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Abstract

Background Developmental hip disorders (DHDs), eg,

developmental dysplasia of the hip, slipped capitis femoris

epiphysis, and femoroacetabular impingement, can be

considered morphology variants of the normal hip. The

femoroacetabular morphology of DHD is believed to

induce osteoarthritis (OA) through local cumulative

mechanical overload acting on genetically controlled pat-

terning systems and subsequent damage of joint structures.

However, it is unclear why hip morphology differs between

individuals with seemingly comparable load histories and

why certain hips with DHD progress to symptomatic OA

whereas others do not.

Questions/Purposes We asked (1) which mechanical

factors influence growth and development of the proximal

femur; and (2) which genes or genetic mechanisms are

associated with hip ontogenesis.

Methods We performed a systematic literature review of

mechanical and genetic factors of hip ontogeny. We

focused on three fields that in recent years have advanced

our knowledge of adult hip morphology: imaging, evolu-

tion, and genetics.

Where Are We Now? Mechanical factors can be under-

stood in view of human evolutionary peculiarities and may

summate to load histories conducive to DHD. Genetic

factors most likely act through multiple genes, each with

modest effect sizes. Single genes that explain a DHD are

therefore unlikely to be found. Apparently, the interplay

between genes and load history not only determines hip

morphotype, but also joint cartilage robustness (‘‘cartilo-

type’’) and resistance to symptomatic OA.

Where Do We Need to Go? We need therapies that can

improve both morphotype and cartilotype.

How Do We Get There? Better phenotyping, improving

classification systems of hip morphology, and comparative

population studies can be done with existing methods.

Quantifying load histories likely requires new tools, but

proof of principle of modifying morphotype in treatment of

DDH and of cartilotype with exercise is available.

Introduction

Hip ontogenesis, or morphogenesis, describes the devel-

opment of the hip from its fetal origin to the adult form.

Developmental hip disorders (DHDs) such as develop-

mental dysplasia of the hip (DDH), slipped capitis femoris

epiphysis (SCFE), or femoroacetabular impingement (FAI)

may cause symptoms and disability in adulthood or earlier

as a result of altered joint morphology [24, 49, 85, 106].

Regardless of being primarily acetabular or femoral,

DHDs share a common mechanism of local cumulative
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mechanical overload and damage of joint structures that

may cause osteoarthritis (OA) [24, 31]. Interventions that

decrease DHD incidence may thus decrease OA disease

burden. However, such interventions should be based on

good explanations of hip ontogeny and OA development.

Current explanations for skeletogenesis and bone mor-

phology imply an important role of mechanical loading,

explicitly [15, 35], or more implicitly [79], acting on

genetically controlled patterning systems [25, 54, 110].

Although detailed explanations are available from animal

models [25, 68, 79], this knowledge is as yet not very

useful to decrease DHD prevalence nor applicable for

individual patients. For example, it is currently unclear

why important hip morphology differences exist between

individuals or populations with comparable load histories

[37, 112] (nor why these differences appear larger for hips

than knees). Clearly, genetic differences may account for

these morphological differences. However, genes have

only recently been linked to hip morphology [5, 53, 103]

and genetic architecture for hip morphogenesis is appar-

ently complex and polygenic with modest effect size for

individual genes (ie, no genes specific for each DHD have

been found). Furthermore, it is currently unclear why cer-

tain hips with DHD progress to symptomatic OA, whereas

others do not [6, 106]. We propose integrating observations

from several fields that have recently advanced under-

standing of adult hip morphology (ie, imaging, evolution,

and genetics) can improve our explanations of hip ontog-

eny and OA development.

Imaging studies using new parameters and image anal-

ysis allow comprehensive quantification of proximal

femoral morphology [27, 65, 99] and have strengthened the

association between morphology and OA development or

prevalence [19, 28, 29, 55, 64].

Observations from evolution studies comparing humans

with other large apes indicate the growing human lower

limbs with open physes and long moment arms can

undergo high loading for several years (eg, in sports).

