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Albuminuria and reduced glomerular filtration rate are manifestations of chronic kidney disease (CKD) that
predict end-stage renal disease, acute kidney injury, cardiovascular disease and death. We hypothesized
that SNPs identified in association with the estimated glomerular filtration rate (eGFR) would also be asso-
ciated with albuminuria. Within the CKDGen Consortium cohort (n 5 31 580, European ancestry), we tested
16 eGFR-associated SNPs for association with the urinary albumin-to-creatinine ratio (UACR) and albumin-
uria [UACR >25 mg/g (women); 17 mg/g (men)]. In parallel, within the CARe Renal Consortium (n 5 5569,
African ancestry), we tested seven eGFR-associated SNPs for association with the UACR. We used a
Bonferroni-corrected P-value of 0.003 (0.05/16) in CKDGen and 0.007 (0.05/7) in CARe. We also assessed
whether the 16 eGFR SNPs were associated with the UACR in aggregate using a beta-weighted genotype
score. In the CKDGen Consortium, the minor A allele of rs17319721 in the SHROOM3 gene, known to be asso-
ciated with a lower eGFR, was associated with lower ln(UACR) levels (beta 5 20.034, P-value 5 0.0002). No
additional eGFR-associated SNPs met the Bonferroni-corrected P-value threshold of 0.003 for either UACR
or albuminuria. In the CARe Renal Consortium, there were no associations between SNPs and UACR with
a P < 0.007. Although we found the genotype score to be associated with albuminuria (P 5 0.0006), this
result was driven almost entirely by the known SHROOM3 variant, rs17319721. Removal of rs17319721
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resulted in a P-value 0.03, indicating a weak residual aggregate signal. No alleles, previously demonstrated to
be associated with a lower eGFR, were associated with the UACR or albuminuria, suggesting that there may
be distinct genetic components for these traits.

INTRODUCTION

Chronic kidney disease (CKD) affects �26 million adults in
the USA (1). It is an illness of major public health importance
as affected individuals experience a substantially increased
risk of end-stage renal disease and need for dialysis, as well
as a dramatic excess in cardiovascular morbidity and mortality
(2). CKD is defined as persistent kidney damage marked either
by the presence of albuminuria or a reduced estimated glom-
erular filtration rate (eGFR) (3). For any given level of
eGFR, albuminuria is associated with increased CVD and all-
cause mortality outcomes (4). Furthermore, the prevalence of
albuminuria increases dramatically as the GFR falls, from
,10% in those with a preserved GFR to almost 60% in
those with advanced CKD (1). Furthermore, albuminuria is
the strongest known risk factor for the progression of CKD,
such that the risk of end-stage kidney disease is 10 times
higher in people with a preserved GFR and albuminuria com-
pared with those with the same GFR but no albuminuria (5).

We have previously shown that a reduced eGFR and albu-
minuria are associated with differential risk factor profiles
(6). Further, only one-quarter of individuals with CKD have
albuminuria (6). This is corroborated by data from the Nation-
al Health and Nutrition Examination Surveys (NHANES),
which showed that increased trends in the prevalence of albu-
minuria, but not CKD defined as an eGFR ,60 ml/min/
1.73 m2, can be explained by hypertension and diabetes (1).
Taken together, these data suggest potential differential etiolo-
gies for albuminuria and a reduced GFR.

Genome-wide association studies (GWAS) have identified
16 loci for the eGFR in European populations from the
CKDGen Consortium (7,8). We have additionally identified
seven SNPs for the eGFR in African-American populations
from the CARe Renal Consortium (9,10). Notably, only one
locus at SHROOM3 has been identified previously as being
associated with both the urinary albumin-to-creatinine ratio
(UACR) and the eGFR, leading us to speculate that the
genetic architecture of the eGFR and the UACR as identi-
fied through GWAS in population-based cohorts may be
different (9). Indeed, other studies have shown that there
is a weak genetic concordance between both traits (11).
To investigate this more comprehensively, we performed a
targeted SNP analysis using 16 eGFR-associated SNPs pre-
viously identified in Europeans (7) and 7 eGFR-associated
SNPs previously identified in African-Americans (10) to de-
termine whether these SNPs were also associated with the
UACR. Given the known inverse associations between the
eGFR and the UACR, we hypothesized that alleles asso-
ciated with a lower eGFR would also be associated with
an increased UACR. We tested this in the existing
CKDGen albuminuria and CARe Renal Consortium data
sets (9,10).

