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ABSTRACT

Motivation: Many complex diseases are the result of abnormal
pathway functions instead of single abnormalities. Disease diagnosis
and intervention strategies must target these pathways while
minimizing the interference with normal physiological processes.
Large-scale identification of disease pathways and chemicals that
may be used to perturb them requires the integration of information
about drugs, genes, diseases and pathways. This information is
currently distributed over several pharmacogenomics databases. An
integrated analysis of the information in these databases can reveal
disease pathways and facilitate novel biomedical analyses.
Results: We demonstrate how to integrate pharmacogenomics
databases through integration of the biomedical ontologies that are
used as meta-data in these databases. The additional background
knowledge in these ontologies can then be used to enable novel
analyses. We identify disease pathways using a novel multi-ontology
enrichment analysis over the Human Disease Ontology, and we
identify significant associations between chemicals and pathways
using an enrichment analysis over a chemical ontology. The drug–
pathway and disease–pathway associations are a valuable resource
for research in disease and drug mechanisms and can be used to
improve computational drug repurposing.
Availability: http://pharmgkb-owl.googlecode.com
Contact: rh497@cam.ac.uk
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1 INTRODUCTION
Pharmacogenomics aims to increase our understanding of the
effect of genetic variation on the response to drugs, thereby
leading to better health care through a more personalized and
precise approach to medical treatment of disease. To achieve this
goal, pharmacogenomics must combine and integrate data from
multiple domains, including information about drug actions, gene
functions, gene and protein interactions, pathways, gene expression,
phenotypes, disease and genetic variation. When this information
is combined, novel integrative analyses become possible that can
improve our understanding of drug actions and disease mechanisms.

In complex diseases, it is often not possible to identify single
aberrations underlying the disease. In order to provide possible
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diagnosis and treatments of such diseases, it is important that we
are able to identify aberrations in the biological pathways related
to such diseases in order to gain a better understanding of the
synergistic molecular functions of the involved gene networks and
their role in the disease. Network-based approaches can reveal
specific aberrations in the processes that make up such biological
systems. In particular, aberrant pathways can provide insights into
the systemic imbalance underlying a disease and can further provide
targets for disease intervention (Chen et al., 2012; Wang et al., 2012).
To identify aberrant pathways, access to information about pathway
participants as well as their potential interactions with chemicals
and diseases becomes important. One obstacle towards such an
approach lies with the distribution of information across multiple
heterogeneous resources.

The rapid increase of data generated from genetic analyses
and functional genomics has necessitated the development of
a number of pharmacogenomics-related databases that provide
invaluable resources for discovering information related to the
impact of gene variations to drug responses and toxicity (Sim
et al., 2011). One prime example of such a resource is the
Pharmacogenomics Knowledge Base (PharmGKB), a database in
which associations between drugs, genes and their variants, and
diseases is curated against primary scientific literature for which
there is indication of their pharmacokinetic and pharmacodynamic
properties (Thorn et al., 2010). PharmGKB’s data have been used,
among many things, to extract biomedical relations from text
(Coulet et al., 2011) and to make pharmacogenomic predictions
such as warfarin dosing (International Warfarin Pharmacogenetics
Consortium et al., 2009). Further databases that incorporate relevant
pharmacogenomic knowledge include DrugBank (Knox et al.,
2010), a richly annotated database of drugs and drug targets, and the
Comparative Toxicogenomics Database (CTD) (Davis et al., 2010),
which contains manually curated relations between chemicals,
genes and diseases and integrates them in a chemical–gene–disease
network to predict novel relations.

With the advent of the Gene Ontology (GO) (Ashburner et al.,
2000), ontologies are now being widely used for the annotation of
data in biomedical databases, including pharmacogenomics, drug
and disease databases such as the PharmaGKB, DrugBank and CTD.
Ontologies aid knowledge integration by providing a rich taxonomic
structure and axioms which makes some aspects of background
domain knowledge explicit. Based on the generalization hierarchy
available in ontologies, different resources can be integrated even
when exact matches between entities in different databases cannot be
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made. Furthermore, formalized ontologies make some aspects of a
term’s meaning explicit and therefore offer the tantalizing possibility
to standardize biomedical knowledge and exploit term meanings for
deductive inferences that can reveal relations across domains and
levels of granularity.