When compared with other animals (eg, mice and chick-

ens), experimental models have begun to elucidate the

fundamental molecular, mechanical, and genetic mecha-

nisms and their interactions in skeletogenesis.

Genetic studies, in the last decade, have begun to

explore the relation between loading and gene expression

[7, 67, 79] and, more recently, between genes and hip

morphology [5, 103]. These studies indicate that the same

genes active in skeletogenesis, for example through regu-

lation of growth plate chondrocytes, may also play a role in

OA development in later life.

We therefore performed a systematic literature review of

(1) mechanical factors that influence growth and develop-

ment of the proximal femur in animals and humans; and

(2) genes or genetic mechanisms associated with hip

ontogenesis. We specifically sought to identify information

on the (potential) interaction between mechanical and

genetic factors. Furthermore, we sought information from

the three fields described previously that, in recent years,

have advanced our knowledge of adult hip morphology:

imaging, evolution, and genetics. Because OA develop-

ment is related to morphology variants, we discussed our

findings with respect to DHD.

Methods: Search Strategy and Criteria

We performed three searches in Medline, Embase, and

Web of Science summarizing the literature on mechanical

and genetic factors of hip growth and development. For

these searches we formed six groups of search terms and

one group with exclusion terms composed by the first three

authors in joint discussion. The first group, Group A,

referred to terms related to ‘‘the hip’’, Group B to ‘‘growth

and development’’, Group C to ‘‘mechanical factors’’,

Group D to ‘‘genetic factors’’, Group E to ‘‘DHD’’, and

Group F referred to ‘‘prevalence’’. Group G consisted of

exclusion terms and was composed of irrelevant title words

found during pilot searches (see Appendix).

For each search we combined three groups of terms. For

example, to investigate the influence of mechanical factors

on hip growth and development, we combined Groups A,

B, and C. They were connected using the Boolean operator

AND. In addition, Group G was added using the Boolean

operator NOT. Terms within a group were combined using

the Boolean operator OR. All search terms and group

combinations are reported in the Appendix. The search

field was ‘‘title and abstract’’ combined with MESH terms

when using Medline. The search field for exclusion terms

was ‘‘title’’ only. The three searches resulted in three lists

of articles for each database. These lists were then searched

based on titles and abstracts and had to contain specific

reference to mechanical or genetic aspects of hip ontogeny,

or imaging and image analysis, or evolution, embryology,

or genes. Articles that did not contain any of these subjects

were excluded. Also, articles written in languages other

than English, German, French, or Dutch were excluded.

After selection, further articles were added from reference

lists of included articles.

The first search, regarding the effect of mechanical

phenomena on growth and development of the proximal

femur in both humans and animals, yielded more than

13,500 results. The second search for genes and genetic

mechanisms associated with skeletogenesis and the hip

resulted in more than 8500 articles. The third search was

focused on prevalence of DDH, SCFE, and FAI with regard

to different populations, twin studies, and sex. More than

3500 articles were found.
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Of the more than 25,500 publications found in total,

25,330 were irrelevant based on duplicates, title, and

abstract, leaving 170 publications for evaluation (Fig. 1).

Results

Imaging and Quantification of Hip Morphology

Parameters for measuring hip morphology currently relate

to concavity, a compound measure determined by femoral

head sphericity, relative neck width, and offset (femoral

head position relative to the neck) [99]. Previously hip

morphology was mostly described without quantifying the

sphericity of the femoral head or its relationship to the

femoral neck. Goodman et al. [26] introduced the concept

of concavity of the femoral head-neck junction in 1997

followed by its quantification with the alpha angle in 2002

[65]. Similar angles characterize concavity in other planes

[8, 22, 38, 99]. Concavity is a measure of the potential

ROM of the proximal femur in the acetabulum before bony

contact occurs and mostly used to describe the cam mor-

photype of FAI. Acetabular measurements of version and

center-edge angle [107] currently quantify the pincer

morphotype of FAI [24]. Clearly, imaging for the next

decade needs to integrate femoral and acetabular parame-

ters to further our understanding of hip morphology and

function.

