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ABSTRACT

Motivation: Low coverage sequencing provides an economic
strategy for whole genome sequencing. When sequencing a set
of individuals, genotype calling can be challenging due to low
sequencing coverage. Linkage disequilibrium (LD) based refinement
of genotyping calling is essential to improve the accuracy. Current
LD-based methods use read counts or genotype likelihoods at
individual potential polymorphic sites (PPSs). Reads that span
multiple PPSs (jumping reads) can provide additional haplotype
information overlooked by current methods.

Results: In this article, we introduce a new Hidden Markov
Model (HMM)-based method that can take into account jumping
reads information across adjacent PPSs and implement it in the
HapSeq program. Our method extends the HMM in Thunder and
explicitly models jumping reads information as emission probabilities
conditional on the states of adjacent PPSs. Our simulation results
show that, compared to Thunder, HapSeq reduces the genotyping
error rate by 30%, from 0.86% to 0.60%. The results from the 1000
Genomes Project show that HapSeq reduces the genotyping error
rate by 12 and 9%, from 2.24% and 2.76% to 1.97% and 2.50%
for individuals with European and African ancestry, respectively. We
expect our program can improve genotyping qualities of the large
number of ongoing and planned whole genome sequencing projects.
Contact: dzhi@ms.soph.uab.edu; kzhang@ms.soph.uab.edu
Availability: The software package HapSeq and its manual can be
found and downloaded at www.ssg.uab.edu/hapseq/.
Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Recent advances in array-based genotyping technologies and the
detailed catalog of genetic variants from the HapMap project have
enabled genome-wide association studies (GWAS) to successfully
identify hundreds of common genetic variants that are associated
with common human diseases (Altshuler er al., 2008; Hirschhorn,
2009; Manolio et al., 2009). However, majority of those common
variants only explain a small proportion of the estimated heritability
of common diseases. Therefore, efforts are turning to identify

*To whom correspondence should be addressed.

other factors, including rare genetic variants that may account
for the missing heritability of common diseases (Maher, 2008;
Manolio et al., 2009; McCarthy et al., 2008). Although array-
based genotyping technologies can genotype previously identified
variants, they are ineffective to identify novel rare variants across
the human genome. Recent advances in next-generation sequencing
(NGS) technologies provide an affordable way to capture both
common and rare variants effectively (Bentley et al., 2008; Metzker,
2010; Pushkarev et al., 2009). Indeed, low coverage sequencing
has already been adopted by the 1000 Genomes Project (Durbin
et al., 2010) aiming to establish an unprecedented comprehensive
catalog of human genetic variants in multiple populations. Due
to plummeting sequencing costs, whole genome sequencing is
becoming increasingly practically affordable in genetic association
studies of complex human diseases where hundreds or thousands
individuals are sequenced. We predict that a flood of sequencing
data will soon be available for genetic researchers.

The meaningful analysis of NGS data depends crucially on the
accurate genotype calling. Essentially, NGS technologies randomly
fragment the whole genome (or targeted regions of the genome) for a
number of individuals and generate short reads, typically 30-200 bp
in length, which are then mapped back to a reference genome. Often,
‘SNP calling’ refers to the identification of potential polymorphic
sites (PPSs), while ‘genotype calling’ refers to the determination of
actual genotype for each individual at each PPS (Nielsen ez al.,
2011). While these two tasks are not as clearly separated in
sequencing-based as in array-based genotyping, genotype calling
methods typically rely on a set of preliminary single nucleotide
polymorphism (SNP) calls and infer genotypes based on the counts
and qualities of reads covering PPSs carrying the reference and
alternative alleles. Unlike array-based genotyping technologies that
read out image intensities at each site probed, sequencing-based
genotyping methods typically start with counts of reads carrying
the reference allele or an alternative allele, or an inferred genotype
likelihood, at each PPS. Although the raw sequencing error rates of
individual reads are about 0.5-1.0% (Metzker, 2010), these errors
can accumulate when we are looking at billions of positions across
the genome. Moreover, due to the randomly sampling nature of
shotgun sequencing, some genomic regions may be covered by very
few reads or even no reads—this problem is especially severe when
dealing with low coverage sequencing data.

Several methods have been developed for genotyping calling.
Early methods generally consider the counts at each PPS for each
individual separately thus ignoring the linkage disequilibrium (LD)
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between nearby PPSs (Li ez al., 2008, 2009b). It has been shown
that such methods work well with high coverage sequencing data,
but have lower power and higher error rates for low coverage
data (Bentley et al., 2008; Wendl and Wilson, 2008). For example,
Bentley er al. (2008) reported an accuracy of 99% with 30x
coverage, Le and Durbin (2010) applied SAMtools (Li et al., 2009a)
to 100 samples of 4x coverage and found that the genotype error
rate can be as high as 28% for heterozygous sites. Therefore, newer
methods that utilize the LD among nearby PPSs are developed
(Browning and Yu, 2009; Duitama et al., 2011; Le and Durbin, 2010;
Li et al., 2010). Although the specific models used in LD-based
methods for genotype calling from NGS data are different, their
underlying principle is the same: short segments of chromosome
(haplotypes) are shared among individuals due to the LD so the
genotype at nearby PPSs can be used to infer genotypes at the PPS
of interest. LD-based methods achieve high accuracy for genotype
calling with low coverage sequencing data: Li et al. (2011) reported
that their Hidden Markov Model (HMM) implemented in Thunder
has an accuracy of >98% for genotype calling with 4x coverage
data. Nielsen et al. (2011) compared the GATK Unified Genotyper
(DePristo et al., 2011; McKenna et al., 2010) and the LD-based
method Beagle (Browning and Yu, 2009) and found that the use of
LD information greatly improved the accuracy for genotype calling:
Beagle has an accuracy of 96%, whereas GATK has an accuracy of
87% for high call rates.

