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Natural killer T (NKT) cells constitute an important subset of T cells that can both directly and indirectly mediate
antitumor immunity. However, we and others have reported that cancer patients have a reduction in both NKT
cell number and function. NKT cells can be stimulated and expanded with a-GalCer and cytokines and these
expanded NKT cells retain their phenotype, remain responsive to antigenic stimulation, and display cytotoxic
function against tumor cell lines. These data strongly favor the use of ex vivo expanded NKT cells in adoptive
immunotherapy. NKT cell based-immunotherapy has been limited by the use of autologous antigen-presenting
cells, which can vary substantially in their quantity and quality. A standardized system that relies on artificial
antigen-presenting cells (aAPCs) could produce the stimulating effects of dendritic cell (DC) without the pitfalls
of allo- or xenogeneic cells. In this review, we discuss the progress that has been made using CD1d-based aAPC
and how this acellular antigen presenting system can be used in the future to enhance our understanding of NKT
cell biology and to develop NKT cell-specific adoptive immunotherapeutic strategies.

Natural Killer T Cells

Natural killer T (NKT) cells are a lymphoid popu-
lation distinct from natural killer cells and conventional

T cells. NKT cells recognize lipid antigen in the context of
CD1 molecules, unlike CD4 + and CD8 + MHC-restricted T
cells, which recognize peptide antigens. Similar to conven-
tional T cells, NKT cells develop from CD4 + CD8 + thymic
precursor T cells following the appropriate signaling by
CD1d. In contrast to conventional ab T cells, which are se-
lected by MHC-peptide complexes presented by thymic ep-
ithelial cells, NKT cells are selected on CD1d-lipid antigen
complexes presented by cortical thymocytes (Berzins and
others 2011). In addition, signals from the signaling lym-
phocytic-activation molecule (SLAM) family of receptors (Hu
and others 2011) and the transcription factor promyelocytic
leukemia zinc finger (PLZF) are essential for NKT cell
development (Savage and others 2008). Mouse studies have
shown that in the absence of CD1d molecules on double-
positive thymocytes, NKT cells do not develop.

There are functionally and phenotypically distinct subtypes
of NKT cells. Type I NKT cells (also known as invariant or
semi-invariant NKT cells -iNKT) express an invariant Va14Ja18
T cell receptor (TCR) in mice and Va24Ja18 TCR in humans.
Type II NKT cells are CD1d restricted T cells that express a
more diverse set of a chains in their TCR and recognize dif-
ferent lipid antigens. It is thought that type I NKT cells exert
potent anti-tumor effects, whereas type II NKT cells generally

suppress tumor immunity through the production of inter-
leukin (IL)-4 and IL-13 (Ambrosino and others 2007). This
review will focus mainly on canonical, type I iNKT cells. Type I
NKT cells are further classified based on their expression of
classic TCR cell surface markers. In mice, iNKT cells are CD4+

or CD4 - CD8- double-negative (DN) (Terabe and Berzofsky
2008), whereas human NKT cells are either CD4 + , CD8 + , or
DN (Gumperz and others 2002; Kim and others 2002; Lee and
others 2002; Lin and others 2006). In addition, these subsets
have distinct Th1 and Th2 cytokine profiles. CD4 + NKT cells
produce Th1 and Th2 cytokines, whereas the CD4 - subset,
which includes both CD8 + & DN, primarily produces Th1
cytokines (Kim and others 2002). The majority of human NKT
cells express CD161, CD56 as well as NKG2D. Interestingly,
NKT cells are phenotypically similar to effector T cells because
they express nonlymphoid tissue-homing chemokine recep-
tors, such as CCR2, CCR5, and CXCR3. Given that NKT cells
can rapidly produce Th1, Th2, and Th17- type cytokines, and
activate cells of both the innate and adaptive immune sys-
tems, they are thought to be important modulators of the
immune response. It is clear that NKT cells can also play a
pivotal role in maintaining immune homeostasis (Godfrey
and others 2004), see schematic shown in Fig. 1. In fact, NKT
cells have been implicated in the regulation of autoimmunity
(Illes and others 2000), tumor surveillance (Terabe and
Berzofsky 2008; Swann and others 2009), hematological
cancers (Neparidze and Dhodapkar 2009) as well as infectious
disease (Kinjo and others 2005).
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CD1 Molecules