Many ontology-based approaches have focused on single
biomedical databases or domains, and they demonstrate querying,
retrieval and consistency verification within this database or
domain. However, in pharmacogenomics, different databases
provide different aspects about drugs, genes, diseases, pathways and
their relations, and integrating these aspects into a single framework
has the potential to extend and improve the databases’ utility for
scientific analyses. For example, while PharmGKB focuses on
interactions between particular gene variants and drugs, DrugBank
provides comprehensive information about drug–gene interactions.
The CTD, on the other hand, can add information about drug–disease
and gene–disease interactions, based not only on direct evidence
from primary research literature but also on network-based inference
of novel association relations.

Herein, we demonstrate the identification of aberrant pathways
by integrating PharmGKB with DrugBank and CTD. The integrated
pharmacogenomics knowledge base can be used to answer powerful
queries spanning multiple ontologies and therefore transcends
domains of knowledge and levels of granularity. We demonstrate
how the link to disease ontologies enables queries for disease
associations, and how the link with chemical ontologies allows
the reuse of chemical background knowledge to group drugs
based on their chemical properties and to access their biological
functions. We use these links to perform a statistical enrichment
analysis that reveals associations between pathways and the diseases
in which they are disturbed as well as between pathways and
chemical substances that can perturb the pathway. The integrated
knowledge, its associated resources, the generated pathway–disease
and pathway–chemical associations and the source code we
produced in our analysis are freely available at http://pharmgkb-
owl.googlecode.com.

2 MATERIALS AND METHODS

2.1 Software and ontology versions
We have incorporated several ontologies in our work. The Human Disease
Ontology (DO) is a community driven, freely available ontology that aims
to assist the integration of biomedical data that are associated with human
diseases (Chrisholm et al., 2011). DO contains links to various external
terminologies such as SNOMED-CT, UMLS, ICD-9, ICD-10 and Medical
Subject Headings (MeSH). DO was downloaded on July 19, 2011 and
contains 6433 classes of which 21% have textual definitions. DO contains
591 classes that are fully defined using external ontologies such as PATO
(Gkoutos et al., 2005), the Celltype Ontology (Bard et al., 2005), the
Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003) and
the Human Phenotype Ontology (Robinson et al., 2008). We further use
the mappings to the UMLS (Bodenreider, 2004) that are contained both
in the PharmGKB and in the DO (Osborne et al., 2009b) to identify
those diseases in PharmGKB that can be directly mapped to a disease
class in DO.

The ontology of Chemical Entities of Biological Interest (ChEBI) is a
free dictionary of molecular entities focused on small chemical compounds
(Degtyarenko et al., 2007). ChEBI classes carry a variety of information
including (Simplified Molecular Input Line Entry System SMILES) strings,
IUPAC names and references to the Chemical Abstracts Service Registry

Number. The ChEBI ontology was downloaded on July 19, 2011, and
contains 23 589 classes, 59% of which have textual definitions.

The Anatomical Therapeutic Chemical (ATC) Classification System
(Miller and Britt, 1995), controlled by the WHO Collaborating Centre for
Drug Statistics Methodology (WHOCC), provides a drug classification based
on a grouping according to the organ or system they act upon as well as their
therapeutic and chemical characteristics. ATC was downloaded from the
KEGG web site on July 17, 2011, and contains 10 167 classes.

PharmGKB data were downloaded from the PharmGKB web site on
October 1, 2011, and contain information about 3004 drugs, 3203 diseases,
27 421 genes and their relationships as well as 1408 pathways (including
pathways obtained from resources such as the Pathway Interaction Database).
The CTD is a database containing relations between chemical entities, genes
and diseases, and we downloaded the files on October 1, 2011. The DrugBank
database was downloaded on October 1, 2011.

DrugBank and CTD use the MeSH thesaurus to provide identifiers for
drugs and diseases. In the absence of a publicly available OWL version of
MeSH, we wrote a software to generate such an OWL representation and
make this software as well as the resulting OWL ontology freely available
(http://pharmgkb-owl.googlecode.com). The OWL version of MeSH that
we generate represents MeSH’s taxonomic identifiers as OWL classes
and taxonomic relations between them as subclass relations. Although
different formalizations have been discussed that use, for example, the
SKOS vocabulary and ‘broader-than’ and ‘narrower-than’ relations, the
representation we chose is motivated by our use case and evaluation
procedure.