Methods for image analysis of hip morphology now

include statistical shape models (SSMs) [29]. SSMs can be

used to compare complex three-dimensional morphology

without the need to assume ideal geometry, eg, a spherical

femoral head. An SSM of the hip can be built by placing a

large number of points (eg, 70) on AP pelvis radiographs

on designated locations of the femur, acetabulum, and

pelvis [103]. Statistical methods then construct an average

hip shape from all radiographic points in all patients, and a

computer algorithm (principle component analysis)

recombines these into ‘‘shape modes,’’ which constitute the

SSM. Each shape mode describes a distinct change in hip

morphology, a number of SDs away from the cohort’s

average shape. SSMs are used increasingly to describe

complex morphology [29, 55, 88], but as yet there are no

studies that show how shape modes correlate to FAI

morphotypes (cam and pincer).

We found no quantitative imaging studies for any mam-

mal, including humans, of femoral head and head-neck

morphology development from embryo to adult. Neverthe-

less, qualitative comparison of intrauterine and perinatal hip

morphology with adult hip morphology shows the relatively

unloaded intrauterine femoral head is round in fairly uniform

degree but that morphology develops during postnatal

locomotor development into more or less spherical femoral

heads. Examples can be found for the rabbit [108], cow [90],

and primates [2, 4]. Postnatal diversion of hip morphology in

itself does not imply it is attributable only to the loading of

locomotor development; it can also be the expression of

genetic pattern formation [54, 110]. These issues can be

further explored in animal models in which the limb muscles

are absent or paralyzed in utero.

Mechanical Factors and Embryology

Mechanical factors in early hip morphogenesis can be

studied by blocking muscle contraction in experimental

embryo models. The mouse embryo is the best studied

animal model for mammalian development [68] with many

genetic manipulations and molecular tools available, eg,

genetically modified mice with altered, reduced, or absent

muscles. Another model is the chick embryo paralyzed

with a neuromuscular blocking agent [79]. Although long

bone development is endochondral in mice, and intra-

membranous in chicks, reduced or absent mechanical

loading affects bone and joint formation in both. Absence

of muscle contractions does not alter the first phase in joint

development (interzone formation [21]). However, the next

phase, joint space development (cavitation), is character-

ized by changes in gene expression and histology of the

developing joint tissues. Gene activation in response to

loading has recently been documented in both animal

models [7, 41, 42, 67]. In muscle-paralyzed chicks, all

bones and synovial joints are affected in the absence of

muscle contraction, but in mice, some early bone and joint

structures are unaffected [68]. This difference is likely the

result of the uterus wall that generates mechanical forces

affecting the embryo as opposed to the rigid nongrowing

eggshell of birds [68]. Thus, local mechanical stimuli

appear to provide positional information, guiding genetic

patterning and morphogenesis. Further clues indicate static

loading is needed for bone modeling, whereas motion

would be mainly involved in joint development [70].

                           selection by duplicates and title 

                                     selection by abstract 

                                     selection by full text 

total search result
> 25500 

relevant by abstract 
170 

relevant by title
> 3500 

references used  
112 

Fig. 1 Flowchart for evaluation of literature.
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Mechanical Factors and Evolution

Mechanical factors in human hip ontogeny can also be

studied by comparing with quadrupedal mammals and the

other large apes. The human fetus has a very large head,

long legs, and is positioned in an upright mother. In qua-

drupedal mammals, the abdomen and uterus hang under a

horizontal spine like a hammock. Early 20th century

authors [13, 48] proposed the uterus wall hyperflexes the

human hip, levering the long femur against the prominent

anterosuperior iliac spine. This levering is assumed to

lower femoral head pressure in the acetabulum, decreasing

its relative depth, and to create a torsional moment on the

femur increasing anteversion [48]. The large apes, having

smaller heads, shorter legs, and a flat ilium without

prominent iliac spines, are indeed without hip dysplasia

(except one single gorilla [91]). Thus, mechanical factors

may adequately explain human neonatal/infant hip dys-

plasia. Several studies have corroborated these earlier

pathomechanical concepts [13, 18], for increasing femoral

version [11, 40, 73, 105] and decreasing relative acetabular

depth [73, 104]. Furthermore, anteversion increases in

rabbits splinted in flexion-external rotation; flexion-internal

rotation produces retroversion [108]. Likewise, postnatal

femoral detorsion is a consistent finding in normal hip

development [69].