In humans, 5 genes (CD1A–E) located within 200-kb on
chromosome 1q22-q23 encodes CD1a, CD1b, CD1c, CD1d,
and CD1e lipid antigen-presenting molecules. The CD1
proteins are classified into 2 groups based on amino acid
sequence homology: group 1 is composed of CD1a, b, c, and e;
and group 2 contains CD1d. Like MHC Class I molecules,
CD1 isoforms (CD1a, b, c, and d) are assembled in the ER
and transported to the cell surface. However, in contrast to
MHC molecules, CD1 complexes are then reinternalized into
specific endocytic compartments where they can bind lipid
antigens. These include a broad scope of both self and for-
eign molecules that range from simple fatty acids or phos-
pholipids, to more complex glycolipids, isoprenoids,
mycolates, and gangliosides (De Libero and Mori 2012).
Lipid-loaded CD1 molecules are then delivered to the cell
surface and can be surveyed by CD1-restricted T cells ex-
pressing ab or gd TCR. CD1a-, b-, and c-restricted T cells
have been found to recognize a number of lipid antigens
from Mycobacterium tuberculosis. Mice only express group 2
CD1d molecules-CD1d1 and CD1d2. iNKT cells are CD1d1-
restricted and the focus of this review. Notably, the crystal
structures of both mouse and human CD1d have been
described (Zeng and others 1997; Koch and others 2005).
These studies have shown that the antigen-binding groove is
deeper, narrower, and much more hydrophobic compared to
MHC class I and class II molecules. The hydrophobic nature
of the antigen-binding groove is ideal for binding lipid
antigens. In vitro binding studies have determined the
molecular mechanism for lipid antigen presentation by CD1
molecules: the alkyl chains of a lipid–ligand bind within a
highly hydrophobic groove inside the CD1 protein, while the
polar head group remains exposed on top of the extracellular
domain, thereby allowing direct contact with the TCR,
leading to NKT cell activation (Moody and others 2005).

NKT Cell-Based Immunotherapy

Numerous studies have reported that circulating NKT
cells are reduced in cancer patients (Kawano and others 1999;
Tahir and others 2001; Fujii and others 2003a). In fact, Mol-
ling and others (2005) examined a large cohort of cancer
patients and healthy controls and found that NKT cell
numbers were 47% lower in cancer patients compared to age
and gender matched healthy controls. This reduction in NKT
cell numbers was independent of tumor type or stage/grade.

Clinical trials for the activation of endogenous NKT cells
have focused on direct intravenous (i.v.) injection of a-GalCer
or infusion of a-GalCer-pulsed DC. In two phase I clinical
trials, patients injected with either a-GalCer (Giaccone and
others 2002) or a-GalCer-loaded immature dendritic cells
(Nieda and others 2004), showed strong immune responses as
assessed by serum interferon (IFN)-g levels, but this was true
only in patients with detectable NKT cell numbers. Chang and
others (2005) showed that multiple injections of a-GalCer-
loaded mature dendritic cells lead to sustained expansion of
NKT cells and antigen-specific T cells. However, these
expanded NKT cells from cancer patients still exhibited
reduced capacity for IFN-g secretion compared to NKT cells
from healthy controls. In contrast to the direct injection of a-
GalCer, Nakayama’s group has carried out a few phase I/I-II
studies to evaluate the immunological response and clinical
outcome and safety by using a-GalCer-pulsed DC in lung
cancer patients (Ishikawa and others 2005a, 2005b). They re-
ported that vaccination was well-tolerated by all of the pa-
tients, with no severe adverse effects. In addition, there was a
dramatic increase in NKT cell numbers in the peripheral blood
and augmentation of IFN-g mRNA from circulating NKT
cells. Several other groups observed similar results in different
cancer types, such as multiple myeloma, head and neck
squamous cell carcinoma, and other type of solid cancers
(Chang and others 2005; Uchida and others 2008).

Several groups have investigated the in vivo efficacy of
in vitro-activated NKT cells. Motohashi and others (2006)
performed the adoptive transfer of in vitro-activated NKT
cells in patients with refractory lung cancer. They found an
increase in both the number of circulating NKT cells and the
number of IFN-g producing cells in the peripheral blood, but
the objective antitumor response rate remained low. Collec-
tively, these studies show that cancer patients have a defi-
ciency in both NKT cell number and function, which
suggests that in vivo NKT cell modulation may be ineffective
in patients with low NKT cells and further suggests that
adoptive immunotherapy of ex vivo-expanded NKT cells
may be a more productive strategy for these patients.

Adoptive Immunotherapy

Adoptive immunotherapy involves stimulation of tumor-
specific T cells leading to their ex vivo expansion, followed by
transfer of these expanded autologous T cells back into pa-
tients. The most successful efforts in cancer immunotherapy
have been focused on the expansion of melanoma-specific T

FIG. 1. NKT cells are potent
immunoregulatory cells that
can drive both antitumor im-
mune responses and protect
against autoimmunity. NKT
cells can produce both Th1 &
Th2 cytokines. Classic NKT cell
agonists are highlighted. a-
GalCer induces the production
of both Th1 & Th2 cytokine
profiles, while–OCH results in
primarily Th2 and c-GalCer
stimulates Th1 responses.
NKT, natural killer T.

506 SUN ET AL.



cells from surgically resected tumor samples or ex vivo ex-
pansion of melanoma-reactive T cells from the peripheral
blood patients. Studies by Rosenberg and others (1988) were
the first to demonstrate that ex vivo-expanded autologous
tumor-specific cells are able to traffic to tumor sites and di-
rectly induce tumor shrinkage, in vivo.