A large number of tools are available to perform enrichment analyses
(Subramanian et al., 2005) over ontologies. The FUNC tool (Prufer et al.,
2007) is a generic ontology enrichment tool in that it is able to perform
four different kinds of tests (including correction for multiple testing) and
supports the use of arbitrary graph structures to perform enrichment analyses.
The graph structures must be represented in a format that corresponds
to the database format of GO. To enable FUNC to use graph structures
of ontologies that are being developed using OWL, we implemented the
OntoFUNC software which generates these graph structure representations
based on OWL ontologies. The OntoFUNC tool is based on FUNC
version 0.4.4, downloaded on August 25, 2011, from http://func.eva.mpg.de.
Currently, OntoFUNC use only the subclass relations in an OWL ontology
to generate a graph representation of an ontology’s taxonomy. To generate
an OWL ontology’s taxonomy, we use the ELK reasoner (Kazakov et al.,
2011) and perform queries for subclasses of each named class in the
OWL ontology. We make OntoFUNC freely available on http://ontofunc.
googlecode.com.

We have used the Groovy language to implement OntoFUNC and the
software to integrate the pharmacogenomics databases. Our software makes
use of the OWLAPI (Horridge et al., 2007) to generate OWL 2 ontologies
from the PharmGKB. The source code to perform the OWL-based integration
and analysis is freely available on our project web site. Furthermore, we
intend to update the resources and analysis results at least four times a year.

2.2 Upper ontology
We use OWL to formalize parts of the PharmGKB database, DrugBank
and CTD. Since we integrate large amounts of information, we restrict
our representation to the OWL EL profile (Motik et al., 2009) which
enables tractable automated reasoning (Hoehndorf et al., 2011a), but does
not support, among other OWL constructs, the use of inverse, functional
or symmetric object properties. We then demonstrate the integration of the
resulting formalization with the DO (Osborne et al., 2009a), the ChEBI
ontology, the ATC classification and the MeSH thesaurus. Based on the
resulting integrated ontology, we then show how property chains can be
used to enrich the knowledge available in these databases, demonstrate
powerful queries, describe our tool OntoFUNC and apply OntoFUNC for
ontology enrichment over DO in order to evaluate the representation we
develop.
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From the information that is present in PharmGKB, CTD and DrugBank,
we focus on the information about genes, drugs, diseases and pathways in
our formalization, and we assert relations between them using complex OWL
axioms.

Genes in PharmGKB represent both genes and their products, i.e. no
‘explicit’ distinction is made between them. Therefore, PharmGKB’s gene
entries are linked both to reference databases for genes (Entrez) as well as
gene products (UniProt). Some genes are linked to specific gene variants
(through a RefSNP identifier). In the PharmGKB, drugs are chemical
entities and may contain links to external databases such as the ChEBI
ontology, ATC or related pharmacogenomics resources such as DrugBank.
Diseases in PharmGKB are linked to external disease terminologies,
including SNOMED-CT, UMLS (Bodenreider, 2004), ICD-9, ICD-10 and
DO. Pathways in PharmGKB are sets of interactions that occur between
genes, proteins and drugs based on interdependent relationships and events
between the pathways’ participants. In PharmGKB, some pathways are
further associated with diseases. We use the classes from PharmGKB as
the foundation of our work: ‘Drug’, ‘Disease’, ‘Gene’ and ‘Pathway’. The
four upper-level classes are declared as ‘disjoint’, and we align the classes
found in DrugBank and CTD on these four classes.

Based on the distinctions made explicit in the PharmGKB, DrugBank
and CTD, we automatically generate a new class for each entry in these
databases and create an axiom that makes this class a subclass of either
Gene, Drug, Disease or Pathway. For example, the identifier PA28242 in
PharmGKB represents the class of FOXP2 genes in PharmGKB. We create
a class PA28242 as a subclass of Gene and we label that class FOXP2. The
identifier PA162263534 in PharmGKB, on the other hand, represents the
class of ‘Ototoxicity’, and we create the class PA162263534 as a subclass of
Disease and label this class Ototoxicity. CTD uses MeSH identifiers to refer
to drugs and diseases, and we do not add new classes but directly use the
classes in our OWL representation of MeSH.