RESULTS

All study participants were of European (CKDGen Consor-
tium) or African-American (CARe Renal Consortium)
descent (9,10). Study sample characteristics can be found in
Supplementary Material, Table S1 and S2.

UACR results

Association results for the 16 eGFR-associated SNPs with the
UACR in the CKDGen Consortium can be found in Table 1.
As previously reported, there was a significant association
with rs17319721 in SHROOM3 on chromosome 4. The
UACR levels were lower per copy of the A allele at
rs17319721 (P-value ¼ 0.0002), whereas the eGFR levels
were also lower in our previously published analysis. No add-
itional SNPs met the Bonferroni P-value threshold of 0.003
(0.05/16).

Albuminuria results

Association results for albuminuria from the CKDGen Consor-
tium can be found in Table 2. Similar to what we observed for
the UACR, only one SNP reached significance. The A allele at
rs17319721 in SHROOM3 was associated with a lower odds
ratio for albuminuria (P-value ¼ 1.87E-06; OR ¼ 0.88). No
additional SNPs met the Bonferroni P-value threshold of
0.003.

African-American ancestry UACR results

Association results for the UACR in the CARe Renal Consor-
tium can be found in Table 3. Of the seven variants tested,
none was associated at P , 0.007.

Concordance between UACR and eGFR

In general, higher eGFR levels are associated with lower
UACR levels (for example, Framingham Heart Study
correlation ¼ 20.14; P-value ,0.001), leading us to hypothe-
size that alleles associated with a lower eGFR would be asso-
ciated with a higher UACR, most notably for rs17319721 at
the SHROOM3 locus. However, in the CKDGen Consortium,
of the 16 variants tested, only 5 were in this expected direc-
tion, whereas 11 were in the opposite direction (Fig. 1). We
observed similar patterns of discordance in our African-
American participants from the CARe Renal Consortium. Of
the seven variants tested, only two showed associations in
the hypothesized direction.

3294 Human Molecular Genetics, 2012, Vol. 21, No. 14

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/dds138/-/DC1


Table 1. Association results for the urinary-to-albumin ratio (UACR) in European Americans from the CKDGen Consortium

SNP ID Nearest
gene

Coded
allele

Minor allele
frequency

Direction of the coded
allele effect on the GFR

The UACR b-coefficient
per coded allele copy

Standard
error

P-value

rs17319721 SHROOM3 A 0.43 – 20.034 0.009 0.0002
rs11959928 DAB2 A 0.44 – 20.020 0.009 0.03
rs1394125 UBE2Q2 A 0.35 – 20.024 0.011 0.03
rs10109414 STC1 T 0.42 – 20.019 0.009 0.04
rs1260326 GCKR T 0.41 + 0.018 0.009 0.05
rs267734 ANXA9 C 0.2 + 20.018 0.011 0.10
rs7805747 PRKAG2 A 0.24 – 0.025 0.016 0.11
rs4744712 PIP5K1B A 0.39 – 20.014 0.009 0.12
rs6420094 SLC34A1 G 0.34 – 20.014 0.012 0.24
rs626277 DACH1 C 0.4 + 0.0113 0.010 0.25
rs12460876 SLC7A9 C 0.39 + 20.010 0.009 0.30
rs653178 ATXN2 C 0.5 – 0.009 0.009 0.34
rs881858 VEGFA G 0.28 + 20.010 0.011 0.37
rs13538 ALMS1 G 0.23 + 0.005 0.011 0.66
rs12917707 UMOD T 0.18 + 0.004 0.012 0.76
rs347685 TFDP2 C 0.28 + 0.003 0.010 0.77

The statistical significance defined using a Bonferroni correction for the 16 SNPs (0.05/16 ¼ 0.003).