An important piece of source of haplotype information is ignored
by existing LD-based genotype calling methods: the haplotype
information within individual reads. For example, we observe a
read having allele A at the PPS j and B at the PPS j+1, we know
that one of haplotypes of that individual is likely to be AB across
PPSs j and j+ 1. Existing methods essentially ‘break’ the haplotype
information of multiple PPSs covered by a single read and only use
counts observed at each PPS separately. One may argue that most
NGS technologies generate ‘short’ reads and thus it is unlikely that
a read will span more than one PPS and thus haplotypes within
individual reads may not offer much information. We have the
following reasons supporting the use of such haplotype information.
First, with the rapid advances of NGS technologies, new version of
these technologies can generate longer reads, thus the haplotype
information provided by these reads can be substantial and used
to improve the accuracy for genotype calling. Second, many new
NGS technologies can generate ‘paired end’ reads, which means
both ends of a DNA segment are sequenced. Apparently paired
end reads provide the long range haplotype information over PPSs.
Third, although the density of true polymorphic sites may not be
high, genotype calling algorithms will be working on a set of PPSs
made by a preliminary SNP caller that may contain false positives,
i.e. falsely reported PPSs that are actually monomorphic. Haplotype
information in reads covering more than one PPS will be useful for
genotype calling.

In this work, we introduce a new HMM that extends the Thunder
HMM of Li et al. (2010) to incorporate such haplotype information
in reads that cover two or more adjacent PPSs. We derive probability
calculations to have similar computational efficiency as Thunder. We
compare our method with Thunder through extensive simulations
and real sequencing data from the 1000 Genomes Project. Our
simulation and real data analyses show that our method outperforms
the Thunder method in terms of accuracy for genotyping calling in
many practical settings of sequencing experiments.

2 METHODS
2.1 Notations

For shotgun sequencing or other single molecular sequencing technologies,
we observe the counts at L PPSs for K individuals. Throughout, we assume
the makers are biallelic SNPs, with alleles labeled as A and B. We denote
C]I‘:(Ak,B;‘)(l:l,...,L and k=1,...,K) as the number of alleles A and
B that are observed at the PPS [ for the individual k from the reads that
cover a single PPS or multiple non-adjacent PPSs. Note that the both A;‘
and B;‘ can be zero if some PPSs are not covered by reads. We denote
R;‘ :(”,IX.A.I’”,I;B.I*”ZA,I*”][;BJ) is the number of combinations of bases A and
B across the PPSs [ and [—1 for the individual k that are simultaneously
observed in a single read. In this article, we only consider such data from two
adjacent PPSs. We remark that R and C =(A, B) represent non-overlapping
information. We denote G;‘ as the underlying genotype at the PPS [ for the
individual k, which is not observed and will be inferred on the basis of C;‘
and R];'

For the HMM implemented in Thunder (Li ef al., 2010), it assumes there
are H template haplotypes and each of them is sequenced at L PPSs. We use a
series of indicator variables S’l‘ Ve ,Sf (k=1,...,K) torepresent a hypothetical
(and unobserved) state sequence for the individual k, indicating to which
template haplotypes the individual k is closest at the PPS /. At a specific
PPS [, diploid state S;‘ :(x;‘ , y;") indicates that the two haplotypes of the
individual & are x;‘ and y;‘ out of the H template haplotypes, respectively.
For genotype imputation, both external haplotypes (e.g. haplotypes obtained
from the external reference data such as data from the HapMap Project)
and/or internal haplotypes (haplotypes estimated from sequenced individuals
in the same study sample) can be used as template haplotypes (Li et al.,
2010; Marchini et al., 2007). For NGS data, external haplotype templates
are often incomplete and/or unavailable. As a result, Thunder often uses
internal haplotype templates only. For K individuals, the number of internal
template haplotypes is 2(K — 1) and the template haplotypes themselves are
different across different individuals. For the rest of article, we will ignore
the individual index superscript k for the sake of simplifying notations. This
is fine because our algorithm runs in a Gibbs sampler fashion and iteratively
infers the genotypes and the underlying states for each individual given the
template haplotypes of the rest of the individuals.

2.2 The HMM for the whole genome shotgun
sequencing data in Thunder
The HMM in Thunder (Li et al., 2010) can be described as following:

PC.5)=pPe] ], Peiso[ ], PCiIs)

In the model, P(S;) denotes the prior probability of the initial state and
is usually assumed to be equal for all possible compatible haplotype
configurations of each individual, P(S;|S;—;) denotes the transition
probability between two states and reflects the likelihood of historical
recombination events between the PPSs [ and [—1, P(C;=(A;,B))|S))
denotes the emission probability, which is the probability of observed counts
conditioning on the underlying state at the PPS /. It is worth noting that A;
and By are the observed numbers alleles A and B at the PPS [ from all reads.