Humans walk with approximately 5� hip extension at

toe-off while prone extension is approximately 10� to 20�
[77, 78]. Active hip flexion is 120�, whereas walking

flexion is approximately 35� and running 50� [66]. Thus,

the human weightbearing range of hip motion shifts close

to its extension limit during bipedal gait development.

Quadrupeds bear weight closer to midrange hip flexion [3],

and femoral neck anteversion then acts to align the capital

growth plate more perpendicular to the vertical gait forces

[96]. The human extended hip position diminishes this

mechanical advantage anteversion can have on shear forces

on the capital physis. Furthermore, the human capital

physis, nearly horizontal in neonates, tilts to approximately

30� more vertical in adolescence. Both mechanisms render

the capital physis more vulnerable to shear forces.

The large apes walk bipedally but do not run bipedally

[20]. Moreover, human growth and development is 5 to

6 years longer compared with chimpanzees, which reach

adulthood at 11 to 12 years [84, 95]. Human lower limbs

have much longer moment arms than the large apes [82].

Corrected for body weight, peak hip forces in humans are

much higher than quadrupeds, increasing further with

running or sports [9, 10]. These factors can summate to a

load history of enduring high loads on the growing hip.

Thus, species-specific mechanical factors in human hip

ontogeny can be interpreted to explain neonatal/infant hip

dysplasia, to increase shear forces on the capital physis that

may induce SCFE, and to create a load history that may

induce morphologic changes in the growing hip.

Genetic Factors, Human Hip Morphogenesis,

and Osteoarthritis Development

Genetic factors orchestrate hip morphogenesis. Nonethe-

less, specific underlying genes have thus far not been

identified for the three common DHDs [53]. Genetic

architecture for hip morphogenesis is most likely complex

and polygenic with modest effect size for individual genes

[53], similar perhaps to genetic factors for height [46].

Further indications of the polygenic nature of hip mor-

phogenesis are associations of DDH to other skeletal

abnormalities, eg, facial, whether part of an established

syndrome [47] or not [32].

Morphology variants such as DDH and FAI are known

morphological risk factors for onset of hip OA [45, 94].

Therefore, many researchers used a genetic approach to

elucidate underlying OA mechanisms, but only recently

have such studies begun to incorporate hip morphology

analysis. Genetic methods include genomewide association

studies (GWASs), testing many common genetic variants

in different individuals for their association with OA [101])

and candidate gene studies that test specific genes, ie, those

involved in skeletogenesis (Table 1).

Indeed, the majority of best-confirmed OA susceptibility

genes appear involved in skeletal morphogenesis and/or

cartilage and bone homeostasis (Table 1) [5, 16, 52, 56, 57,

76, 81, 86, 100, 102, 103]. This raises the question whether

genetic variants cause subtle skeletal malformations that

increase mechanical stress on articular cartilage surfaces,

initiating OA [12].

Pollard and coworkers [71] found that siblings of

patients with FAI have a higher prevalence of cam mor-

photype than control subjects (relative risk 2.8). Moreover,

siblings had more clinical signs of FAI (eg, positive

impingement test) than control subjects with the same FAI

morphology (relative risk 2.5). This suggests an additional

genetic component, beyond the increased risk of abnormal

morphology, may be involved in the development of OA

[71].