For classical CD4 + and CD8 + T cell subsets, effective
adoptive immunotherapy requires the expansion of large
numbers of tumor antigen-specific T cells for adoptive im-
munotherapy. Then, the expanded T cells need to migrate to
the site of the tumor and mediate their effector functions. A
limitation of this approach is that patients must have pre-
existing tumor reactive cells that are difficult to identify in
nonmelanoma malignancies. To overcome this limitation,
TCR gene transfer (Zhao and others 2007), MHC strepta-
mers, or chimeric antigen receptors (Morgan and others
2010) can be utilized. It has been hypothesized that the ef-
fectiveness of T cells after the TCR gene transfer is reduced
due, at least in part, to the pairing of the newly introduced
TCR a and b chains with the endogenous TCR proteins.
MHC streptamers are multimerized MHC-peptide com-
plexes that reversibly bind in an antigen-specific manner to
the TCR. Thus, a benefit to using these molecules is that
secondary enrichment steps can be performed in which one
could select for additional phenotypic markers to obtain an
optimal effector T cell subpopulation. A disadvantage is
that these molecules are only available for a select few
antigens, primarily viral antigens. As mentioned above,
tumor reactive T cells have been engineered to express
tumor-associated antigens or chimeric antigen receptors,
which make them tumor-specific rather than depending on
tedious isolation and expansion steps. However, the trans-
duced TCRa or b chains can mispair with endogenous
TCR and can potentially result in autoreactive cells and
toxicity from cytokine overproduction. Therefore, all of
these current methodologies have major limitations, indi-
cating an urgent need for the development of cell-based and
noncellular artificial antigen-presenting cells (aAPCs) for
the activation and expansion of tumor-specific T lympho-
cytes (Turtle and Riddell 2010).

Artificial Antigen-Presenting Cells

Cellular aAPCs derived from primary, transformed hu-
man, or xenogenic cells have been developed (Paulos and
others 2008). These cells are generated using retroviral or
lentiviral transduction to introduce molecules that provide
the necessary TCR, costimulatory, and adhesion molecules
necessary for synapse formation. One key example is the
human erythroleukemia cell line- K562, which does not ex-
press endogenous HLA A, B, or DR. Upon transduction with
the human Fc receptors CD32 and CD64, K562 can bind and
present anti-CD3 and anti-CD28. Recently, K562 cells were
transduced with HLA-A*201 and HLA-DR*0401, which
permits the presentation of exogenous peptide antigen or
endogenously processed antigens (Maus and others 2002).

The use of MHC streptamers, chimeric antigen receptors,
and cellular aAPC all have major limitations to their use as
effective therapy in patients. This has led to the development
of aAPCs. The artificial or noncellular aAPC can be utilized
both for their potential clinical value in ex vivo T cell ex-
pansion as well as to investigate the basic requirements for T
cell activation. It has been reported that soluble forms of

recombinant HLA-A2 molecules loaded with antigen-
associated peptides are able to directly target cognate CD8 +

T cells in vitro (Groh and others 2002). Tham and others
described one of the first bead-based systems, where they
coupled biotinylated murine MHC class I–peptide–single-
chain constructs together with biotinylated costimulatory
molecules B7.1 and B7.2 via streptavidin to the surface of
latex microspheres (Tham and others 2001; Goldberg and
others 2003). The limitation of this approach is that it uses a
single-chain MHC-peptide complex to ensure homogenous
loading of the MHC molecules. Consequently, each target
peptide antigen requires a new transfection for expression of
the desired single-chain MHC-peptide complex.

Studies from Schneck’s group pioneered the noncellular,
bead-based aAPC, made by coupling HLA-Ig (signal) and
anti-CD28 (signal 2) onto magnetic beads. His group initially
developed HLA-Ig, a unique multimeric form of HLA fused
to an immunoglobulin molecular scaffold (Dal Porto and
others 1993; Greten and others 1998). HLA-Ig as a molecular
scaffold for expressing soluble HLA molecules takes ad-
vantage of the intrinsic flexibility associated with Ig proteins
for expression of a dimeric HLA complex. Based on their
valence, these molecules can be used to stimulate antigen-
specific T cells and can be easily derivatized to solid sup-
ports, such as beads based on the Ig domains. Subsequently,
this group developed MHC-Ig-based aAPCs, which have
been shown to effectively expand CMV and MART-1-specific
CTL (Oelke and others 2003). To determine the effectiveness
of this approach on NKT cell propagation and activation,
CD1d-Ig-based aAPCs have been generated, see schematic
shown in Fig. 2 (Shiratsuchi and others 2009; Webb and
others 2009).

CD1d-Based aAPC

To date, immunotherapy utilizing the NKT/CD1d system
has been limited by the use of autologous antigen-presenting
cells (APCs) in the presence or absence of a-GalCer. The
quantity and quality of these stimulator cells can vary sub-
stantially. For example, it has been shown that monocyte-
derived DC from cancer patients, express reduced levels of
costimulatory molecules, and produce less inflammatory
cytokines (Onishi and others 2002; Bella and others 2003).
Therefore, Shimizu and others (2006) recently reported using
murine DC rather than autologous APC to test the function
of NKT cells from CML patients. However, this system can
only be used for in vitro testing, since NKT cells cannot be
expanded by murine DC and then given back to patients.
A standardized system that relies on aAPCs could produce
the stimulating effects of DC without the pitfalls of allo- or
xenogeneic cells.