The genotyping inference algorithm is basically a Gibbs sampler: a
random pair of haplotypes of each individual is assigned according to
the observed counts data. Then, Si,---,S; for each individual k are
sampled separately according to the likelihood function L(S|C)xP(C,S).
Specifically, Sy, is first sampled according to P(C,S), then S;(I=L—1,...,1)
are sampled according to the following conditional probability:

P(S;1=(x1,yD|C=(Cy,...,CL),Si+1 = (X141, Y1+1)) X
P(Si1 =141, Y1+ D181 = 1, y))P(S1 = (x1, 1), Ci5 .., C1)

where P(S;=(x;,y1),Ci,...,C;) is the forward probability and can be
efficiently calculated through Baum’s forward algorithm (Baum, 1972). Then
S1,...,8¢ are used to impute genotype G1, ..., Gy, of that individual according

939



D.Zhi et al.

to P(C;=(A;,B;)|S;) and determine the new pair of haplotypes of that
individual. Then new pair of haplotypes replaces the old pair of haplotypes
and is used as the template haplotypes for other individuals. The sampling
procedure is performed over all individuals and repeated for a number of
times (e.g. 50-100). The consensus genotype and pair of haplotypes of each
individual can then be determined by averaging results over repeats.

It is worth mentioning the calculation of the forward probability here. The
forward probability can be calculated as following:

() =P(S1=(.y).C1.....C1)
=D POI= ). S =), Cr,...C)
=P(CIl$i=(x.y))
Dy 1 VP = (WIS = (0,1)

Note that the summation over all H? states and the overall complexity of
calculation can be O(H*) without the simplification. As we have mentioned
that the HMM often uses H=2(K —1) internal template haplotypes, the
direct calculation can be time consuming. However, the transition probability,
P(S;=(x,y)|S1—1 =(u,v)), only depends on if there is a recombination
between S; and S;_. Therefore, the calculation can be simplified so that
the complexity of the computation is O(H?) rather than O(H*) (Li et al.,
2010).

2.3 Extended HMM with the incorporation of
haplotype information from reads

We extended the HMM in Thunder by incorporating the haplotype
information of jumping reads and implemented it in the HapSeq program.
Essentially, the proposed HMM in HapSeq can be defined as following:

P(C,R,S)=P(S)P(R|S)P(CIS)
=reso[ T, Psilsi0] T, P®RiIS-1.5)

L
[1_ Pcisn

Here C and R are non-overlapping and independent because they are from
reads that cover only one PPS and reads that cover two adjacent PPSs,
respectively. There is one major difference between this HMM and the HMM
implemented in MaCH and Thunder. This HMM uses a separate emission
probability term, P(R;|S;—1,S5;), to model the jumping read information
(Fig. 1). P(R;|S;—1,S)) is the probability of observed number of jumping
reads conditioning on the underlying state at the PPSs /—1 and /. Note that
the emission probability P(R;|S;—1,S;) not only depends on S; but also S;_;
because R; actually is the observed number of haplotypes across the PPSs
[—1andl.

Once the prior probability [P(S])], the transition probability [P(S;|S;—1)]
and the emission probability [P(C;|S;) and P(R;|S;—1,S;)] are defined (please
refer to Section 2.4 for details), we can use the same Monte-Carlo procedure
used in MaCH and Thunder to sample Sj,...,Sz, impute the genotype and
determine the pair of haplotypes of each individual. Here we just describe the
procedure to sample Sy, ...,Sr. S, is first sampled according to P(C,R,S),
then S;(/=L—1,...,1) are sampled according to the following conditional
probability:

P(S1=(x1, yDI(C, R), Sp1 = (X141, Y1+1))
XP(Ri411S141 = (141, Y1415 81 = (1, y)) % P(Sp41 = (141, i )1S1 = (x1, y1))
*P(Si=(x1,3,Cy,...,ClLL Ry, ..., Rp)
=PRi411S141 = (141, y141), S1 = (x1, 1))
*P(Sp41 = (i1, i DIS1= (s y)e (xa, yi),

where  «o;(x,y)=P(S;=(x,y),Cy,...,C,Ry,...,R;) is the forward
probability and can be efficiently calculated through Baum’s forward
algorithm. Again, the calculation can be simplified so that the complexity
of the computation is O(H?) rather than O(H*) when only the internal
haplotype template is used (please refer to Section 2.5 for more details).

/ HapSeq
Thundc-r \ / \ / \
\u \- : >
\ C G Cy AR
\\\\..._ L1 | 1 i 2 ¥ }..

Fig. 1. Schematic illustration of the HMM in Thunder and HapSeq. For
the HMM in Thunder, there is only one term for the emission probability,
P(C|S;). For the HMM in HapSeq, an additional emission probability term,
P(R;|S;-1,51), is used to model the jumping read information.

2.4 Formulas used in the HMM in HapSeq

We further denote 7;(i)(I=1,...,L and i=1,...,H) as the allele observed at
PPS [ in the template haplotype i, so Tl(Slk) ={T; (x;C ), Tl(y;‘)} is the observed
genotype at the PPS /for the individual k given the underlying hidden state S{‘ .

The prior probability, P(S;), is assumed to be equal for all possible
compatible haplotype configurations of each individual. This definition is
the same as the definition in MaCH and Thunder (Li et al., 2010).

The transition probability, P(S;|S;—1), is also the same as that is defined in
MaCH and Thunder (Li et al., 2010). Specifically, the transition probability
is defined as a function of the crossover parameter 6;:

0?/H? if x; #x-1 and y; #y-1,
P(S)|Si—1)= 1 (1—6)6;/H +6? /H* if x; #x1—1 or yi #yi-1,
(1—6)* +2(1—0))6;/H+6?/H? if x;=x;_1 and y;=y,_|.

The emission probability, P(C;=(A;,B;)|S;), is the same as that is defined
in MaCH and Thunder (Li er al, 2010) as well. Specifically, the
emission probability is the summation over all possible genotypes of
G|(A/A,A/B,B/B):

P(Ci=(A1,B)ISH= ZG, P(GIISHP(Cr=(A1,B)IG).