Using a statistical shape model to analyze hip mor-

phology in sibling pairs, Waarsing and coworkers [103]

found high heritability estimates for four hip shape

modes, ie, hip morphology was under strong genetic

influence. Exploring the association between OA suscepti-

bility genes and hip morphology further, they found carrier

status of one OA susceptibility variant in the deiodinase-

iodothyronine, type 2 gene was associated with OA but

more likely through increasing the cartilage vulnerability

to mechanical stress by nonoptimal hip morphology [103].
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A similar study found variant alleles of the FRZB genes

influence both hip morphology and the relationship between

hip morphology and OA [5]. Thus, all three studies that

examined the relation between hip morphology, genes and

OA, find it is not morphology alone that is associated with

OA, but likely a combination with a genetically determined

cartilage vulnerability.

In analogy to morphotype, this cartilage vulnerability or

robustness (including subchondral bone) can be conceptu-

alized as cartilotype, ie, the ability of cartilage to withstand

mechanical stress. Thus, a hip can have unfavorable mor-

photype, but favorable cartilotype, and may not develop

progressive OA. Conversely, it may have only minor

suboptimal morphology, but unfavorable cartilotype, and

develop OA. For both scenarios, OA development will be

influenced by load history determined by frequency and

magnitude of all loads (Fig. 2). This concept may explain

prospective studies with 10 to 40 years followup that show

a substantial proportion of subjects with an FAI or DDH

morphotype does not develop progressive OA [6, 34, 106].

Developmental Dysplasia of the Hip

Compared with life after birth, the hip experiences a more

uniform load history in utero. Prevalence differences in

healthy single-birth primiparous neonate DDH therefore

suggest genetic differences explain the occurrence of DDH

rather than in utero positioning. (This may not apply to

twin pregnancies in which clear differences in load history

may exist when one fetus has its knees extended and the

other flexed.)

Indeed, neonate DDH varies widely between ethnic

groups, from 0.87 per 1000 live births in Hong Kong

Chinese [98] to 10.5 per 1000 in southern Australia [111].

A recent twin study [17] confirms a notion proposed earlier

[109] that flexed knees in utero decrease DDH prevalence.

Taken together, these findings indicate a strong genetic

factor in DDH. Correspondingly, large population studies

show a 12-fold increase in risk for first-degree relatives and

siblings [92]. Prevalence of neonatal and infant DDH has

been reduced considerably by education, screening, and

early treatment programs [61].

Slipped Capital Femoris Epiphysis

Incidence of SCFE varies widely between ethnic groups,

ie, approximately 4.5 per 100,000 in Polynesian children

and 0.1 (girls) to 0.5 (boys) in Korean children [50].

Further genetic influences have been shown in several

ethnic groups and within families [50, 51, 63]. Increasing

prevalence has been documented repeatedly over the last

20 years in each study related to increasing obesity

[58, 63, 89].

The cam, pistol grip, or head tilt morphotype has been

interpreted as a subclinical slip of the femoral epiphysis

[26, 33, 59], but none of these authors examined the age

cohort in which this slip supposedly occurs. Recently, two

studies (discussed subsequently) reported cam morphotype

prevalence in a total of 256 men aged 9 to 25 years [87]

and 12 to 19 years [1] but found no clinical, MRI [87], or

radiographic [1] signs of SCFE. Furthermore, Siebenrock

and coworkers [87] showed earlier that the direction of tilt

of the capital epiphysis in SCFE, posteroinferior, differs

from the anterosuperior extension of the physis in cam

morphotype.

Femoroacetabular Impingement

FAI morphotypes are unknown as yet in childhood (before

the age of 10 years) [69]. This is unknown as yet, because

this may also be related to the present lack of hip mor-

phology studies of large populations of children using

multiple plane or three-dimensional imaging techniques.

We found no longitudinal studies demonstrating develop-

ment of FAI morphotypes. Neither are there longitudinal

studies demonstrating the effect of loading on hip mor-

phology in children or adolescents. However, two cross-

sectional studies in adolescents indeed suggest such a

relation.