2.3 Relations
Relations can be established between any of the classes in PharmGKB, CTD
and DrugBank based on the interactions ascribed by the database curators.
These relations are derived from statements in the literature and include
relations between genes and their variants, drugs, diseases and pathways
(Thorn et al., 2010). The literature descriptions of these relationships capture
a great variety of biologically diverse interactions. Such relationships can be
further characterized based on the type of entities they refer to (including their
domain and range) and the type of interaction between them. For example,
specific relations could be created to denote gene-to-gene interactions or
gene-to-disease interactions, while other relation types may characterize the
‘type’ of interactions between them.

Currently, specific relationships are not available in all the databases.
PharmGKB provides association relations, but not the mode of interaction
between drugs and genes. Consequently, we have introduced the relation
‘directly-associated-with’ and used this to formalize all the relationships
that are directly asserted in either of the integrated databases. In
particular, when we find an asserted association between a pair of
entities (X,Y ) in PharmGKB, DrugBank or CTD, we assert the OWL
axiom X SubClassOf: directly-associated-with some Y.
The relation ‘directly-associated-with’ is a sub-relation of ‘associated-with’,
which includes other types of association relations (in particular, associations
that are a consequence of participation in a pathway).

A second source of information about relations between drugs, genes and
diseases is available in PharmGKB’s representation of pathways. PharmGKB
contains pathway descriptions both from external resources and manually
curated pharmacologically relevant pathways. In these pathways, genes,
drugs and diseases may be ‘participants’. Further details about pathways
are available, including details about specific events and reactions, such as
the inputs and outputs of reactions, or phenotypes resulting from events.
Currently, we formalize only pathway components (i.e. its participants) and
leave the formalization of reactions and events as future work.

We introduce six relations of the types ‘has-participant’ and ‘participates-
in’ to distinguish different types of participation in a pathway: drug–
pathway, gene–pathway, disease–pathway, pathway–drug, pathway–gene
and pathway–disease relations. Each relation is further restricted by domain
and range assertions. For example, the drug–pathway relation (labelled ‘drug-
participates-in-pathway’) has its domain restricted to Drug and its range to
Pathway.

Based on these relations, we automatically create a formal description of
the pathways found in PharmGKB. For example, if we find a pathway P
described in PharmGKB that includes a drug D as component, we create the
two OWL axioms:

D SubClassOf: drug-participates-in-pathway
some P

P SubClassOf: pathway-has-participant-drug
some D

These axioms enable us to retrieve the pathway participants and further
distinguish their types. Although all pathways are also available in the
BioPAX format (Demir et al., 2010), which is an OWL-based representation
format, we do not use the BioPAX representation since it uses complex OWL
constructs that go beyond OWL EL.

2.4 Mapping of PharmGKB to DO
In PharmGKB, we identify 1823 diseases that can be mapped to DO. To
enable automated reasoners to use the mappings between PharmGKB’s
disease classes and DO, we include DO in the knowledge base we create and
generate an equivalent class axiom for each mapping. For example, ‘Hodgkin
disease’ (PA444485) is linked to the UMLS concept identifier C0019829,
and the DO class ‘Hodgkin’s lymphoma’(DOID:8567) is linked to the same
UMLS concept identifier. Based on this link, we generate the equivalent
classes axiom PA444485 EquivalentTo: DOID:8567. We further
create equivalent class axioms between MeSH’s disease classes and DO
classes when DO provides the information as a cross-reference.

3 RESULTS

3.1 Integration with disease ontologies
Based on the representation, we generated for the DrugBank,
CTD and PharmGKB, we can perform an integration with other
ontologies. First, we use mappings to ontologies of diseases and
other abnormalities to perform an integration with ontologies of
these domains. Such an integration allows us to use background
knowledge contained in these ontologies for queries, to increase
the expressivity of the representation and establish new connections
between classes in DrugBank, CTD and PharmGKB. Several formal
disease representations are available and are potential candidates for
integrating pharmacogenomics knowledge with representations of
diseases. We base our work on DO, since it is freely available and
actively maintained.

The mappings from PharmGKB and CTD to DO allow us to use
the additional knowledge contained in DO for querying the content
of the databases. For example, we can use inference over DO to
query for disease classes that are not available in the PharmGKB: a
query for things that are associated with ‘parasitic infectious disease’
(DOID:1398) will retrieve, among others, drugs associated with
‘Malaria’, ‘Scabies’ or ‘Schistosomiasis’. We retrieve 129 classes
as result to our query of things that are associated with ‘parasitic
infectious diseases’, including the anti-malarial drugs ‘chloroquine’
and ‘artemether’.

