Table 2.
n = 500
|
n = 300
|
|||||||
---|---|---|---|---|---|---|---|---|
Relative bias1 | EMP SE2 | EST SE3 | EMP MISE4 | Relative bias | EMP SE | EST SE | EMP MISE | |
Normal case | ||||||||
AIPW (π wrong) | 0.017 (0.004) | 0.481 (0.016) | 0.475 (0.002) | 0.251 (0.017) | 0.018 (0.005) | 0.635 (0.020) | 0.629 (0.008) | 0.423 (0.028) |
AIPW (E[Y|Z, U] wrong) | 0.023 (0.004) | 0.640 (0.018) | 0.636 (0.007) | 0.442 (0.021) | 0.021 (0.010) | 0.832 (0.034) | 0.825 (0.019) | 0.728 (0.042) |
AIPW (both wrong) | 0.068 (0.003) | 0.641 (0.012) | 0.638 (0.004) | 0.835 (0.019) | 0.066 (0.004) | 0.841 (0.022) | 0.837 (0.011) | 1.125 (0.065) |
IPW (π wrong) | 0.105 (0.004) | 0.471 (0.011) | 0.462 (0.003) | 0.522 (0.027) | 0.108 (0.006) | 0.632 (0.021) | 0.629 (0.003) | 0.723 (0.044) |
Logistic case | ||||||||
AIPW (π wrong) | 0.052 (0.021) | 0.254 (0.007) | 0.251 (0.001) | 0.066 (0.003) | 0.102 (0.026) | 0.295 (0.012) | 0.289 (0.001) | 0.092 (0.008) |
AIPW (E[Y|Z, U] wrong) | 0.056 (0.022) | 0.236 (0.006) | 0.233 (0.001) | 0.057 (0.003) | 0.095 (0.027) | 0.276 (0.007) | 0.271 (0.001) | 0.080 (0.005) |
AIPW (both wrong) | 0.975 (0.058) | 0.249 (0.008) | 0.250 (0.001) | 0.111 (0.005) | 0.978 (0.064) | 0.286 (0.010) | 0.281 (0.001) | 0.136 (0.008) |
IPW (π wrong) | 0.662 (0.047) | 0.229 (0.007) | 0.223 (0.001) | 0.075 (0.004) | 0.667 (0.051) | 0.267 (0.011) | 0.263 (0.001) | 0.099 (0.008) |
Relative bias is defined as .
EMP SE is the empirical SE, defined as , where is the sampling SE of the replicated θ̂(z).
EST SE is the estimated SE, defined as , where is the sampling average of the replicated sandwich estimates .
EMP MISE is the empirical MISE, defined as ∫{θ̂(z) − θ(z)}2 dF(z).