In 1971, Murray and Duncan [60] proposed a relation

between athletic activity and hip morphology. However,

the characteristics of study and control groups were not

adequately defined to allow clear statements about the

effect of load history on the hip. What the study did show,

however, was high prevalence of cam morphotype (‘‘tilt

deformity’’) in an adolescent English population, particu-

larly considering that only AP radiographs were used,

making underestimation of cam prevalence likely [22].

Fig. 2 Interplay of genes, load history produces morphotype, inter-

play of morphotype, cartilotype (see text), and load history may or

may not lead to OA.
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Forty years later, Siebenrock and coworkers used radial

MRI scans to compare cam prevalence in 37 competitive

basketball players, aged 9 to 25 years, with 38 weight- and

age-matched nonsports control subjects. They found higher

alpha angles in the athletes than control subjects (average

60.5� ± 9� and 47.4� ± 4�, respectively). Intriguingly,

these differences were more pronounced in players with a

closed capital physis, indicating an ongoing effect of load

history after physeal closure.

Agricola et al. [1] compared hip morphology in 89

preprofessional soccer players, aged 12 to 19 years, with

92 age-matched control subjects. In this study, sports

activity was not systematically documented in the control

subjects, and 84% of control subjects were seen initially

for hip complaints, although none revisited this hospital

during the next 2 years. Cam morphotype prevalence was

increased in the soccer players when assessed by shape

of the femoral head-neck junction (ie, normal, flat, bump),

but not when only radiographic alpha angles [ 60� were

compared (26 % versus 17% for soccer players and control

subjects, respectively).

Thus, high-intensity sports during adolescence may be

associated with a higher prevalence of cam morphotype.

However, these are findings in white European populations.

In other populations, for example Asian populations, cam

morphotype prevalence appears to be very low (Table 2)

[28, 30, 43, 44, 59, 62, 65, 72, 75, 93, 99]. Accordingly,

studies comparing Asian and white populations with

identical methods found rounder femoral heads, ie, higher

proximal femoral concavity in Asians [23, 36]. Therefore,

it appears unlikely it is only sports participation that causes

cam morphotype. More likely, genetic factors also influ-

ence susceptibility to a given load history.

Discussion

In a systematic literature review we examined three fields

that may add information to the explanation of hip ontog-

eny and OA development: imaging, evolution, and

genetics. Incorporating advances in these fields in existing

mechanical and genetic explanations may further our

understanding of hip ontogeny and OA development.

Because OA development is related to morphology vari-

ants of DHD, we discussed our findings with respect to

DDH, SCFE, and FAI.

Where Are We Now?

During the course of our literature review, we identified a

number of limitations in approaches and the literature that

precludes a better understanding of the relationship of load

history and genetics in hip development. First, as a result of

the human evolutionary peculiarities, we currently lack an

appropriate animal model that mimics human hip ontog-

eny. Second, to study load histories in hip morphogenesis,

we likely need new and precise tools to quantify these

loads. Furthermore, evidence shows tissues ignore the large

majority of a loading experience, but our understanding

about which part of a load history primarily triggers mor-

phological change is limited [14]. Third, experimental data,

particularly genetic, are expanding rapidly, but translation

to therapeutic studies in humans awaits better phenotyping

of patients.

An unresolved issue, but an important one to guide

future clinical studies, is whether hip morphology is pri-

marily determined by genetic or mechanical factors.

Genetic factors, although evident in DDH, SCFE, and

FAI, most likely act through several or numerous genes,

each with modest effect sizes. In other words, single

genes that explain a DHD have not been identified nor is

it likely they will be [53]. Mechanical factors can be

understood in view of human evolutionary peculiarities.

Starting in utero, and continuing with development of

upright gait and slow skeletal maturation, they may

summate to load histories conducive to DHD. Conversely,

an emerging body of evidence documents an interplay

between genetic and mechanical factors in the develop-

ment of hip morphotype.

Whether a given hip morphotype will lead to progres-

sive OA is, again, influenced by mechanical factors, ie,

load history, but appears influenced also by the ability of

cartilage to withstand mechanical stress, ie, ‘‘cartilotype’’

(Fig. 2).