Table 2. Association results for albuminuria in European Americans from the CKDGen Consortium

SNP ID Nearest gene Coded allele Minor allele frequency Directionality of the GFR
related to the coded allele

Odds ratio related to the coded
allele (95% confidence interval)

P-value∗

rs17319721 SHROOM3 A 0.43 – 0.88 (0.83–0.93) 1.87E-06
rs11959928 DAB2 A 0.44 – 0.97 (0.92–1.02) 0.26
rs1394125 UBE2Q2 A 0.35 – 0.95 (0.90–1.01) 0.13
rs10109414 STC1 T 0.42 – 0.95 (0.91–1.00) 0.07
rs1260326 GCKR T 0.41 + 1.07 (1.01–1.12) 0.02
rs267734 ANXA9 C 0.2 + 1.03 (0.97–1.10) 0.36
rs7805747 PRKAG2 A 0.24 – 1.07 (0.98–1.16) 0.15
rs4744712 PIP5K1B A 0.39 – 0.96 (0.91–1.01) 0.11
rs6420094 SLC34A1 G 0.34 – 1.01 (0.94–1.08) 0.84
rs626277 DACH1 C 0.4 + 1.00 (0.95–1.06) 0.93
rs12460876 SLC7A9 C 0.39 + 0.97 (0.92–1.03) 0.30
rs653178 ATXN2 C 0.5 – 1.00 (0.94–1.05) 0.88
rs881858 VEGFA G 0.28 + 1.00 (0.94–1.06) 0.95
rs13538 ALMS1 G 0.23 + 1.08 (1.02–1.16) 0.01
rs12917707 UMOD T 0.18 + 1.03 (0.96–1.10) 0.46
rs347685 TFDP2 C 0.28 + 1.01 (0.95–1.07) 0.74

Statistical significance defined using a Bonferroni correction for the 16 SNPs (0.05/16 ¼ 0.003).

Table 3. Association results for the urinary-to-albumin ratio (UACR) in African-Americans based on GFR-associated SNPs in the CARe Renal Consortium9

Lead SNP Gene Chromosome UACR coded
allele

Coded allele
frequency

b-coefficient for the eGFR
related to the coded allele

UACR
beta

UACR
P-value

rs6781340 TFDP2 3 T 0.41 20.014 0.025 0.36
rs1750571 VEGFA 6 A 0.07 0.023 0.037 0.44
rs3738479 ANXA9 1 A 0.39 0.013 0.024 0.38
rs4293393 UMOD 16 A 0.81 20.013 0.019 0.57
rs3822460 DAB2 5 T 0.83 20.013 20.048 0.17
rs13022873 GCKR 2 A 0.81 0.013 20.016 0.62
rs12302645 ATXN2 12 A 0.94 20.018 20.040 0.47

The statistical significance defined as P , 0.007.
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Genotype score analysis

In the CKDGen Consortium, we found that the 16-SNP geno-
type score weighted by the beta-coefficient was associated
with albuminuria (P ¼ 0.0006). However, this result was
driven almost entirely by the SHROOM3 variant, rs17319721,
known a priori to be associated with albuminuria. The
removal of rs17319721 resulted in a P-value of 0.03, indicating
a weak residual aggregate signal.

DISCUSSION

We observed no robust associations beyond SHROOM3,
which we have previously reported, between eGFR-associated
SNPs and the UACR. A similar lack of association was
observed between eGFR-associated SNPs and the UACR in
the CARe Renal Consortium. Although the genotype score
analysis suggested a weak aggregate association signal,
taken together, these results suggest differential genetic under-
pinnings, as identified from population-based GWAS, for
these traits.