As a further extension of the query capabilities, we can
make use of the class definitions that were developed for DO.
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These definitions can link diseases to the agent that causes
the disease or to the disease’s anatomical location. In DO, the
infectious agents are specified through the NCBI taxonomy, while
the anatomical location is characterized through the ontology
of FMA (Rosse and Mejino, 2003). For example, the class
‘Chikungunya’ (DOID:0050012) is defined as a viral infectious
disease caused by a ‘Chikungunya virus’ (NCBITaxon:37124)
and located in the ‘joint’ (FMA:7490). Using these definitions,
we can ask for drugs that are associated with joint diseases using
the query class Drug and directly-associated-with
some (Disease and located-in some Joint). As a
result to this query, we obtain drugs such as ‘folic acid’(PA449692)
that are used to treat ‘arthritis’.

The link to DO does not only enable powerful, new queries
over the information contained in pharmacogenomics databases, but
further enables the possibility for enrichment analyses using DO
(LePendu et al., 2011). The additional links that are established
between DO and organism taxonomy as well as between DO
and anatomy ontologies can be used to further refine enrichment
analyses. Furthermore, these links enable enrichment for classes
from the linked ontologies. For example, using DO’s links to the
FMA (Rosse and Mejino, 2003), drugs can be grouped based on the
organs or tissue they interact with or grouped based on anatomical
systems in which they are active.

3.2 Integration with chemical ontologies
The second dimension of integrating pharmacogenomics knowledge
is in respect to ontologies of chemicals and drugs. The PharmGKB,
CTD and DrugBank provide references for the drugs they contain
based on the ATC, the ChEBI ontology and MeSH. The ChEBI
ontology is available in the OBO Flatfile Format (Horrocks,
2007) and can be integrated into OWL ontologies. ATC, however,
is not publicly available in a format that is compatible with
OWL. Therefore, we generated an OWL-based representation of
ATC ourselves and integrate this representation in the knowledge
base we create. Similar to the mappings between diseases in
PharmGKB and CTD, we generate equivalent class axioms when
the PharmGKB or DrugBank link a drug to a class in ChEBI. For
example, the drug ‘mercaptopurine’ (PA450379 in PharmGKB
and DB01033 in DrugBank) is linked to the ChEBI class ‘purine-
6-thiol’ (CHEBI:2208) and based on this information we create
an equivalent class axiom between the class PA450379 and
CHEBI:2208 as well as between DB01033 and CHEBI:2208.
We further use the cross-references provided by the CTD to create
equivalent class axioms between chemicals in MeSH and CHEBI.

Both the ATC and the PharmGKB distinguish between drug
classes and small molecules/drugs. In many cases, the link between a
specific drug or small molecule in the PharmGKB and the ATC does
not reflect an assertion of equivalence, but rather a subclass assertion.
For example, ‘mercaptopurine’ is linked to ‘purine analogues’
(ATC:L01BB) in the ATC. On the other hand, links between drug
classes in the PharmGKB and drug classes in ATC usually represent
assertions of equivalence. For example, the class ‘purine analogues’
(PA452634) in PharmGKB is linked to the corresponding class
in ATC with the intention that both are equivalent classes. Based
on these observations, we treat the link between PharmGKB and
ATC drug classes as assertions of equivalence, and the link between
drugs/small molecules and an ATC class as a subclass assertion.

Integration with the ATC and ChEBI ontologies of chemicals
enables expressive queries using the background knowledge
contained in both ontologies. For example, using the ChEBI
ontology, we are able to query for diseases associated with some
alcohol (ChEBI:30879) and obtain, among others, alcoholism
(PA443309) and bubonic plague (PA445338) as a result.
The disease alcoholism is directly associated with ethanol
(CHEBI:16236), a subclass of alcohol in ChEBI. Bubonic plague,
on the other hand, is directly associated with the drug phenylephrine
(PA450935) which is mapped to CHEBI:8093 which is, in turn,
a subclass of alcohol in ChEBI.