P(G/|Sy) is the emission probability of an observed genotype and is defined
as a function of the error parameter &;:

(1—g)?+¢&? Ty(S))=A/B and G;=A/B

2(1—e)e; Ti(S;)=A/A or Ty(S;)=B/B and G;=A/B,
P(GIIS) = (1—g)? Ti(S))=G;=AA or T\(S;)=G,;=B/B,

(1—¢p)e; Ti(S;))=A/B and G;=A/A or G;=B/B,

& Ti(S))=A/A and G;=B/B,

e Ti(S))=B/B and G;=A/A.

The error parameter ¢; reflects the combined effect of gene conversion,
mutation and genotyping error.
P(C;=(A;,B)|S)) is defined as a function of the error parameter §:

Binomial(A;,A;+B;,1-68) Gi=A/A,
Binomial(A;,A;+B;,0.5) G;=A/B,
Binomial(A;,A;+ By, ) G;=B/B.

P(Ci=(A;,BD|G))=

The error parameter 8 reflects the per base sequencing error rate and can be
separated from the effect of mutation and gene conversion captured by ¢
(Li et al., 2010).

The emission probability, P(R;|S;—1,S;) is based on two haplotypes Ay;
and hy; defined by S;—1 and S; across the PPSs /—1 and [/ and the error
parameter 8, in which the error parameter § is the same as in P(A;, B;|S;)
and reflects the per base sequencing error rate. Specifically, P(R;|S;—1,S) is
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defined to follow a multi-nominal distribution:
P(R;=(naa.i,nAB.1,1BA.1,7BB.1|SI-1,51))
=P(R;=(naa.1,n48,1,78A.1- 78,1 | (h11, h21))
< P(AA|(h11, hop))" A4 P(AB|(hyy, hop)) ™8
*P(BA|(h11, h2))"841 P(BB|(hyy, hap))"BB

where
P(AA|(h11,h21) =0.5%P(AA|h11)+0.5% P(AAlhy).
and
(1=28)2, if two hapolotypes are identical (h=AA),
P(AAh)={ 8(1—=34), if two haplotypes differs at one site (1=AB),

82, if two haplotypes differes at both sites (2 =BB).

P(AB|(/’lll,h2])), P(BA\(hu,hz[) and P(BB|(h11,h2[) can be defined

similarly.

2.5 The algorithm for the efficient calculation of
forward probabilities

First, we define the following forward probability, o;(x,y)=P(S;=
x,y),Ci,...,C1,R,...,R;), the joint probability of hidden state S; and
observed C=(A, B), and R from the PPSs 1 to [, then:

ai(x,y)=P(S1=x,y),C1,....,C1,Ra,....R)

:Z(M’V)P(S[:(ny)ysl—l =u,v),Cy,...,C1,Ry,....R))

=3 [P(ClIR., S; = (x, y)P(R;|S1 = (x,¥), Si—1 (e, v))

P(S1 =, )IS1-1 =, v))P(Si—-1=(u,v), C1,....Ci-1. Ry, ..., R1-1)]

=P(Ci|S1=(x,y)

3 um [i—1 U, VIP(S = (X, )IS1-1 = (u, V)

P(R1S1=(x,y), S1-1(u,v))]
From this formula, we first write it out according to the transition probability,
P(S;=(x,y)|S;—1=(u,v)) and notice that this probability actually only
depends on if there is a recombination between S; and S;_1:

Bi(x,y)

=2 Q=1 U PS = (x,Y)IS1-1 = (u,v))

*P(Ry|S;=(x, ), S1-1(u,v))

= -1 P(RIS) = (x,3). S1-1 (x, )1 =)

+>, -1 G, VIP(RIS1 = (x,), S1—1 (6, v)(1 = 0)6, /H

+> -1 (PR S = (x, ), S1—1(u, y))(1 —6))6;/H

+ 3 @1 W VIPRIS = (x,3), Si— 1w, v)(6] /H?)
We further define the following quantity:

Dix.y)=) a1 VPRI = (6.y).S1-1(x,v)).

And notice that P(R;|S;=(x,y),S;—1(x,v)) is a function of alleles observed
at PPS j for the template haplotypes x and y and alleles observed at PPS j —1
for the template haplotypes x and v. Specifically, P(R;|S;=(x,y),Si—1(x,y))
is a function of Ty(S;=(x,y)={T;(x),T;(y)} and T;_1(S;—1=(x,v))=
{T1—1(x), Ti—1(v)}. Since T;(y) can only take two possible values: A and B,
we only need to calculate two different D;(x,y). In summary, we can define:

Dy(x,y)= Zv‘)‘l” (xP(R1|S1=(x, ), Si—1(x,v) =Dy (x, Ti(y))
Similarly, we can define:
Ei(x.y)=)_ 1@ y)PRISI=(x.5).8-10,) = E((T)(x).y)
and
Fixy)=) Y i v)PRIS = (6. 811 (. v) = Fi(Ti@). Ty ()

These quantities only need to be calculated once before each of «;(x,y) and
Bi(x,y) are calculated and the overall complexity of such computation is
O(H?), where H is the number of template haplotypes. In summary, the
forward probability can be calculated as following:

a;(x,y)=P(Ci|S;=(x,y) i (x, y) =P(C1|S; = (x, y))*

(o1, Y)P(RI|S = (x, ), Si—1 (x, ))(1 —6))?

+Di(x, Ti(y))(1 — 606 /H + E|(T)(x), y)(1 —0,)6; /H

+F(Ti00, Ti0))6; /H?)]

with an overall computational complexity of O(H?) instead of O(H%).