Importantly, CD1d-Ig-based aAPC can be used for both the
activation and expansion of mouse and human NKT cells.
Since the engagement of the TCR by the CD1d-antigen com-
plexes is a fundamental requirement of NKT cell activation,
antigen:CD1d-Ig complexes, possibly along with appropriate
costimulatory molecules, potentially offer a reliable method to
isolate, activate, and expand effector NKT cell populations. In
addition, we have demonstrated that CD1d-Ig-based aAPCs,
made by covalent coupling of CD1d-Ig and potential costi-
mulatory molecules to magnetic beads can be used as a
standardized method for the propagation of NKT cells.
Importantly, this system can be used to expand the NKT cell
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population from the peripheral blood mononuclear cells
(PBMC) of cancer patients (Webb and others 2009).

The culture conditions have been optimized so that rela-
tively large numbers of Va24 + Vb11 + NKT cells can be ob-
tained and functional studies can be performed to assess
cytokine profiles and cytotoxic activity. Remarkably, when
compared to the standard protocol of Va24 + NKT cell pu-
rification using magnetic beads, followed by expansion using
a-GalCer pulsed, irradiated autologous PBMC, the CD1d-
based aAPC-expansion method results in similar NKT cell
expansion (Fig. 3) in donors with higher starting numbers of
NKT cells. For example, if cultures are initiated with 2 mil-
lion CD161 + CD3 + T cells, 2–3 weeks following aAPC cul-
ture one can expect to obtain beween 7–28 million cells, of
which 30%–70% are Va24 + Vb11 + NKT cells. Notably, in
samples from donors with lower starting percentages of
NKT cells, high levels of proliferation still occur using the
CD1d-Ig aAPC platform. This is important because the
adoptive transfer of 50 million NKT cells has been reported

in patients (Yamasaki and others 2011), thus, increasing the
starting cell number should permit the expansion of clinically
relevant numbers. The CD1d-based aAPC system was es-
tablished using a medium supplemented with human AB
serum and a monocyte-derived cytokine cocktail. In an effort
to move this system toward clinical standards, the protocol
has been modified to aAPC-mediated NKT cell expansion
using clinical grade IL-2 alone, specifically in the absence of
the cytokine cocktail.

Generation of NKT Cells Using aAPC
and CD34 + Cells

Despite the importance of NKT cells in regulating immune
responses, their low frequency significantly restricts their
potential for clinical application. It has been previously
shown that OP9 stromal cells transduced with Notch ligand
delta-like 1 (OP-DL1) can be used for the directed differen-
tiation of embryonic stem cells into T cell lineages (Schmitt

FIG. 2. Schematic diagram of CD1d-based aAPCs. aAPCs can be made by coupling CD1d-Ig and various costimulatory Abs
to magnetic beads. These noncellular aAPCs can then be loaded with lipid antigen of choice. In this system, CD1d-Ig is used
to provide the cognate antigen-specific signal through the TCR and anti-CD28, CD44, CD161 Abs will provide the costi-
mulatory signal. The B7–CD28 interaction was one of the first costimulatory pairs defined at a molecular level. As such, this
has served as a cornerstone for studies involving costimulation. However, these molecules may not be the major sources of
costimulation for NKT cells. In fact, a variety of additional costimulatory complexes have been defined over the past few
years, including CD161 and CD44, which will offer interesting alternatives to the B7–CD28 interaction. aAPCs, artificial
antigen presenting cells; TCR, T cell receptors.

FIG. 3. CD1d-based aAPCs can be
used to expand human NKT cells.
CD161 + T cells were isolated from
PBMC using magnetic bead separa-
tion. The cells were stimulated bi-
weekly with irradiated PBMC pulsed
with 100 ng/mL a-GalCer (10:1 ratio)
or a-GalCer-loaded aAPC +aCD28 (1:1
ratio). Data shown are after 2 rounds
of stimulation. PBMC, peripheral
blood mononuclear cells.
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and Zúñiga-Pflücker 2002; de Pooter and others 2003). The
induction of Notch signals directs stem cells to differentiate
into immature double-positive T cells and inhibits B cell
development, demonstrating that Notch signaling is re-
quired as a proximal event in T cell commitment from pro-
genitors (Robey and others 1996; Pui and others 1999). While
the OP9-DL1 system has been shown to generate function-
ally mature human CD4, CD8, regulatory T cells (Schmitt
and others 2004; La Motte-Mohs and others 2005; Hutton and
others 2009; Van Coppernolle and others 2009; Awong and
others 2011) and murine NKT cells from transduced em-
bryonic stem cells or fetal liver hematopoietic progenitors
(Nunez-Cruz and others 2008; Watarai and others 2010), it is
unclear whether this system could be utilized to generate
functional human NKT cells from adult stem cells. To ad-
dress this question, studies performed by our group have
recently demonstrated that functionally mature human NKT
cells can be generated in vitro from CD34 + cells utilizing the
OP9-DL1 system in combination with aAPCs (manuscript
submitted).