We can further use the relations that are asserted in the ChEBI
ontology to further retrieve specific classes. For example, we can ask
for diseases that are associated with mutagenic drugs acting on the
central nervous system using the classes mutagen (CHEBI:25435)
and central nervous system drug (CHEBI:35470) to ask for
subclass of:

Disease and directly-associated-with some
(has-role some Mutagen and
has-role some ’Central nervous system drug’)

The results of this query include a range of diseases and
associated genes that are found in CTD and PharmGKB and are
directly associated with the mutagenic central nervous system drug
Caffeine. For example, CTD results would include liver cirrhosis
(MESH:D008106) and anxiety disorders (MESH:D001008)
that are linked to the ADORA2A gene, while the PharmGKB
results would include schizophrenia (PA447216). By examining
the manually curated drug–gene interactions from DrugBank,
we retrieve a variety of genes that are linked to Caffeine
such as the PDE4B gene (Entrez Gene 5142), that neither
PharmGKB nor CTD include in their known drug–gene interactions.
Although PharmGKB links schizophrenia to caffeine, the additional
information available from DrugBank reveals the mechanism and
gene based on which the disease and drug are associated: in a
recent study, the gene encoding PDE4B was reported to be disrupted
in a subject diagnosed with schizophrenia and a relative with
chronic psychiatric illness (Millar et al., 2005), and together with
the interaction between PDE4B and caffeine, this gene and its
interactions provide the evidence for the link between caffeine and
schizophrenia. This connection cannot be discovered by examining
either of the three resources independently, and finding evidence for
this connection has the potential to provide a biological explanation
of the relatively unknown role that caffeine plays in patients who
suffer from schizophrenia (Martin et al., 2008).

3.3 Integration with pathway knowledge
We can further extend the set of drug–gene and drug–disease
associations that are available by applying the following rule: if
a drug D is a component of a pathway P, and that pathway has
another drug, gene or disease X as component, then the drug is
associated with X (via the pathway P). This kind of reasoning can
be captured in OWL with property chains. A property chain allows
to construct complex properties from simple properties by chaining
two or more properties together. For example, when we want to
infer from the assertions that, if a drug participates in a pathway and
the pathway has a gene as participant, that this drug is associated
with the gene (via the pathway), we first construct the complex
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relation ‘drug-participates-in-pathway’-followed-by-‘pathway-has-
participant-gene’, and assert this complex relation as a sub-relation
of the new relation ‘pathway-associated-with’:

drug-participates-in-pathway o
pathway-has-participant-gene
-> pathway-associated-with

We declare the relation ‘pathway-associated-with’ as a sub-
relation of ‘associated-with’ so that we are able to use ‘associated-
with’ for queries over all types of direct association in PharmGKB,
‘pathway-associated-with’ for the specific case that an entity is
associated with another entity through participation in a common
pathway, and ‘directly-associated-with’ for associations that have
directly been declared in either database.

Based on the property chain, we infer from the assertions
that a drug participates in a pathway and this pathway has
a gene as participant that there should be an association
relation between the drug and the gene. For example, from the
PharmGKB we obtain the information that doxorubicin participates
in the doxorubicin pathway, pharmacokinetics pathway (PA16529
2177). This pathway has, as one of its participants, the gene
AKR1C3 (PA24679). Based on the property chain, we added to
the knowledge base, we infer, through inference over participation
in the pathway, that AKR1C3 is pathway associated with the drug
doxorubicin.

We can then use this property chain to extend our
queries. Querying PharmGKB for things directly associated with
doxorubicin gives 411 classes as a result. When the property
chain is applied (using associated-with), we obtain 446 results,
including the genes that participate in the doxorubicin pathway.
We include property chains in our OWL representation to close
the pathway–association relation with respect to participation in the
same pathway.

3.4 OntoFUNC: identifying aberrant pathways
The structure of biomedical ontologies is not only a valuable feature
to enable retrieval and querying but is widely used in the form
of enrichment analyses to analyze, for example, gene expression
(Subramanian et al., 2005). An enrichment analysis uses the graph
structure of an ontology, such as GO, to determine whether a defined
set of genes shows statistically significant, concordant differences
between two biological states; it uses the annotation of a set of genes
with GO terms and the GO graph structure and inference rules to
statistically test for enriched GO terms.