2.6 Simulation settings

We used simulated sequencing data to assess the performance of Thunder and
HapSeq. We first generated 3000 chromosomes, each of length 100 kb, using
the cosi program (Schaffner et al., 2005) that is based on a coalescent model,
the ‘European population’ in the ‘bestfit’ model distributed with the cosi
package, taking into account the HapMap LD patterns, local recombination
rates and recent human population demography. We then generated 16 sets
of chromosomes, representing all combinations of sample sizes (K =60 or
K =100), read lengths (36 or 75bp), sequencing error rates (0.2 or 0.5%)
and paired end setting (‘paired’ or ‘unpaired’).

For each set, we generated sequencing reads of 4x coverage. Read
starting positions were placed uniformly randomly along the chromosome,
and sequencing errors were generated uniformly randomly along the length
of the reads as well. For paired end settings, we assumed an ‘insert fragment’
length of 200bp. The starting positions of insert fragments were placed
uniformly randomly along the chromosome, and a pair of reads from each
end of the insert fragment was generated. Our simulation did not incorporate
biases in real sequencing data such as read starting position preferences,
sequencing error biases and variations of insert fragment lengths.

Because of the large number of sites probed and the sequencing
error rates, many non-polymorphic sites may harbor one or more bases
other than the reference. To focus time-consuming LD-based analyses
on likely polymorphic sites, genotype calling algorithms typically first
promote polymorphic sites with reads carrying different alleles, designated
as ‘potential polymorphic sites’. There is a practical decision as to what are
the optimal site promotion criteria. Strict criteria will purge out false positive
polymorphic sites and thus lower the computational cost, but also run the
risk of eliminating true polymorphic sites. On the other hand, lenient criteria
will keep more true polymorphic sites, but with a higher computational cost
for genotype calling. We followed Li ef al. (2010) and calculated the score
w= Z,’;l %ﬂ), where ci is the minor allele count of individual k at each
site. We promoted sites with w > 5 for K =60 and w > 7 for K =100. We ran
Thunder and HapSeq to these sites with 10 different random seeds and used
the internal haplotype template. The average genotypic discordance rate, the
percentage of imputed genotypes that are inconsistent with the true genotypes
and the average switch error which is defined as number of switches between
the original haplotype and the reconstructed haplotype, are used as criteria
to quantify the performance of Thunder and HapSeq.

2.7 Evaluation using the 1000 Genomes Project
pilot data

Simulations may not be able to capture all complexities arose from real
sequencing data. Therefore, we evaluated Thunder and HapSeq using
the 1000 Genomes Project pilot data. The low-coverage pilot data of
chromosome 20 are downloaded for 47 individuals of Utah residents with
Northern and Western European ancestry from the CEPH collection (CEU)
and 52 individuals of Yoruba in Ibadan of Nigeria (YRI) from http://www.
1000genomes.org/. We used the polymorphic sites (but not the genotypes)
defined in the VCF files (1000G-PS) and then an internal perl script to parse
the BAM files for each individual to obtain the read counts and jumping
reads information at these sites. We ran both Thunder and HapSeq and
compared the estimated genotypes against the corresponding genotypes that
are available in the HapMap project. A more detailed description of the
evaluation process can be found in the Supplementary Material.

3 RESULTS

3.1 Overall results from simulations

Across 16 simulation settings, the average genotypic discordance
rates of HapSeq and Thunder are 0.60 and 0.86%, respectively
(Table 1 and Fig. 2). In other words, HapSeq makes 30%
less genotypic errors than Thunder. For each simulation setting,
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Table 1. Genotyping accuracy of Thunder and HapSeq across 16 different experimental settings

Site type Total site Thunder HapSeq Absolute Relative
count discordance discordance discordance performance

rate (%) rate (%) change (%) gain (%)

Total 935 880 0.86 0.60 0.26 30

Heterozygous sites 133 337 1.26 0.94 0.31 25

Homozygous sites 802 543 0.78 0.55 0.23 29

Homozygous reference sites 532 255 0.78 0.54 0.25 31

Homozygous alternative sites 270 288 0.75 0.55 0.20 27

Sites not covered by jumping reads 411 098 0.91 0.64 0.27 30

Sites covered by jumping reads from either left or right 353538 0.85 0.57 0.28 33

Sites covered by jumping reads from both left and right 171 244 0.76 0.43 0.32 43

Sites with depth = 0 18 011 0.86 0.63 0.23 27

Sites with depth >4 535763 0.67 0.50 0.18 26

Site with 0 < depth < 4 382 106 1.09 0.72 0.37 34

Sites with sequencing error 39 589 6.16 4.62 1.54 25

Sites with MAF = 0% 481 060 0.97 0.67 0.30 31

Sites with 0 < MAF < 1% 35380 1.10 0.80 0.31 28

Sites with 1% < MAF < 5% 52 960 1.17 0.90 0.27 23

Sites with MAF >5% 366 480 0.79 0.58 0.21 26

Site counts are over all PPSs over all 16 experiments. Absolute discordance change is the difference between the genotypic discordance rate of Thunder and that of HapSeq. Relative
performance gain is the fraction of absolute discordance change over the discordance rate of Thunder.

the P-value was calculated using the t-test across 10 runs with
different random seeds. For 13 simulation settings, HapSeq has a
smaller number of discordant genotypes than Thunder in each run
and HapSeq performs significantly better than Thunder with the
P <0.05. For 2 simulation settings, both with the read length of
36 bp, in average HapSeq has less number of discordant genotypes
than Thunder but has larger number of discordant genotypes than
Thunder in some runs. For the setting with the sample size of 100, the
sequencing error rate of 0.2%, and the read length of 36 bp, Thunder
outperforms HapSeq for 0.001% in terms of genotypic discordance
rate. This may be due to the small percentage of jumping reads
from shorter reads and the higher power of larger sample size. In
terms of switch error, HapSeq has smaller number of switch errors
than Thunder but only performs significantly better than Thunder
with the P < 0.05 in 8 of 16 simulation settings (Fig. 3). Since our
method is equivalent to Thunder when no jumping read information
is included, all performance gain can be accredited to the haplotype
information brought by jumping reads. We analyze the prevalence
of jumping reads and characterize their contribution to the genotype
calling accuracy in details in subsequent sections.

