z) is inconsistent. However, if either of the
following two conditions hold, then cov(R, Y|Z = z) = 0 and therefore θ̂naive(z) is consistent
for θ(z). Specifically:

Condition a. The missing indicator R depends on the covariate Z but given Z it is
conditionally independent of auxiliary variables U.

Condition b. The conditional mean of Y given Z and U depends only on Z.

Theorem 1, part (III) shows that the AIPW kernel estimator θ̂AIPW(z) has the remarkable
double-robustness property alluded to in the preceding section: its consistency requires the
correct specification of either a model for πi0 or a model for E(Y|Z, U), but not necessarily
both.

In what follows, we study the asymptotic distributions of the proposed estimators. Theorem
2 and Theorem 3 provide the asymptotic bias and variance of θ̂IPW(z) and θ̂AIPW(z),
respectively, under MAR. Corollaries following these theorems show that in the class of
AIPW kernel estimating equations that use either the true πi0 or a consistent estimate of πi0,
the optimal AIPW kernel estimating equation that yields a solution with the smallest
asymptotic variance is obtained by setting δ(Zi, Ui) = E(Yi|Zi, Ui) or δ(Zi, Ui) = E(Yi|Zi, Ui;
η̂) with η̂ a -consistent estimator of η computed under a correctly specified model (6). In
addition, the solution of the optimal AIPW kernel estimating equations is at least as efficient
as that of the IPW kernel estimating equations. A sketch of the proofs of Theorems 2 and 3
is given in web Appendix A.2 and web Appendix A.3, respectively. In what follows, fZ (·)
stands for the density function of Z, bK (z) ≡ ∫K2(s) ds/[μ(1){θ(z)}]2fZ (z), c2(K) ≡ ∫s2K(s)
ds, and π0(Z, U) denotes the true probability of R = 1 given (Z, U).

Theorem 2—Suppose π̂i is computed under a correctly specified model (3) or is replaced
by its true value. Suppose Pr(R = 1|Z, U) > c > 0 for some constant c with probability 1 in a
neighborhood of Z = z. Then, under the MAR assumption (2) and assumptions (I)–(III)
above, we have that
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(10)

where

Theorem 2 shows that the asymptotic bias of θ̂IPW(z) is of order O(h2), and the variance of
θ̂IPW(z) is of order O(1/nh) and does not depend on the working variance V(·) in the IPW
kernel estimating equations. This result indicates that, in contrast to parametric regression
estimation, misspecification of the working variance V(·) of Y|Z does not affect the
asymptotic variance of θ̂IPW(z). Theorem 2 also shows that to this order the bias and
variance do not depend on whether the selection probabilities are known or estimated
parametrically.

Theorem 3—Suppose that in the AIPW kernel estimating equations (4), (a) π̂i is computed

under a model (3) or it is replaced by fixed probabilities  and (b) δ(Z, U) is a
fixed and known function or it is replaced by the function δ(Z, U; η̂) with η̂, a method of
moments estimator of η under model (6) based on units with observed outcomes. Suppose
Pr(R = 1|Z, U) > c > 0 for some constant c with probability 1 in a neighborhood of Z = z,
and the MAR assumption (2) and assumptions (I)–(III) above hold. Consider additional
conditions:

i. model (3) is correct or, π*(Z, U) = π0(Z, U) when  is used instead of π̂i in (4), or

ii. model (6) is correct when δ(Z, U; η̂) replaces δ(Z, U) in (4) or δ(Z, U) is equal to
the true conditional expectation E(Y|Z, U) otherwise.

If either (i) or (ii) (but not necessarily both) hold, then

(11)

where

(12)

π̃ (Z, U) denotes π*(Z, U) if  is used, or it denotes the probability limit of π̂(Z, U) if π̂i is
used, and δ̃(Z, U) denotes δ(Z, U) if δ(Z, U) is used, or the probability limit of δ(Z, U; η̂) if
δ(Z, U; η̂) is used.

Theorem 3 shows that the leading term of the asymptotic bias of θ̂AIPW(z) is the same as
that of θ̂IPW(z) when the model for the selection probability is correctly specified.
Furthermore, it remains the same even when the model for the selection probability is
wrong, as long as the model for the conditional mean of the outcome given covariates and
auxiliaries is correctly specified. Display (12) provides the general form of the asymptotic
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variance of θ̂AIPW(z) when either model (3) or model (6) is correctly specified. If model (6)
is correctly specified, then (12) simplifies to bK (z)E[π0(Z, U)/π̃2(Z, U) var(Y|Z, U) + [E(Y|
Z, U) − μ{ θ(Z)}]2|Z = z].