We developed the OntoFUNC software, an extension of the
popular FUNC enrichment tool (Prufer et al., 2007), and applied
it to identify disease classes (from DO) and chemical classes (from
ChEBI) that are enriched in pathways. We first identify, for each
gene G contained in our combined knowledge base, the diseases
associated with G by using a subclass query of the form:

Disease and associated-with some G

For each pathway P, we then identify the genes that participate
in the pathway and use the hypergeometric test of the FUNC tool
to identify diseases that are enriched within the set of genes in the
pathway. We use FUNC’s option to correct for multiple testing using
a control of the family-wise error rate. Furthermore, we use FUNC’s
refinement operation that removes those significant classes that are

only significant as a result of their subclasses’ being significant. To
identify chemicals enriched in pathways, we use a similar method
based on an enrichment analysis over the ChEBI ontology and using
the query

Drug and associated-with some G

to identify chemicals that are associated with genes.
Using a P-value of 0.05 as measure of a significant association,

we identify 22 653 significant pathway–disease associations, out of
which 6304 are over-represented disease classes in a pathway and
16 349 are under-represented disease classes. We further identify
13 826 significant pathway–chemical associations, out of which
12 564 are over-represented chemical classes for a pathway and 1262
are under-represented chemical classes.

As one example, we explored the list of disease pathways
and found that the participants of the zidovudine pathway
(PharmGKB:PA165859361) are strongly over-represented for
‘mood disorder’ (DOID:3324) and the central compound
of the pathway ‘zidovudine’. Zidovudine is a nucleoside
reverse transcriptase inhibitor administered to patients suffering
from serious manifestations of HIV infections with acquired
immunodeficiency syndrome (AIDS) orAIDS-related complex (Arts
et al., 1998; Lewis et al., 2001). Known side effects of zidovudine
include fatigue, headache, and myalgia as well as malaise and
anorexia which clearly demonstrate the association of zidovudine
with mood disorders (Frissen et al., 1994; Max and Sherer, 2000).

As a second example, we investigated the pathway–chemical
associations and identified a strong association of the drug
clopidogrel (CHEBI:37941) with an Endothelin signalling
pathway (PharmGKB:PA164728163). Clopidogrel is a
thienopyridine-derived anti-platelet drug that inhibits platelet
aggregation and prolongs bleeding time (Herbert et al., 1993;
Savi et al., 1994). It is administered for inhibiting blood clots
thereby preventing ischemic events such as cardiovascular death,
myocardial infarction or stroke in atherothrombotic patients
(Bhatt and Topol, 2003). Clopidogrel results in inhibition of
platelet activation due to clopidogrel’s antagonism effect on the
platelets’ adenosine diphosphate receptors (Yang and Fareed, 1997).
Furthermore, clopidogrel has been shown to inhibit smooth muscle
cell mitogenesis (Bhatt and Topol, 2003) and modulate vascular
smooth muscle (Yang and Fareed, 1997). In particular, it has
been shown in rats and rabbits that it inhibits the serotonin- and
endothelin-1-mediated vascular smooth muscle contraction (Yang
and Fareed, 1997) thereby perturbing the endothelin signalling
pathway (PharmGKB:PA164728163).

The full dataset, including the significant associations, the plain
and the corrected P-values for all associations are provided at the
project web site (http://ontofunc.googlecode.com). To enable further
analysis, we also make the source code freely available.

3.5 Implementation and availability
We integrated PharmGKB, DrugBank and CTD databases using a set
of patterns based on which a large part of the content of PharmGKB,
DrugBank and CTD can be expressed in OWL. To enable the
integration of these databases, we generated an OWL version of
the MeSH thesaurus and the ATC, and we further use the ChEBI
ontology and DO in the integration. Application of our software
yields an ontology that contains >650 000 classes, 93 object
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Table 1. List of resources and software tools provided

Resource Description OWL version available from

Anatomical Therapeutic Chemical
Classification System (ATC)

Classification of drugs based on organ or system of action,
therapeutic characteristics and chemical properties.

http://pharmgkb-owl.googlecode.com

MESH vocabulary Controlled vocabulary used for indexing, cataloging and
searching for biomedical and health-related information
and documents.

http://pharmgkb-owl.googlecode.com

CTD CTD contains manually curated data about
chemical–gene/protein, gene/protein–disease and
chemical–disease associations, as well as predictions based
on a complex interaction network.

http://pharmgkb-owl.googlecode.com

DrugBank DrugBank contains detailed information about drugs and drug
targets.