3.2 Prevalence of jumping reads from simulations

It is not immediately clear if the jumping reads will be present
frequently in a typical sequencing project. Our simulation results
showed that indeed there is a substantial portion of jumping
reads among total reads in a reasonable sequencing project
(Supplementary Table S1). We define jumping reads as the reads
that cover more than one adjacent PPS. There are two measures of
jumping read information: the percentage of reads that are jumping
reads, and the percentage of PPS that are covered by one or more
jumping reads. Even for the small sample size (K= 60), the short
reads (36bp) and the very low sequencing error rate (0.2%), 6%
of the reads are jumping reads, and over 15% of PPS are covered
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Fig. 2. The comparison of Thunder and HapSeq in terms of the number of
discordant genotypes. P-values were calculated using the -test across 10
runs. In each panel, the four comparisons between Thunder and HapSeq are
from the following simulation settings (from left to right): (i) read length
of 36 bp without paired end reads; (ii) read length of 36 bp with paired end
reads; (iii) read length of 72 bp without paired end reads; and (iv) read length
of 72 bp with paired end reads. *P < 0.05; **P < 0.001.

by the jumping reads. The percentage of jumping reads and the
percentage of PPS covered by the jumping reads increase with the
sample size, the read length and the error rate. For the large sample
size (K= 100), the long reads (75 bp) and the high sequencing error
rate (0.5%), ~57% of reads are jumping reads and ~90% of PPS
are covered by the jumping reads.
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Fig. 3. The comparison of Thunder and HapSeq in terms of the number of
switch errors. P-values were calculated using the 7-test across 10 runs. In
each panel, the four comparisons between Thunder and HapSeq are from
the following simulation settings (from left to right): (i) read length of 36 bp
without paired end reads; (ii) read length of 36 bp with paired end reads; (iii)
read length of 72 bp without paired end reads; and (iv) read length of 72 bp
with paired end reads. *P < 0.05; **P < 0.001.

Several factors influence the prevalence of jumping reads in
a sequencing project as observed in Supplementary Table S2.
Basically, the larger sample size will bring in more true population
polymorphic sites. In addition, both the larger sample size and
the higher error rate introduce more sequencing errors and thus
potentially creating more falsely promoted polymorphic sites. These
will result in denser promoted polymorphic sites, and thus create
more jumping reads. Although these reads are not jumping reads
that cover true polymorphic sites per se, they do provide useful
information for picking up falsely promoted sites. Obviously, the
longer reads will create more jumping reads. However, the paired
end reads do not necessarily create more jumping reads. This is due
to that our definition of jumping reads is those reads that cover two
adjacent PPSs. For a paired end read, it will skip the PPSs between
the pair of reads and actually could reduce the number of jumping
reads. Nonetheless, the paired end reads bridge PPSs with greater
distances apart, and thus contain the long range haplotype and LD
information that can be used to improve the accuracy of genotyping
calling. Finally, the prevalence of jumping reads is a result of the
conscious choice of the site promotion criteria that intentionally let
in some falsely promoted polymorphic sites, in order to maintain
the power to detect true polymorphic sites.

3.3 Genotypic discordance stratified in different
polymorphic site types from simulations

We characterize the performance gain of HapSeq over Thunder
in different types of PPSs by summarizing over all 16 simulation
settings. It is clear that HapSeq outperforms Thunder in all settings.
We discuss the performance gains in different types of PPSs in details
as shown in Table 1.

First, the absolute discordance rate improvement is 0.31% among
the heterozygous sites, which is higher than that of 0.23% among
the homozygous sites. However, the relative performance gain of
HapSeq over Thunder is actually higher among the homozygous
sites than that among the heterozygote sites, due to overall higher
discordance rates in the heterozygous sites to begin with. Among
the homozygous sites, both Thunder and HapSeq have the similar
accuracies for the homozygous reference and alternative sites.

Second, HapSeq outperforms Thunder in both PPSs covered
by jumping reads and PPSs not covered by jumping reads. It is
reassuring to see that the improvements of HapSeq over Thunder at
the sites that are covered by the jumping reads are higher than those
at the sites that are not covered by the jumping reads, both in terms of
the absolute discordance rate changes and the relative performance
gain. This result highlights the contribution of the jumping reads
in the performance gain. PPSs that are not covered by jumping
reads have a higher discordance rates for both Thunder and HapSeq.
This is likely due to that these PPSs are in a greater distance away
from nearby PPSs, and thus less haplotype and/or LD information
is available. It is interesting to note that the performance gain is
present at all PPSs that are not covered by the jumping reads. This
can be attributed to the overall improvement of haplotype inference
by using the haplotype information of jumping reads.