On the other hand, if model (3) for the selection probability is correctly specified, the
following corollary explores the properties of WAIPW(z) and it establishes that among the
AIPW kernel estimating equations, the one that uses δ(Zi, Ui) = δ(Zi, Ui; η̂) with η̂
estimated under a correctly specified model (6) has a solution with the smallest asymptotic
variance.

Corollary 1—Under the assumptions of Theorem 3, if the selection probability model (3) is
correctly specified, then

(13)

WAIPW(z) is minimized at δ̃(Z, U) = E(Y|Z, U). Consequently, when model (3) is correct,
the estimator θ̂AIPW(z) that uses δ(Z, U) = δ(Z, U; η̂) from a correctly specified model for
E(Y|Z, U), throughout denoted as θ̂opt,AIPW (z), has the smallest asymptotic variance among
all AIPW estimators θ̂AIPW(z). The asymptotic variance of θ̂opt,AIPW(z) is equal to

Note that it follows from (13) that WAIPW(z) agrees with WIPW(z) when δ̃(Z, U) = μ{θ(Z)}.
This implies that, under correct specification of the selection probability model, the AIPW
estimators that use δ(Z, U) equal to the fitted value δ(Z; ω̂) from a parametric model δ(Z; ω)
for E(Y|Z), rather than the fitted value from a parametric model for E(Y|Z, U), are
asymptotically equivalent to IPW estimators.

A direct comparison of the asymptotic variance of θ̂opt,AIPW(z) to that of θ̂IPW(z) in
Theorem 2 immediately gives that the optimal AIPW kernel estimator is always at least as
efficient as the IPW kernel estimator when indeed model (6) is correctly specified, as the
next corollary establishes.

Corollary 2—Suppose that θ̂opt,AIPW(z) and θ̂IPW(z) solve, respectively, the optimal AIPW
and IPW kernel estimating equations that use the true πi0 or π̂i estimated under a correctly
specified model (3). Then θ̂opt,AIPW(z) is at least as efficient as θ̂IPW(z) asymptotically, and
the reduction in the asymptotic variance conferred by θ̂opt,AIPW(z) is

When Pr[π0(Z, U) < 1] > 0, the difference WIPW(z) −Wopt,AIPW(z) is 0 only when E(Y|Z =
z, U) − E(Y|Z = z) = 0, that is, when U does not predict Y in addition to Z. When U predicts
Y above and beyond Z, as is expected for covariates U usually recorded in epidemiological
studies, WIPW(z) − Wopt,AIPW(z) is strictly positive. Thus θ̂opt,AIPW(z) is usually more
efficient than θ̂IPW(z).
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4.2 An Improved Estimator
A warning is appropriate at this stage. Our results show that using the optimal augmentation
term we improve upon the efficiency of the IPW estimator. However, it is not guaranteed
that any augmentation term in the AIPW kernel estimating equation leads to efficiency gains
over the IPW method. In practice, one often does not know whether model (6) is correct, and
hence is uncertain that θ̂AIPW(z) is more efficient than θ̂IPW(z). Nevertheless we can follow
a strategy proposed by Tan (2006) for estimation of the marginal mean of an outcome and
remedy this problem. Specifically, the following simple modification results in an AIPW
kernel estimating function that yields double-robust estimators guaranteed to be at least as
efficient as the IPW estimator θ̂IPW(z) and as the optimal AIPW estimator θ̂opt,AIPW(z)
when model (3) holds for the selection probability. Let

 and

. Let α̂mod = {α̂mod,0, α̂mod,1} solve

(14)

where  is evaluated at ζ̂. The proposed modified estimator is θ̂mod(z) = α̂mod,0. Note that
(14) is just like the AIPW equation (4) except that the contribution to the augmentation term
of each subject is multiplied by the factor κ̂(α). Remarkably, this modification ensures that
the new estimator θ̂mod(z) is at least as efficient as the IPW estimator θ̂IPW(z) and as the
optimal AIPW estimator θ̂opt,AIPW(z) when model (3) holds and at the same time is double-
robust. To see this, first note that multiplication by the factor κ̂(α) in the augmentation term
implies that the solution θ̂mod(z) to the modified AIPW estimating equations converges in
probability to the solution of a population equation just like (9) except that the second term
in the left-hand side of that equation is multiplied by