Where Do We Need to Go?

We need therapies that can improve both morphotype and

cartilotype. In guiding future studies, we can distinguish

what can be done using currently available tools and

those that likely require development of new tools or

technology.

How Do We Get There?

Studies That Can Be Done Using Current Tools

Further identification of genes involved in the complex

interactions of morphogenesis and development of OA, ie,

morphotype and cartilotype, can be done with existing

tools but requires a multidisciplinary approach with

GWASs in thousands of cases and control subjects.
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GWASs can only identify variation in DNA that is rela-

tively common in a population. Newer tools such as exome

sequencing can help find causative genes for hip

morphotypes. Exome sequencing narrows down the search

because it examines only the (1.5%) portion of the genome

that is expressed as protein [97], allowing a much larger

Table 2. Prevalence of cam deformity in white male control subjects and Asian control subjects and Asian patients undergoing THA: cam

morphotype prevalence varies with ethnicity, age, and imaging parameters

Study Population Age Imaging Parameter measured Percent cam

morphotype

Murray, 1965

[59]

25 English male

control subjects

– AP pelvic

radiographs

‘‘Head tilt deformity’’

femoral head ratio

(FHR) [ 1.35

10%

Nötzli et al.,

2002 [65]

17 Swiss male control

subjects with C 20�
internal rotation in

90� flexion

30 ± 5 years MRI Alpha angle [ 50� at

3:00 position

0%

Gosvig et al.,

2010 [28]

1332 Danish male

control subjects

population study

60 ± 13.6 years AP pelvic

radiographs

‘‘Pistol grip deformity’’

triangular index

19.6%

Reichenbach

et al.,

2010 [75]

244 Swiss male

control subjects

18-year-old army

recruits

19.9 years Radial MRI Decreased offset head-

neck junction anterior

quadrant (0–3:00)

24%

Hack et al.,

2010 [30]

90 Canadian male

control subjects

(79% whites)

29.4 years Radial MRI Alpha angle [ 55� at

1:30 position

51.6%

Pollard et al.,

2010 [72]

39 English male

control subjects

without hip signs

or symptoms

47.5 ± 12 years Crosstable lateral

radiographs

Alpha angle [ 62� 2.6%

Laborie et al.,

2011 [44]

874 Norwegian male

control subjects

population study

18.6 ± 0.6 years AP pelvic

radiographs

Pistol-grip deformity focal

femoral neck prominence

flattening of lateral

femoral head

21.5% pistol-grip

deformity;

10.3% focal neck

prominence;

14.4% flattening

of femoral head

Toogood

B 50 years

[99]

140 US (Cleveland)

cadaver femora;

50% whites and

50% blacks

37 years Photographs Alpha angle [ 55�
at 3:00 position

18.6%

Toogood et al.,

2009

([ 50 years)

[99]

48 US (Cleveland)

cadaver femora;

50% whites and

50% blacks

63 years Photographs Alpha angle [ 55�
at 3:00 position

43.8%

Kim, 1989 [43] 172 Korean fetuses;

67 male adult cadavers;

244 male Korean adults

hospitalized for other

reasons than hip

14–38 weeks

60.6 years

58.4 years

Caliper

measurement/

244 AP pelvic

radiographs

Femoral head sphericity

(caliper);

femoral head sphericity

(caliper);

femoral head sphericity

(Mose ring on

radiograph)

‘‘Spherical femoral

heads in fetal and

adult cadavers’’;

spherical femoral

heads on

radiographs,

‘‘no pistol grip’’

Takeyama et al.,

2009 [93]

158 Japanese male

patients undergoing

THA

– Preoperative

crosstable

lateral

radiographs

Alpha angle [ 60� 1.6%

Nakahara et al.,

2011 [62]

21 Japanese male control

subjects (36 hips)

72.7 ± 5.7 years Three-dimensional

CT

Alpha angle [ 55�
at 1:00 position

25%
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number of samples to be sequenced. A combination of

methods will likely yield the most interesting results.