Third, the performance gain is present across the PPSs with high,
low or no sequencing coverage. Both Thunder and HapSeq perform
less well with PPSs with depth is <4, where the sequencing errors
interfere with the true genotypes the most. This is also where the
performance gain is the highest. It is interesting to see that both
programs perform better for the PPSs with zero coverage than the
PPSs with coverage <4. It may be due to that no sequencing error
is present to interfere with the true signal.

Forth, PPSs with the sequencing errors are obviously the most
challenging group. Both Thunder and HapSeq have discordance rate
>4%. This group, representing 4% of all PPSs, accounts for 30
and 33% of all genotyping errors made by Thunder and HapSeq,
respectively.

Lastly, performance gain is observed for both the common
and rare variants. We observed that the performance is higher
for the polymorphic sites with minor allele frequency (MAF)
>5%, and lower for the polymorphic sites with MAF < 5%. It is
notable that the performance for the polymorphic sites with 0 <
MAF < 1% is actually better than that for the polymorphic sites
with 1% < MAF < 5%. A similar trend was observed in Li et al.
(2011). The greatest performance gain, 31%, is seen in PPSs with
MAF =0, i.e. falsely included monomorphic sites.

3.4 Comparison of genotypic discordance over
different simulation settings

We also highlight the sensitivity of performances of Thunder and
HapSeq in the different simulation settings as shown in Table 2.
First, for otherwise same settings, the simulations with a higher
sequencing error rate have a higher performance gain than the
simulations with a lower sequencing error rate. The discordance
rate is lower for the higher sequencing error rates settings, because
these settings include higher portion of falsely promoted PPSs which
are actually easier to call. Interestingly, while the performance gain
for the homozygous sites is greater in the higher sequencing error
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Table 2. Comparison of Thunder and HapSeq in subsets of experiments stratified by different experimental factors

Experimental factor ~ Value Average site Thunder discordance HapSeq discordance Absolute discordance  Relative performance
count rate (%) rate (%) change (%) gain (%)

Difference in relative performance gain
Sample 60 50 498 1.03 0.70 0.34 32.65
size 100 66 488 0.69 0.50 0.18 26.78
5.87

Difference in relative performance gain
Sequencing 0.20% 29 885 0.89 0.66 0.23 25.98
error rate 0.50% 87 100 0.83 0.54 0.29 34.94
—8.96

Difference in relative performance gain
Read length 36 58 400 0.81 0.63 0.17 21.52
75 58 585 0.91 0.57 0.35 38.03
—16.51

Difference in relative performance gain
Paired end read No 58 905 0.84 0.61 0.24 27.93
Yes 58 080 0.88 0.59 0.29 32.48
—4.54

Bold number is the difference of relative performance gain.

Table 3. Comparison of Thunder and HapSeq with different sequencing error rates

Site type Total Heterozygote Homozygote reference Homozygote alternative
Sequencing error rate (%) 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5
Site count 29885 87100 8335 8332 5525 61007 16025 17761
Discordance rate
Thunder (%) 0.89 0.83 1.18 1.33 0.77 0.79 0.78 0.73
HapSeq (%) 0.66 0.54 0.77 1.12 0.59 0.49 0.62 0.48
Relative performance gain (%) 26 35 35 16 24 39 20 34

rates, the performance gain for the heterozygous sites is greater in
the lower sequencing error settings (Table 3).

Second, we found that, for otherwise same settings, the
simulations with the longer reads always have a higher performance
gain than the simulations with the shorter reads (Table 2). This is
understandable as the longer reads always bring in more number
of jumping reads. However, it is a bit surprising to see that the use
of paired end reads only improves the performance slightly. This is
likely due to that the current implementation of HapSeq can only use
jumping reads that span adjacent PPSs. While longer reads always
translate into more jumping reads over adjacent PPSs, many paired
end reads only cover non-adjacent PPSs.

To further evaluate the performance of HapSeq with longer reads,
we generated four additional datasets with the read length of 200 bp
but with different sample sizes (K =60 or K =100) and sequencing
error rates (0.2 or 0.5%) without paired end settings and applied
HapSeq and Thunder to them with 10 different random seeds. The
detailed discordance rates can be found in Supplementary Table S2.
On average, Thunder and HapSeq have a discordance rate of 0.77
and 0.45%, respectively. The relative performance gain of HapSeq
over Thunder is 46%, which is higher than 34% performance gain
of HapSeq over Thunder with the read length of 75 bp.

3.5 Results from the 1000 Genomes Project

Here we report the results for 33 CEU and 35 YRI individuals
with genotypes available from the HapMap Project. As shown in
Table 4, HapSeq improves upon Thunder for both the CEU and
YRI individuals. Overall, the improvements are 0.27 and 0.26%
with a relative performance gain of 12 and 9% for the CEU and
YRI individuals, respectively, consistent with our simulation results.
Interestingly, the improvement is more pronounced for heterozygous
sites than that for homozygous sites.