When model (3) is correct, then π̃(Z, U) = π0(Z, U) and the second term of the left-hand
side of (9) is zero, regardless of whether it is evaluated at the true θ(z) or not and regardless
whether or not it is multiplied by the constant κ while the first term is unaffected by the
modification and remains equal to zero when evaluated at θ(z). Thus θ̂mod(z) is consistent
for θ(z) when model (3) is correctly specified. On the other hand, when model (6) is correct,
then δ̃(Z, U) = E(Y|Z, U) and a straightforward calculation shows that κ = 1 regardless of
whether or not π̃(Z, U) is equal to Pr(R = 1|Z, U), thus implying that θ̂mod(z) is consistent
for θ(z) since, as we argued earlier, θ(z) solves Equation (9). This shows that θ̂mod(z) is
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double-robust. To show that θ̂mod(z) is at least as efficient as θ̂opt,AIPW(z) and as θ̂IPW(z)
when model (3) is correctly specified, we can argue as in the proof of Theorem 3 and show
that θ̂mod(z) has the same limiting distribution as θ̂AIPW(z), except that the asymptotic
variance WAIPW(z) is replaced by

A straightforward calculation yields that the denominator of κ is equal to

Thus, Wmod(z) is equal to bK (z) times the residual variance from the population regression
of Y* = R[Y − μ{θ(Z)}]/π0(Z, U) on X* = {R/π0(Z, U) − 1}[δ̃(Z, U) − μ{θ(Z)}]. Since the
residual variance E[(Y* − κX*)2] minimizes the mean squared error E[(Y* − aX*)2] over all
a ∈ R, then we conclude that Wmod(z) = bK (z)E[(Y* − κX*)2] is less than or equal to
WIPW(z) = bK (z)E[Y*2] and to Wopt,AIPW(z) = bK (z)E[(Y* − X*)2], where δ̃(Z, U) = E(Y|
Z, U). Consequently, θ̂mod(z) is at least as efficient as θ̂IPW(z) and as θ̂opt,AIPW(z) when π̂i
is computed under a correctly specified model for the selection probabilities.

4.3 Bandwidth Selection
Choosing an appropriate bandwidth parameter h is important in nonparametric regression.
From Theorems 2 and 3, the asymptotic optimal bandwidths hIPW,opt and hAIPW,opt can be
chosen by minimizing the corresponding asymptotic weighted mean integrated squared
errors, respectively. Specifically, the asymptotically optimal bandwidth for estimating
θ̂IPW(z) is given by hIPW,opt = [{4 ∫WIPW(z) dz}/{c2(K)∫θ″(z) dz}]1/5n−1/5 and the
asymptotically optimal bandwidth for estimating θ̂AIPW(z) is given by hAIPW,opt =
[{4∫WAIPW(z) dz}/{c2(K)∫θ″(z)dz}]1/5n−1/5.

To choose h in practice, we can easily generalize the empirical bias bandwidth selection
(EBBS) method of Ruppert (1997) to derive a data-driven bandwidth selection approach for
non-parametric regression with missing data. Specifically, one calculates the empirical mean

squared errors EMSE{z; h(z)} of θ̂(z), where , at a series
of z and h(z) and chooses h(z) to minimize EMSE{z; h(z)}. Note h(z) is choosen to vary

with z, and thus is local. Here  is the empirical bias, and  is the Sandwich
variance estimator. For example, the Sandwich variance estimator of the IPW kernel
estimator θ̂IPW(z) can be calculated as the (1, 1) element of the matrix
(AIPW)−1BIPW(AIPW)−1, where

and
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The Sandwich variance estimator of the naive kernel estimator θ̂naive(z), and of the AIPW
kernel estimator θ̂AIPW(z) can be constructed in a similar way.