Our findings demonstrating that OP9-DL1 cultures in
combination with aAPCs support the differentiation of
functionally mature NKT cells are highly encouraging be-
cause the propagation of human NKT cells to date has been
technically challenging due to the low frequency of human
circulating NKT cells and no other culture system has been
previously reported to generate human NKT cells from adult
progenitor stem cells. In the context of adoptive immuno-
therapy, the generation of NKT cells from CD34 + cells iso-
lated from granulocyte-macrophage colony-stimulating
factor immobilized donors, bone marrow, or cord blood
could be utilized in combination with other tumor-specific T
cell types, as well as in the setting of transplantation to boost
host immune responses. Moreover, the availability of tech-
nologies and clinical grade reagents required for the selective
expansion of NKT cells coupled with the cost–effectiveness
and versatility of the bead based-aAPC system highlights the
feasibility of this therapeutic strategy.

The Function of Costimulatory Molecules
Can Be Assessed Using aAPCs

There has been great interest in the modulation of antitu-
mor T cell responses by engaging the TCR or by stimulation
through costimulatory pathways. While the intracellular sig-
naling for conventional T cells is well understood, this infor-
mation for NKT cells is as yet unavailable. Using aAPCs to
stimulate NKT cells, a thorough investigation of the intracel-
lular-signaling cascades using various different NKT cell li-
gands can be performed. These factors can yield other targets
to boost NKT cells responses along with administration of
activating ligands. CD1d-based aAPCs can also be redesigned
to include various costimulatory molecules. Since aAPCs can
be designed to express any costimulatory molecule, they can
lead to immediate identification of potential activating signals
that can be included during patient antitumor therapy. The
use of aAPCs for the activation of NKT cells facilitates the
study of cellular proteins and signaling molecules. It also al-
lows researchers to mimic various conditions of NKT cell
activation, since the precise mechanisms that drive different
types of responses are not completely understood.

Initial studies have been conducted to examine the impact of
varying costimulatory ligand complex on aAPC stimulation-

mediated expansion of NKT cells. T cell activation requires
delivery of a combination of signals through the TCR (signal
1) and through costimulatory molecules (signal 2), such as
engagement of CD28 by B7. One of the parameters that one
can vary easily using aAPCs is the ratio of signal 1 to signal 2
as well as the type of signal 2 delivered. As depicted in Fig. 4,
NKT cells express the majority of costimulatory molecules
found on classic CD4 + and CD8 + T lymphocytes.

Given the relatively high expression of CD44 and CD69 on
murine liver NKT cells, and the study by Larkin and others
(2006) identifying CD44 as a costimulatory molecule, we
generated CD1d-Ig aAPC to compared the costimulatory
potential of these molecules (Webb and others 2009), in the
context of 2 different NKT cell antigens, a-GalCer and-OCH
stimulation. We found that activation by a-GalCer-loaded
aAPCs was enhanced by the addition of CD44. A modest
increase was observed in the presence of anti-CD28, while
little or no effect was observed with anti-CD69. When we
examined the stimulatory capacity of OCH-loaded aAPCs,
the addition of anti-CD44 and CD28 resulted in a slight in-
crease cytokine production; however, anti-CD69 abrogated
activation in NKT cell hybridomas. We also characterized the
stimulatory potential of the aAPC using freshly isolated liver
NKT cells from C57BL/6 mice and found that anti-CD28 and
CD44 significantly increased NKT cell activation. Thus,
CD1d-Ig based aAPCs can be used to investigate the efficacy
of potential costimulatory molecules on NKT cell function.

To determine the impact of using different costimulatory
ligands (i.e., CD28, CD44, and CD161) (Exley and others
1998) on primary human NKT cell expansion, CD161 + CD3 +

T cells were isolated from the peripheral blood and stimu-
lated with human CD1d-based aAPCs in the presence or
absence of costimulatory molecules every 10–14 days. Table 1
shows that following 2 rounds of stimulation, a - GalCer
loaded aAPCs were able to expand the NKT cells population
in the presence of all costimulatory molecules examined.
Notably, the expansion rate was highly donor dependent. As
expected, the higher the initial population of Va24 + cells, the
greater the percentage of expansion. In addition, stimulation
with anti-CD28 in the presence of a cytokine panel results in
a significantly higher level of expansion of canonical NKT