Imaging for the next decade needs to integrate femoral

and acetabular parameters, allow motion simulation, and

analysis of large patient populations. The first two depend on

improved analysis of CT or MRI and the latter on (semi-

)automated analysis (eg, SSM). Currently, most prospective

data of hip development and morphology are available only

in conventional radiographs. Reconstructing the three-

dimensional shape of the pelvis and hip from these two-

dimensional images would be highly valuable. SSM-based

techniques for this have already been described and await

clinical use [83].

A combination of these genetic and imaging data can

clarify how (defects of) implicated genes cause the actual

disease phenotype. This can lead to more prognostic clas-

sification systems that may improve and individualize

patient care.

Studies That May Need New Technology/Tools

Meaningful quantification of load history requires new

tools for both experimental and clinical measurement but

also depends on better understanding of which part of a

load history triggers morphological change. Ultimately,

integrating information on morphotype, cartilotype, and

load history may allow us to better predict the future hip

function for an individual patient.

Nonetheless, proof of principle of modifying morpho-

type is already available in the effectiveness of early

treatment programs for infant DHD. Similar programs can

be envisaged for FAI, but guiding hip morphogenesis may

be a very different and more difficult task in adolescents

than infants. Screening for FAI may already be done using

a ROM testing apparatus [74].

Proof of principle of modification of cartilotype and its

assessment has been given for the knee, in which an

exercise program led to improved cartilage quality as

assessed by delayed gadolinium-enhanced MRI (dGEM-

RIC quantifies cartilage glycosaminoglycan [GAG]

concentrations; T2 [transverse relaxation time] mapping

evaluates cartilage hydration and collagen fiber integrity

[39]). This study only examined the effect of exercise on

cartilage quality [80], but biochemical or genetic modi-

fication of cartilotype may also become therapeutic

options.

Appendix: search strategy and criteria

We performed three searches in Medline, Embase, and

Web of Science summarizing the literature on mechanical

and genetic factors of hip growth and development. For

these searches we formed six groups of search terms and

one group with exclusion terms composed of the first three

authors in joint discussion. The first group, Group A,

referred to terms related to ‘‘the hip’’, Group B to ‘‘growth

and development’’, Group C to ‘‘mechanical factors’’,

Group D to ‘‘genetic factors’’, Group E to ‘‘DHD’’, and

Group F referred to ‘‘prevalence’’. Group G consisted of

exclusion terms and was composed of selecting irrelevant

title words found during pilot searches.

For each search we combined three groups of terms.

For example, to investigate the influence of mechanical

factors on hip growth and development, we combined

Group A, B, and C. They were connected using the

Boolean operator AND. In addition, Group G was added

using the Boolean operator NOT. Terms within a group

were combined with the Boolean operator OR. All used

search terms and group combinations are reported in the

Appendix. The search field was ‘‘title and abstract’’

combined with MESH terms when using Medline. The

search field for exclusion terms was ‘‘title’’ only. The

three searches resulted in three lists of articles for each

database. These lists were then searched based on titles

and abstracts and had to contain specific reference to

mechanical or genetic aspects of hip ontogeny, or imaging

and image analysis, or evolution, embryology, or genes.

Articles that did not contain any of these subjects were

excluded. Also, articles written in other languages than

English, German, French, or Dutch were excluded. After

selection, further articles were added from reference lists

of included articles.

The first search, regarding the effect of mechanical

phenomena on growth and development of the proximal

femur in both humans and animals, yielded over 13,500

results. The second search for genes and genetic mecha-

nisms associated with skeletogenesis and the hip resulted in

more than 8500 articles. The third search was focused on

the prevalence of DDH, SCFE, and FAI with regard to

different populations, twin studies, and sex. Over 3500

articles were found.

Of the more than 25,500 publications found in

total, 25,330 were irrelevant based on duplicates, title,

and abstract, leaving 170 publications for evaluation

(Fig. 2).
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