5. SIMULATIONS
In this section, we conduct simulation studies to evaluate the finite-sample performance of
the AIPW kernel estimator θ̂AIPW(z), and compare it with the naive kernel estimator
θ̂naive(z) and the IPW kernel estimator θ̂IPW(z). Our simulation mimics the observed data
generating process of a two-stage study design, in which U and Z are measured at the first
stage on all study subjects, but Y is measured at the second stage only on a subset of the
study participants. The second-stage validation subset is selected with selection probabilities
that may depend on the first stage variables. We consider two situations, where the outcome
Y is either normal or binary, respectively. We generate a random sample of size n of (Z, U,
Y, R) for each replication. Z is generated from a uniform(0, 1) distribution, U is generated
from a uniform(0, 6) independently of Z, and the mean of the outcome Y has the general
form

(15)

In case one, g(x) = x and the outcome Y is generated from a normal distribution with mean
E(Y|Z, U) and variance σ2 = 3, where β1 = 1.3, m(x) = 2 · F8,8(x) and Fp,q(x) = Γ(p + q)
{Γ(p)Γ(q)}−1xp−1(1 − x)q−1, a unimodal function. In case two, g(x) = logit(x) where logit(x)
= log{x/(1 + x)} and the outcome Y is generated from a Bernoulli distribution with mean
E(Y|Z, U), where β1 = 0.32, and m(x) = 1.2 · Φ(8 × x − 4) + 0.4. In both situations, We
generate R, the selection indicator, according to the probability model

(16)

where π(Zi, Ui) = Pr(Ri = 1|Zi, Ui) is the probability that subject i is selected to the second
stage, a1 = 0.5 and a2 = 6. τ0 and τ1 are selected so that the Monte Carlo median missing
percentage of the outcome Y is around 50% for the normal case and about 30% for the
Bernoulli case. Since the selection probability depends on U only, the missing is at random.

Our primary interest lies in estimating the marginal mean curve of the outcome Y given the
scalar covariate Z, that is, μ{θ(z)}, which is E(Y|Z) = E[E(Y|Z, U)|Z]. We generated 500
datasets with sample size n = 500 or 300. For each simulated dataset, we computed the
naive, IPW and AIPW estimates of θ(z), in the first case under the model μi = θ(Zi) and in
the second case under model logit(μi) = θ(Zi). We use the generalized EBBS method as
described in Section 4.3 to choose the optimal local bandwidth.

The empirical average of the estimated nonparametric curves θ̂(·) over the 500 replications,
using the naive, IPW and AIPW estimators are displayed in Figure 1. The plot in the left
panel shows the estimators of θ(z) in case 1 (identity link) and the plot in the right panel
shows the estimators in case 2 (logit link). The same trend was observed for both plots. The
IPW and AIPW kernel estimates are close to the true curve θ(·), while the naive approach
yields a biased estimate. Figure 2 illustrates the empirical point-wise variances of θ̂IPW(·)
and θ̂AIPW(·) when n = 500, the top panel for the identity link case and the bottom panel for
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the logit link case. The figure shows that the AIPW estimator has a smaller point-wise
variance than the IPW estimator.

Table 1 summarizes the performance of each nonparametric estimate using the integrated
relative bias, the integrated empirical standard error (SE), the integrated estimated SE, and
the integrated empirical mean integrated squared error (MISE), over the support of Z. As
predicted by theory, the naive kernel estimate has a much larger relative bias than the IPW
and AIPW kernel estimates. Furthermore, the corresponding AIPW kernel estimate has a
smaller variance and a smaller MISE than the IPW kernel estimate. For example in the
identity link case, the AIPW kernel estimate has about 52% gain in MISE efficiency
compared to the IPW kernel estimate when n = 500. In the logit link case, the MISE
efficiency gain is about 7%. The increased efficiency gain of AIPW over IPW in case 1
(identity link) compared to case 2 (logit link) can be explained by the fact that in case 1 the
auxiliary variable U is highly correlated with the outcome Y while in case 2, the correlation
between U and Y is much lower.

To check the double-robustness property of the AIPW estimator, we computed θ̂AIPW(·)
using (i) estimates of πi0’s under an incorrectly specified model with Ui replaced by

 in the right-hand side of (16) but with δi0’s computed under a correctly specified
model (15), (ii) δi0’s computed under an incorrectly specified model with Ui replaced by 
in the right-hand side of (15) but with estimates of πi0’s under the correctly specified model
(16), and (iii) both π̂i and δi computed under incorrectly specified models, with Ui replaced
by  in the right-hand side of (16) and (15), respectively. The simulation results in Table 2
and Figure 3 show that the AIPW kernel estimate is still close to the true θ(z) when either
the model of π(Z, U) or the model of E(Y|Z, U) is correctly specified. In contrast, the IPW
estimate with a misspecified model of π(Z, U) is further away from the true θ(z), as well as
the AIPW estimate when both the model of π(Z, U) and the model of E(Y|Z, U) are not
correctly specified.