FIG. 4. Potential costimulatory ligand-receptor interactions
between NKT cells and APC. A selection of the key costi-
mulatory molecule pairs involved in NKT cell activation is
depicted. The CD28 co-stimulatory families are shown above
the CD1d:TCR synapse and the CD40 families are shown
below. The arrow indicates cross-reaction between the re-
ceptor-ligand pair. APC, antigen-presenting cells.
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cells compared to the other costimulatory molecules exam-
ined. Ex vivo-expanded NKT cells remain responsive to
a-GalCer stimulation and are potent producers of IFN-g,
tumor necrosis factor (TNF)-a, and IL-17A (Fig. 5). These
data demonstrate that costimulation enhances NKT cell
proliferation as well as function, and that signaling through
CD28 is important for proliferation and cytokine production.
When the function of this ex vivo-expanded population was
assessed by intracellular cytokine/cytotoxicity staining, it was
found that different costimulatory elicited functional differ-
ences in the iNKT cell population, as determined by CD107a,
IFN-g, and IL-4 expression (data not shown). In addition,
expansion of different subsets of NKT cells (CD4+ , CD8 + ,
DN) appear to be dependent upon the type of costimulatory
molecule used (data not shown). Thus, these data suggest that
costimulatory molecule expression can be used to modulate
NKT cell proliferation and activation; consequently, a com-
bination of costimulatory signals may be necessary to expand
best effector NKT cell subset. Such studies facilitated by
aAPCs can provide valuable insights into the NKT cell acti-
vation process with respect to the activating ligand as well as
the APC and lead to the development of improved cancer
immunotherapy.

Different costimulatory molecules may modulate diverse
downstream signaling cascades. Collectively, these data are
very intriguing and have lead us to ask what are the mo-
lecular ‘‘triggers’’ that modulate NKT cell effector function.
Bessloes and others (2008) found that activation of IL-2R on
NKT cells leads to the induction of PI3K, ERK, p38MAPK,
and STAT 3, 4, 5, and 6, as well as IFN-g and IL-4. We
hypothesize that both environment and subset (CD4, CD8,
DN) play a role in determining the effector function of NKT
cells. Our data suggest that the expression of specific costi-
mulatory molecules alters the cytokine profile, cytotoxic
function, and the expansion of specific subsets of the NKT
cell population (Fig. 5, data not shown). In addition, prop-
agation of NKT cells in IL-2 alone compared to a monocyte-
derived cytokine cocktail had an effect on proliferation rates
(data not shown). It is unclear whether the kinetics alone are
affected or if different costimulatory signals will activate or
downregulate specific signaling cascades. We do know that
the data will significantly enhance our understanding of
NKT cell biology.

NKT-Specific aAPCs as Adjuvants

Considering the unique adjuvant effect that occurs fol-
lowing NKT cell activation and its modulation, other immune
effectors, developing combination therapeutic regimens that

activate NKT cells as well as promote adaptive immunity
may be very useful. Hermans and others (2003) found that
activation of NKT cells by administration of a-GalCer along
with i.v. delivery of soluble OVA protein resulted in the
significant enhancement of OVA-specific T cell response,
including CTL response upon cross-presentation ex vivo.
They also found a significant resistance to tumor challenge
when the mice were treated with OVA together with
a-GalCer before tumor challenge in their EG7.OVA mouse
cancer model. Fujii and others (2003b) also demonstrated that
a single i.v. injection of a-GalCer can rapidly mature DC
in vivo through activation of NKT cells and showed increased

Table 1. aAPC-Mediated Expansion of Natural

Killer T Cells

Fold expansion

aAPC HD1 HD2

hCD1 24.3 54
CD1/CD28 72 409.24
CD1/CD44 18.9 52.16
CD1/CD161 72.8 441.83
CD1/41BB 66.9 274.72

aAPC, artificial antigen-presenting cells.

FIG. 5. Cytokine profiles of aAPC-expanded NKT cells.
After stimulation with a-GalCer-loaded aAPCs for 2 weeks,
the expanded NKT cells (1 · 105/well) were cocultured with
soluble a-GalCer, PMA/ionomycin, aCD3/28 microbeads, or
a-GalCer-loaded aAPCs (2 · 105/well) for 48 h. (A) IFN-g, (B)
TNF-a, and (C) IL-17 production was measured by standard
cytokine ELISA. Data shown are net cytokine production after
subtracting the negative controls (media and empty beads).
IFN, interferon; TNF, tumor necrosis factor; IL, interleukin.
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CD4 + and CD8 + T cell immunity and high resistance to OVA-
expressing tumors.