http://pharmgkb-owl.googlecode.com

PharmGKB PharmGKB contains information about the effects of human
variation on drug responses.

http://pharmgkb-owl.googlecode.com

OntoFUNC Enables enrichment analyses over arbitrary OWL ontologies
using the FUNC tool.

http://ontofunc.googlecode.com

properties, >3 200 000 subclass axioms and >75 000 equivalent
classes axioms. The software that implements these patterns and
converts the databases, the software to generate OWL versions of
MeSH and ATC, and the resulting ontology files are freely available
on our project’s web site at http://pharmgkb-owl.googlecode.com.
Table 1 lists the resources and software tools we provide in order to
integrate and analyse knowledge in pharmacogenomics.

The ontology we create falls in the OWL EL fragment of
OWL (Motik et al., 2009) and consequently allows for tractable
automated reasoning using reasoners which are optimized for OWL
EL (Hoehndorf et al., 2011a; Kazakov et al., 2011). Using the ELK
reasoner (Kazakov et al., 2011), the ontology we create classifies
in <1 min on hardware consisting of two Intel® Xeon® 2.4 GHz
quad-core CPUs with 24 GB memory.

4 DISCUSSION
Relavant knowledge about pharmacogenomics is distributed across
several databases, each of which focuses on different aspects of
this complex domain. For example, in the PharmGKB, no extensive
information about drug–disease or gene–disease associations is
provided, but this information is contained in other databases such
as DrugBank and CTD.

Herein, we used the PharmGKB, CTD and DrugBank to
demonstrate how the combination of semantic web technologies
and formal ontological analysis can be used to integrate different
resources relevant for pharmacogenomics research. This integration
does not only lead to significantly improved capabilities for
knowledge retrieval but also enables statistical analyses of the
data in these databases that reveal associations between pathways
and diseases as well as associations between pathways and
chemicals. Although our approach is currently limited by the
depth and reliability of the data contained in the integrated
databases, both as a consequence of a lack of complete knowledge
on biological pathways and a lack of complete curation of
literature, methods of knowledge integration can provide the
means to generate insights that lead to more direct biological
investigation.

Biomedical ontologies and semantic web technology play a
crucial role in such integration methods. Ontologies provide a
rich taxonomic structure and axioms that can provide background
knowledge based on which knowledge from different domains can
be integrated. In particular, ontologies allow for a generalization
of concepts that is useful when exact matches between entities in
different resources are not possible and when a grouping of classes
based on various features is required. For example, through the link
to DO and the classification it provides, we are able to identify
specific neoplasms using the additional information provided by
DO’s classification of diseases. In additional, relations in ontologies
can be combined with information from the pharmacogenomics
databases in order to compose complex associations that cannot be
found within either database alone. For example, the background
knowledge in DO allows us to group drugs based on the anatomical
site at which they are active. This information may lead to additional
insights into the drugs’ mechanisms of action.

In order to use this background knowledge, it is necessary to
automatically process biomedical ontologies and extract relevant
knowledge. Semantic web technology, in particular automated
reasoning software, is now capable of processing large biomedical
ontologies, to process, verify and query OWL knowledge bases.
Recent progress in efficient automated reasoning, in particular
related to reasoning over large life science ontologies in the
OWL EL profile (Hoehndorf et al., 2011a; Kazakov et al., 2011)
has enabled the potential to use automated reasoning in software
application and scientific data analyses, and our performance results
of automated reasoning over the integrated pharmacogenomics
databases demonstrate that it is even feasible to implement real-time
query and analysis applications based on automated reasoning.

Our approach is not limited to the domain of pharmacogenomics
alone, but can serve as a model for integrative analyses in other
areas, including model organism databases (Hoehndorf et al.,
2011c), databases of protein functions, disease, phenotype databases
(Hoehndorf et al., 2011d) or databases of computational models
(Hoehndorf et al., 2011b). In each case, it is crucial to identify
relevant biomedical ontologies based on which the content of the
databases can be aligned, formalize the content of the databases
in such a way that it becomes possible to answer the relevant
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queries and perform the desired analysis. Such a model of knowledge
integration may enable novel analyses that connect different
domains, based on methods such as semantic similarity measures
or ontology enrichment analyses, and thereby provide a general
approach towards integrative bioinformatics analyses.
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