6. APPLICATION TO ACSUS DATA
We applied the IPW kernel estimating equation and the AIPW kernel estimating equation, as
well as the naive kernel estimating equation, to analyze the ACSUS data described in
Section 1. In this illustrative example, our main interest is to investigate the effect of the
baseline CD4 counts on the risk of hospitalization during the first year since enrollment into
the study. Since the risk of hospitalization depends on various covariates, such as HIV
status, treatments, race, and gender, but we only consider a marginal nonparametric mean
model of the risk of hospital admission on baseline CD4 counts, we restricted our analysis to
a subset of homogeneous subjects for illustrative purpose. Specifically, we limited our
analysis to 219 white patients, who were between 25 and 45 years old at entry. They were
HIV infected or had AIDS and were treated with anti-retroviral drugs but not admitted to
hospital at entry. The CD4 counts ranged from 4 to 1716 among this study cohort, with
median equal to 186, and interquartile-range (70, 315). Health care records were used to
determine hospitalization during the first year after study enrollment. Although lower CD4
counts are expected to be associated with a higher risk of hospitalization, the functional form
of this association is unknown and might be nonlinear. As discussed in Section 1, about 40%
of the patients did not have the first-year hospital admission data available. If missing
outcomes induced selection bias, the patients who have the first-year hospitalization
information may not represent the original study cohort and may lead to biased estimation.

Because the distribution of CD4 counts is highly skewed, we took a log transformation and
define Z = log(baseline CD4 count). The missing data model was fit using a logistic
regression with Z as well as the other covariates in Table 3, which are binary. The
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coefficient estimates and their SEs are shown in Table 3. Having insurance and help with
transportation enhance the chance of remaining in the study, while use of other medical
practitioners, psychological counseling, having help at home and lower CD4 count are
significantly associated with a higher chance of dropping out.

We fit the generalized nonparametric model (1) using logit(μi) = θ(Zi) to investigate the
dependence pattern of the first-year risk of hospitalization on baseline CD4 counts. The
bandwidth was selected using the generalized EBBS method described in Section 4.3. The
estimates of the curve θ(z) using the naive kernel estimating equations, the IPW kernel
estimating equations and the AIPW kernel estimating equations are shown in Figure 4.
Point-wise Wald CIs centered at the naive, IPW, and AIPW kernel estimates and with
standard error estimated using the Sandwich formulae described in Section 4.3, are also
presented. For computing the AIPW estimate, we fit parametric models for δ. Exploration of
the data shows that the regression function with a quadratic term in log CD4 and the other
covariates in Table 3 fits the data well. Residual plot shows no patterns.

Since only very few patients had log CD4 count lower than 3, the kernel estimates are not
stable when log CD4 count is less than 3. We focus our discuss on the estimates of the curve
when log CD4 count is greater than 3. The IPW and AIPW estimates are similar, while the
naive one underestimates the risk of hospitalization for most of the range of CD4 in our
study cohort. Since patients having help at home are more likely to drop out and these
patients are likely to be sicker patients, the patients who have the first-year hospital
admission information available are actually a biased sample of the whole study population.
Therefore, the naive approach using the complete cases directly leads to a biased estimate of
the nonparametric function θ(z) and underestimates the risk of hospitalization. Our analysis
using the IPW and the AIPW kernel estimating equations indicates that the risk of
hospitalization decreases nonlinearly as CD4 count increases with a change point.
Specifically, when CD4 count is relatively low (CD4 count < 90), the risk of being admitted
to hospitals remains fairly stable at about 25%. As the CD4 count exceeds this threshold, the
risk of hospitalization decreases quickly as CD4 count goes up.