Cytokine-Mediated Modulation
of NKT Cell Function

NKT cells are known to rapidly produce large amounts of
cytokines after activation. NKT cells are inherently capable of
producing Th1 as well as Th2 cytokines (Yoshimoto and
others 1995; Kawakami and others 2001; Miyamoto and
others 2001; Niemeyer and others 2008). The precise mech-
anism for cytokine bias still remains somewhat elusive al-
though several groups have cited one or more mechanisms
(Goff and others 2004). Previously, it was believed that the
cytokine response from NKT cells depends mainly on the
interaction between the glycolipid antigen and TCR or
the CD1d-binding properties of the antigen. This was sup-
ported by the observation that ligands like OCH, which are
known to bind less stably as compared to a-GalCer, elicit a
Th2 response (Velmourougane and others 2009). On the
other hand, compounds like a-C-GalCer, which have better
binding capabilities, stimulated a stronger Th1 response.
However, with the development of newer compounds such
as a-GalCer acC8 and a-GalCer acC20:2, the differences in
antigen–TCR interaction have proved insufficient to explain
the Th2 bias of particular compounds (Yu and others 2005).
A recent report has suggested distinct APC as the mecha-
nism driving different immune responses (Bai and others
2012). This was done using a CD1d conditional knockout
mouse model focusing on 3 major types of APC- DCs,
macrophages, and B cells. This study showed that Th1-bi-
ased ligands are more likely to be presented by DCs as
compared to other APC. On the contrary, Th2-biased ligands
were more likely to be presented on APC other than DCs.
This study further underscores the importance of APC in
eliciting appropriate NKT cell responses. The natural anti-
tumor immune response is typically characterized by Th1
cytokines, such as IFN-g (Molling and others 2005). This
leads to the rapid recruitment of CD8 + cytotoxic T lym-
phocytes, which can mount a strong antitumor cytolytic re-
sponse (Schofield and others 1987; Shibolet and others 2003).
This IFN-g response is fortified by a feedback loop involving
NK cells (Carnaud and others 1999). When DCs present
glycolipid antigen to activate NKT cells, they are also acti-

vated reciprocally due to CD40L expression on the NKT cell,
which engages the CD40 on the DC. This stimulation leads to
secretion of IL-12 by the DC. This IL-12 further activates NK
cells, which produce a second wave of IFN-g. Thus, the
primary Th1 response from the NKT cells can be boosted
and/or sustained due to DC IL-12 production and NK cell
activation. IL-12 and IL-18 produced by DCs are also known
to activate NKT cells in an antigen-independent manner.
Pathogens that do not bear NKT cell-activating glycolipid
antigens can thus activate NKT cells. For example, viral
pathogens bearing CpG DNA can activate TLR9 on DCs and
lead to the production of IL-12 and IL-18. These cytokines
can cause activation of NKT cells and lead to IFN-g pro-
duction (Tyznik and others 2008). Similarly, bacterial lipo-
polysaccharides can activate DCs in a TLR4-dependent
manner and lead to CD1d-independent activation of NKT
cells (Nagarajan and Kronenberg 2007). Administering cy-
tokines along with aAPCs can thus be a useful method to
achieve robust NKT cell responses by engaging both the
antigen-dependent and the antigen-independent routes of
NKT cell activation (Fig. 6). aAPC can allow fine tuning of
the immune response through administration of cytokines,
such as IFN-g to directly boost the Th1 response, or indirectly
using IL-12 to activate NK cells as well as NKT cells.

In an interesting study by Steenblock and others (2011),
biodegradable polymer-based aAPCs were generated, which
also released IL-2. Specifically, these avidin-coated aAPCs
contained biotinylated anti-mouse CD3, anti-mouse CD28,
and IL-2 biotin. Thus, the authors were able to investigate the
importance of the paracrine delivery of IL-2 on the activation
and proliferation of CD8+ and CD4 + T cells. It was found that
paracrine IL-2 delivery by aAPCs result in enhanced CD8+ T
cells proliferation, but caused activation-induced apoptosis in
CD4+ T cells. These studies also demonstrated the importance
of the temporal and spatial context in which the cytokine is
presented. The dose of aAPCs and cytokine can thus be
precisely controlled to achieve maximum possible antitumor
responses, while preventing detrimental immunopathology.
CD1d-Ig-based aAPCs thus provide a valuable tool for
stimulating NKT cell responses and afford a greater level of
control over the NKT cell responses generated by such anti-
cancer therapy (Webb and others 2009). There has been great
interest in the development of a-GalCer analogs to achieve
stronger Th1 responses (Lu and others 2006). However, the

FIG. 6. Cytokine driven NKT cell activation. PAMPs from pathogens, such as viral CpG DNA or bacterial LPS, can be
recognized by PRRs, such as TLR9 or TLR4, respectively. This leads to the activation of APCs, such as DCs, and results in
rapid IL-12 and IL-18 production. This cytokine signal can then activate NKT cells in a CD1d-independent manner. Thus,
pathogens that do not bear CD1d-binding antigens can also activate NKT cells in this manner. DC, dendritic cells; PAMPs,
pathogen-associated molecular patterns; LPS, lipopolysaccharides; PRR, pattern recognition receptors.
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role of APC in the modulation and sustenance of Th1 re-
sponses is now being appreciated, thereby making aAPCs a
valuable tool in the regulation of NKT cell responses elicited
by the administration of NKT cell antigens.

Polarizing NKT Cell Responses
Based on Antigen

The types of responses seen by effector cells can be greatly
altered depending on the type of antigen encountered by the
effector cell as well as the antigen-presenting molecule. In the
case of NKT cells, different analogues of a-GalCer [PBS57
(Courtney and others 2011), OCH (Velmourougane and
others 2009), and C-GalCer (Fujii and others 2006)] can elicit
Th1 (Wu and others 2011) or Th2 (Chang and others 2007)
responses (see Fig. 1). In addition to effector functions, these
lipid antigens can be used to initiate proliferation of NKT
cells. Typically, autologous dendritic cells are pulsed with
different lipid antigens, and then incubated with NKT cells
to determine which types of cytokines are secreted. This
process is laborious and time consuming. aAPCs can be in-
cubated with desired antigen and provide a constant source
of stimulation for the expansion and activation of NKT cells
(East and Sun, manuscript submitted). Our group has shown
that aAPCs are capable of enriching the NKT cell population
in PMBCs isolated from humans, while still retaining their
functionality (Webb and others 2009).