Prior research supports our primary findings, which suggest
a differential etiology between the eGFR and the UACR. First,
both traits show unique associations with some clinical risk

factors. For example, in a cross-classification analysis of the
eGFR and albuminuria, we found that only a quarter of the
participants had both a reduced eGFR and albuminuria (6).
Participants with albuminuria in the absence of a reduced
eGFR had a higher prevalence of smoking, diabetes and ele-
vated triglycerides, whereas participants without albuminuria
in the presence of a reduced eGFR had a lower prevalence
of smoking and diabetes despite being older (6). Similar find-
ings of differential risk factor associations with the eGFR
when compared with the UACR have been observed in other
studies including the Zuni Kidney Project (11). These data
suggest that these traits may have disparate underlying bio-
logical mechanisms.

Furthermore, weak genetic correlations between the eGFR
and the UACR also support a differential underpinning for
both traits. Prior work has documented a low genetic correl-
ation (r ¼ 20.002) between the eGFR and the UACR (12).
Differential genetic correlations between each trait and the
clinical risk factors have previously been shown; for
example, the Zuni Kidney Project observed significant
genetic correlations of the UACR with blood pressure,
whereas none was observed with regard to the eGFR (11).
Other studies have also documented unique genetic correla-
tions for the UACR and the eGFR with other clinical risk

Figure 1. Scatter plot of SNP effects on the eGFR and the UACR. Quadrants labeled (A) (lower eGFR effect size, higher UACR effect size) and (D) (higher
eGFR effect size, lower UACR effect size) represent associations consistent with the observed correlation of the eGFR and the UACR; quadrants labeled (B)
(higher eGFR effect size, higher UACR effect size) and (C) (lower eGFR effect size, lower UACR effect size) represent associations inconsistent with the
observed correlation of the traits.
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factors, such as diabetes, hypertension, HDL and LDL (13,14).
These results additionally corroborate our findings that there
may be a distinct genetic architecture between the UACR
and the eGFR.

As albuminuria and a reduced GFR commonly coexist in
advanced kidney disease, our finding of minimal overlap in
the genetic underpinnings to these traits may appear counter-
intuitive from a clinical standpoint. However, it must be
remembered that it is atypical for these traits to occur simul-
taneously in early kidney disease, such as is seen in the
general population. For example, in NHANES, only 8% with
a GFR .60 ml/min/1.73 m2 have albuminuria, whereas the
rate rises to 58% for those with a GFR 15–29 ml/min/
1.73 m2 (15). Furthermore, in kidney diseases characterized
by albuminuria, such as diabetic nephropathy or focal segmen-
tal glomerulosclerosis, a normal or increased GFR is charac-
teristic in early disease and a reduced GFR often only
manifests as a late phenomenon (16). In comparison, diseases
primarily characterized by a low GFR due to reduced function-
ing nephron mass, such as polycystic kidney disease, often do
not manifest albuminuria until the disease is quite advanced
(17). This time-varying relationship in the onset of these two
traits is often due to a maladaptive response of one to the
other, and distinct genetic influences would thus be expected
to underlie them at these differing time-points. Our observa-
tions are consistent with these data, and support the existence
of a complex, distinct and time-varying interplay of small to
moderate genetic influences underlying these phenotypes in
the general population. Importantly, the new understanding
gained from such insights may ultimately lead to different
approaches to disease prevention and treatment.