7. DISCUSSION
In this paper we proposed local polynomial kernel estimation methods for nonparametric
regression when outcomes are missing at random. We showed that the naive local
polynomial kernel estimator is generally inconsistent except for special cases. We proposed
IPW and AIPW kernel estimating equations to correct for potential selection bias, with the
ultimate goal of maximally exploiting the information in the observed data. Unlike
parametric regression, the augmentation term in the AIPW kernel estimating equations
incorporates a kernel function. We showed that both the IPW and AIPW kernel estimators
are consistent when the selection probabilities are known by design or consistently
estimated. When the model for the selection probabilities is misspecified, the IPW kernel
estimating equation fails to yield a consistent estimator. However, the AIPW kernel
estimator still yields consistent estimators of the regression function if a model for E(Y|Z,
U) is correctly specified. This double robustness property of the AIPW approach provides
the investigators two chances to make a valid inference. The AIPW kernel estimating
equation also has the potential to enhance the efficiency with which we estimate the
nonparametric regression function. We have shown that within the AIPW estimating
equation family, the optimal estimator is obtained by using the true selection probability or
its consistent estimates and the augmentation term estimated from a correctly specified
model for E(Y|Z, U). It is of future research interest to study whether this estimator is
optimal in a bigger class of estimators. Another interesting topic of future investigation is
the possibility of enhancing the efficiency of the IPW estimator via estimation of the

Wang et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2012 November 07.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



missingness probabilities at nonparametric rates, for example, under generalized additive
models rather than under parametric models.

The IPW and AIPW kernel estimating equations provide consistent estimators when the
selection probability model π is correctly specified and is bounded away from 0. In finite
samples, when some π’s are close to 0, the IPW and AIPW estimators might not perform
well. This is not surprising, as very large weights associated with these very small π’s
dramatically inflate a few observations especially when the sample size is moderate, and
cause results unstable. Special caution is hence needed when applying the proposed methods
to studies when the selection probability is very small for some sample units.

We have focused in this paper on nonparametric regression on a single scalar covariate
when the outcome is missing at random. The proposed method can be extended to
semiparametric regression, where some covariates are modeled parametrically and some
covariates are modeled nonparametrically. The proposed methods can also be easily
generalized to higher order local polynomial kernel regression and nonparametric regression
with multiple covariates, for example, using generalized additive models. Extension of our
work to these settings will be reported in a separate paper.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Simulation results of the estimated nonparametric functions using naive, IPW, and AIPW
kernel methods based on 500 replications with sample size n = 500. The left panel is for case
1 (identity link), while the right panel is for case 2 (logit link): —— true θ(z), – · – · the
naive kernel estimator, · · · · the IPW kernel estimator, and – – – the AIPW kernel estimator.

Wang et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2012 November 07.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2.
Empirical point-wise variances of the IPW and AIPW estimates of θ(·), based on 500
replications with sample size n = 500. The top panel is for case 1 (identity link), while the
bottom panel is for case 2 (logit link): —— the IPW kernel estimate, – – – the AIPW kernel
estimate, and · · · · · the kernel estimate when there is no missing data.
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Figure 3.
Simulation results of the IPW and AIPW estimates of θ(·) using an incorrectly specified π
model and/or an incorrectly specified δ = E(Y|Z, U) model, based on 500 replications with
sample size n = 500. The left panel is for case 1 (identity link) and the right panel is for case
2 (logit link): —— the true θ(z), – – – the AIPW kernel estimator when the model for π(Z,
U) is misspecified, – · – · the AIPW kernel estimator when the model for E[Y|Z, U] is
misspecified, - - - the AIPW kernel estimator when both models are misspecified, and · · · ·
the IPW kernel estimator when the model for π(Z, U) is misspecified.
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Figure 4.
The naive, IPW, and AIPW estimates of θ(log CD4 counts) on the log odds of one-year
hospitalization in the ACSUS study. The upper left panel displays three estimates: – – – the
naive kernel estimate, · · · · the IPW kernel estimate, —— the AIPW kernel estimate. Each
vertical ticker along the x-axis stands for one observation. The other three panels display
each estimate separately together with point-wise CIs.
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Table 3

Estimates of the logistic regression coefficients of the probability of being observed by the end of the first year
in the ACSUS data

Covariates Estimate SE p-value

Intercept −2.62 0.85 0.002

Has help at home −0.65 0.36 0.063

Has private health insurance only 0.53 0.45 0.241

Has both private and public health insurance 2.13 0.83 0.010

Has public health insurance only −0.11 0.47 0.819

Use other medical practitioners −0.95 0.49 0.053

Use psychological counseling −0.80 0.35 0.022

Log CD4 count 0.64 0.14 <0.001

Has help with transportation 2.39 0.94 0.011
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