As shown in Table 5, the percentages of jumping reads are 5-6%,
comparable to that of our simulations with read length of 36 bp. This
reflects the fact that majority of the 1000 Genomes Project pilot 1
reads are of 36 bp. However, the percentage of polymorphic sites
covered by the jumping reads is 70.2% for the CEU individuals,
and 33.0% for the YRI individuals, both are higher than that of our
simulation results with 36 bp reads. This is due to that both CEU and
YRI datasets are a mixture of reads from different technologies. The
70.2-th percentile distance between two adjacent polymorphic sites
for the CEU individuals is 376 bp, and the 33-th percentile distance
for YRI individuals is 77 bp. These correspond to the maximum
lengths of the reads generated for the two pilot projects: Roche 454
in the CEU pilot and Illumina/Solexa in the YRI pilot.
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Table 4. Genotype concordance between HapMap II genotypes and genotypes obtained based on the 1000 Genomes Pilot sequencing data using Thunder

and HapSeq
Number of Number of Number of Total number Absolute Relative
homozygote heterozygote homozygote of Sites discordance performance
reference sites sites alternative sites change gain

CEU

Site count 940896 568 106 380727 1889729

Thunder concord (%) 98.39 97.04 97.28 97.76

HapSeq concord (%) 98.51 97.56 97.54 98.03 0.27 12

YRI

Site count 1207419 699 815 499 590 2406824

Thunder concord (%) 98.07 96.19 96.74 97.24

HapSeq concord (%) 98.19 96.73 96.93 97.50 0.26 9

Only 33 CEU and 35 YRI individuals both available to the 1000 Genomes Pilot Project and the HapMap project were used in the evaluation.

Table 5. Jumping read statistics of the 1000 Genomes Project Pilot 1 data

CEU YRI
Number of samples 47 52
Read depth 2.45 2.34
Percentage of jumping reads in total reads 6.16 5.23
r, percentage of PS covered by jumping reads 70.21 33.03
1007-th percentile distance between PS (bp) 376 77

4 DISCUSSION

The meaningful analysis of low-coverage sequencing data relies
critically on the accurate genotype calling. We have developed
an LD-based method and implemented an efficient algorithm for
genotype calling that can incorporate the haplotype information
from reads that cover two adjacent PPSs. Our method is based on
the HMM implemented in MaCH and Thunder thus shares many
advantages with the original method. More importantly, our method
uses the haplotype information of jumping reads that cover two
adjacent PPSs and explicitly models such haplotype information as
emission probabilities from states at two adjacent sites. Our studies
from simulated and the 1000 Genomes Project data show that the
use of haplotype information of jumping reads indeed improves the
accuracy of genotype calling. For simulated data, Thunder has an
average accuracy of 99.13%, while HapSeq can reduce the error
rate by about 29% with an average accuracy of 99.39%. For the
results from the 1000 Genomes Project pilot data, HapSeq reduces
the genotyping error rate by 12 and 9%, from 2.24% and 2.76% to
1.97% and 2.50% for the CEU and YRI individuals, respectively.

This improvement will have significant impact to the
extraordinary large-scale population sequencing efforts that are
currently ongoing or planned. For example, the 1000 Genomes
Project low-coverage pilot (Durbin et al., 2010) sequenced 59 YRI
individuals at 3.4 x, and identified over 10M SNPs sites. Using our
method, we expect to correct about 1.53M YRI genotype calls made
by Thunder. This improvement will likely to have an even greater
impact for the full-scale phase of the 1000 Genomes Projects and
numerous other population sequencing projects.

The performance gain of HapSeq over Thunder is brought by
the use of haplotype information in jumping reads. From our

simulations, the percentage of PPSs covered by jumping reads
ranges from 15% to 92%. The percentage of sites in the 1000
Genomes Project low-coverage pilot projects covered by jumping
reads is 79 and 33% for the CEU and YRI individuals, respectively.
However, one may argue that a jumping read is only informative if
it covers two heterozygote sites of an individual thus the prevalence
of informative jumping reads is much lower. If genotypes are
already known, only jumping reads of an individual that cover
two heterozygote sites are informative. However, genotypes are
unknown for the NGS data and are the very purpose of genotype
calling. Even we only observed the counts of one allele at a PPS for
an individual, the genotype at that site for that individual could still
be heterozygote. Therefore, any haplotype from jumping reads is
potentially informative and can be used to improve overall accuracy
of genotype calling. Indeed, we performed a simulation to only
include jumping reads at two heterozygote sites with a subset of 16
simulation settings. Here a heterozygote site of an individual refers
to a site that both alleles are observed from the counts data of that
individual. From the results in Supplementary Table S3, we found
that across eight simulation settings, HapSeq using all jumping
reads has the smallest genotypic discordance rate of 0.66%, whereas
HapSeq using only jumping reads at two adjacent heterozygote sites
and Thunder have a genotypic discordance rate of 0.77 and 1.00%,
receptively. These results suggest that all jumping reads should be
included in the analysis to improve genotype calling.

The use of haplotype information of jumping reads from two
adjacent PPSs in HapSeq brings additional computational cost. To
investigate the computational complexity of the HMM in Thunder
and HapSeq, we recorded the running time of Thunder and HapSeq
on a Linux Server with 8 AMD Opteron 875 2.2GHz CPUs
and 16 GB RAM (Supplementary Table S4). HapSeq has similar
computational complexity as Thunder: O(K?xS), where K is the
number of samples and S is the number of PPSs (Supplementary
Fig. S1), although HapSeq has additional computational time for
those PPSs covered by jumping reads. Our data confirmed that the
running time of HapSeq is about three times of the running time
of Thunder when the percentage of those PPSs covered by jumping
reads is high (Supplementary Fig. S2).

For HapSeq, only haplotype information of jumping reads from
two adjacent PPSs are considered. Longer reads can cover more
than two adjacent PPSs thus provide haplotype information over
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multiple PPSs. Paired end reads can provide long range haplotype
information over two or more apart PPSs. It is important to develop
new methods that can incorporate such haplotype information too. A
complete solution would involve the construction of a higher order
hidden Markov chain. In this situation, a more efficient algorithm
is needed to calculate the forward probabilities. We will explore the
optimal use of haplotype information from reads covering more than
two adjacent PPSs or two non-adjacent PPSs in future works.
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