A number of different methods of delivery of a-GalCer have
been demonstrated to effectively stimulate NKT cells, seen
most often in the context of using these cells as vaccine adju-
vants. a-GalCer is considered a viable vaccine adjuvant be-
cause of its ability to stimulate NKT-mediated cytokine release
and its related biological functions (Subrahmanyam and Webb
2012). a-GalCer along with BSA, monophosphoryl lipid A,

polyinosinic–polycytidylic acid, and alginate in poly(lactic-co-
glycolic acid) (PLGA) microspheres has been used to stimulate
an increased peptide release in vitro and a more balanced IgG1/
IgG2 response versus soluble antigen in vivo (Salvador and
others 2012) Poly-lactic acid-based nanoparticles have been
used to present a-GalCer to NKT cells via dendritic cells and
macrophages, but not B cells (Thapa and others 2009) This
delivery method stimulates NKT cell growth and proliferation
over multiple administrations without inducing anergy. Simi-
lar methods have been successful in stimulating NKT cells,
including a- GalCer analogue KRN7000 encapsulated in
PLGA microspheres (Macho Fernandez and others 2012).

CD1d-Based Killer aAPC

Killer APC, like FasL-overexpressing DC, have been
shown to induce antigen-specific apoptosis of T cells in both
murine and human models. However, there is still a series of
concerns, such as biosafety, time-consuming and batch-to
batch variability. To overcome the limitations associated
with cell-based APC, bead-based Killer artificial antigen
presentation cells (KaAPC) have been developed and these
KaAPC specifically eliminated antigen-specific T cell in vitro.
Shen and others (2011) investigated the ability of KaAPC to
eliminate antigen-specific T cells in vivo and found skin al-
lograft survival was prolonged along with a decrease in
antigen-alloreactive T cells in a murine model of alloskin
transplantation. In addition, studies by Schütz and others
(2008), showed that KaAPC, made by coupling HLA-A2 Ig
and a-Fas IgM mAb covalently to the surface of beads suc-
cessfully deleted antigen-specific CTL in vitro from a mixture
of T cells with various specificities. Together, these studies
highlight the therapeutic potential of KaAPC strategy for the
treatment of autoimmune diseases and allograft rejection.

FIG. 7. Utilization of CD1d-based aAPC mediated activation of NKT cells as a broad-based platform. CD1d-Ig-based aAPC
is a unique system that can be used to characterize the requirements for NKT cell activation and proliferation both in vitro and
in vivo. Given the feasibility and reproducibility of this system, it can help us connect the dots and assess the costimulatory
requirements and tissue-specific differences in specific NKT cell subsets. In addition, NKT cells can be cultured with aAPCs in
the presence of certain cytokines or putative ligands and following activation, their downstream signaling kinetics can be
determined. aAPCs can be used to activate and expand NKT cells from humans as well different species of animals. Ongoing
studies are focused on comparing different matrices for optimal in vivo use. Then, one could potentially use the CD1d-Ig-
based aAPC to polarize NKT cell cytokine profiles in vivo and examine their efficacy in vaccination strategies to either
enhance NKT cell activation or specifically deplete undesired NKT cell responses.
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Type II NKT cells, also known as nonclassical NKT cells,
have a diverse TCR repertoire and exhibit inhibitory activity,
whereas type I NKT cells mount antitumor responses. Perhaps,
CD1d-based KaAPC can be used to aid in the selective removal
of type II NKT cells, so that one could restore the antitumor
effects mediated by type I NKT cells. In this case, one could
couple CD1d-Ig and anti-Fas L antibody to magnetic beads and
load the CD1d molecules with sulfatide. This would potentially
enable these KaAPC to specifically target the type II NKT and
induce apoptosis of these NKT cells. This strategy would need
to be tested rigorously by in vitro and in vivo experiments.

Conclusions

We have demonstrated that CD1d-Ig-based aAPCs, made
by covalent coupling of CD1d-Ig and potential costimulatory
molecules to magnetic beads, can be used as a standardized
method for the propagation of NKT cells. We designed an
aAPC, which is adaptable to any requirements we find
necessary for optimal NKT cell proliferation. When aAPCs
are compared to standard autologous PBMC-based induc-
tion and expansion, the current standard for NKT cell ex-
pansion, aAPCs compared favorably. As highlighted in Fig.
7, aAPCs represent a robust versatile technology useful for
inducing and expanding NKT cells. Together, these studies
demonstrate that the CD1d-Ig-based aAPC system has the
potential to provide a better understanding of NKT cell bi-
ology, which may lead to new strategies to enhance current
approaches in cancer immunotherapy.
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