It is therefore surprising that rs17319721 in SHROOM3 is
associated with both a lower UACR and lower eGFR in the
general population. Thus, reasons for the joint associations
between this variant may be due to pleiotropic associations of
this gene on both traits. SNPs in SHROOM3 have previously
been shown to be associated with serum magnesium concentra-
tions (18), and these SNPs are in linkage disequilibrium with
our lead SNP (r2¼ 0.85). Downstream effector proteins of
SHROOM3 such as GTPase, Rho Kinases, Rap1 and myosin
II may also act interdependently to contribute to the gene’s
functionality (19). To the best of our knowledge, SNPs in
SHROOM3 have primarily been associated with renal traits,
suggesting a possible renal pleiotropic specificity to its
actions. Further functional work should focus on a better under-
standing of the mechanisms involved in the functional under-
pinnings of SHROOM3 in association with the UACR and the
eGFR. Apart from pleiotropic actions, mechanisms may exist
that are jointly associated with both a higher eGFR and
higher UACR. For example, a higher GFR is associated with al-
buminuria in a variety of hyperfiltration states, including dia-
betes (20,21), sickle cell disease (22), hyperuricemia (23),
hypertension (24) and primary aldosteronism (23).

The strengths of this study include large albuminuria data
sets from the CKDGen Consortium and the CARe Renal Con-
sortium. The large sample sizes and the targeted gene ap-
proach increased the power to detect associations with the
UACR and albuminuria, and the complementary samples
allowed evaluation within both European and African ancestry
populations. We also used a panel of well-established SNPs

for the eGFR. Some limitations warrant mention. First, our
African ancestry data set for the UACR was underpowered.
Nonetheless, it is the largest data set of its kind in participants
of African ancestry and makes an important point about the
multi-ethnic nature of our results. Secondly, whereas our
study indicates that there is little overlap in the common
genetic determinants of the eGFR and the UACR in the
general population, similar analyses in cohorts enriched for
more advanced kidney disease or containing more cases of
combined CKD and albuminuria may yet identify novel
genes. Finally, as both the eGFR and the UACR may vary
over time, testing for their association with longitudinal
traits may yield different results. However, we were under-
powered to test this hypothesis.

Apart from the SHROOM3 locus, we observed no robust
associations between the eGFR-associated SNPs and the
UACR in both Europeans and African-Americans, suggesting
that there may be distinct genetic components to these traits as
identified by population-based GWAS.

MATERIALS AND METHODS

Overall design study

Genetic association testing for the UACR and albuminuria was
performed in the CKDGen cohorts of European ancestry using
existing GWAS meta-analysis data sets for the UACR and al-
buminuria (9). Additional association testing for the UACR
was performed in the CARe cohorts of African-American an-
cestry (10).

Study exposure

Sixteen variants previously identified in a two-stage GWAS in
association with the eGFR were specifically queried for asso-
ciation with the UACR and albuminuria in the CKDGen Con-
sortium (n ¼ 31 580) (7). Seven eGFR SNPs previously
validated in a GWAS using participants of African ancestry
were queried for association with the UACR in the CARe
Renal Consortium (n ¼ 5569) (10). Imputation scores for the
16 and 7 SNPs, respectively, are shown in Supplementary Ma-
terial, Table S3.

Outcomes

For the CKDGen Consortium and CARe studies, the quantita-
tive trait UACR was calculated in each participating study.
The UACR was log-transformed for analysis; sex-specific resi-
duals that were age-adjusted were calculated as previously
described (9). For the CKDGen studies, the dichotomous
trait albuminuria was defined by a UACR .17 mg/g for
men and .25 mg/g for women (25,26). For the CARe
studies, albuminuria was not secondarily analyzed due to the
relatively small sample size.

Statistical methods

We used previously published meta-analysis data to look- up
the results of the 16 eGFR SNPs in European Americans
and the 7 eGFR SNPs in African -Americans for association
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with the UACR. To correct for multiple testing, we used a
Bonferroni corrected P-value of 0.05/16 (0.003) in the
CKDGen Consortium and 0.05/7 (0.007) in the CARe Consor-
tium. In the CKDGen Consortium, we had 66% power to
detect a beta-coefficient of 0.034 in a sample of 31 580 for
an alpha of 0.003 (0.05/16). The power was lower in CARe
due to the smaller sample size. To improve the power, we
assessed whether the 16 GFR SNPs in aggregate were asso-
ciated with the UACR using a beta-weighted genotype
score, as has been used in comparable analyses of blood pres-
sure and lung function variants (27,28).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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