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Abstract
Women with mostly mammographically dense fibroglandular tissue (breast density, BD) have a 4-
to 6-fold increased risk for breast cancer compared to women with little BD. BD is most
frequently estimated from 2-dimensional (2-D) views of mammograms by a histogram
segmentation approach (HSM) and more recently by a mathematical algorithm consisting of
mammographic imaging parameters (MATH). Two non-invasive clinical magnetic resonance
imaging (MRI) protocols: 3-D gradient-echo (3DGRE) and short tau inversion recovery (STIR)
were modified for 3-D volumetric reconstruction of the breast for measuring fatty and
fibroglandular tissue volumes by a Gaussian-distribution curve-fitting algorithm. Replicate breast
exams (N= 2 to 7 replicates in 6 women) by 3DGRE and STIR were highly reproducible for all
tissue-volume estimates (coefficients of variation <5%). Reliability studies compared
measurements from four methods, 3DGRE, STIR, HSM, and MATH (N=95 women) by linear
regression and intra-class correlation (ICC) analyses. Rsqr, regression slopes, and ICC,
respectively, were (I) 0.76–0.86, 0.8–1.1, and 0.87–0.92 for %-gland tissue, (II) 0.72–0.82, 0.64–
0.96, and 0.77–0.91, for glandular volume, (III) 0.87–0.98, 0.94–1.07, and 0.89–0.99, for fat
volume, and (IV) 0.89–0.98, 0.94–1.00, and 0.89–0.98, for total breast volume. For all values
estimated, the correlation was stronger for comparisons between the two MRI than between each
MRI vs. mammography, and between each MRI vs. MATH data than between each MRI vs. HSM
data. All ICC values were >0.75 indicating that all four methods were reliable for measuring BD
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and that the mathematical algorithm and the two complimentary non-invasive MRI protocols
could objectively and reliably estimate different types of breast tissues.
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breast density; breast cancer risk; mammographic density; breast parenchymal pattern; biomarker;
magnetic resonance imaging

Introduction
In 2011, an estimated 230,480 new cases of invasive breast cancer and 57,650 new cases of
in situ breast cancer will be diagnosed among women in the United States (ACS, 2011).
Over 39,520 are expected to die from the disease, making breast cancer the second leading
cause of death among women. In the mid-1970’s, landmark research by Wolfe (Wolfe,
1976a, Wolfe, 1976b) demonstrated an association between mammographic parenchymal
patterns and breast cancer risk. Many studies using different methods (Boyd et al., 1995,
Boyd et al., 2005, Byrne et al., 1995, Byrne et al., 2001) for quantifying breast density have
since confirmed Wolfe’s original observation that mammographic (breast) density is a
strong risk factor for breast cancer. A recent meta-analysis of published studies
(McCormack and dos Santos Silva, 2006) confirmed the prior observations that women with
extremely dense breast tissue have a 4- to 6-fold excess risk of developing breast cancer
compared to women with predominantly fatty tissue in their breasts. Therefore, breast
density has been postulated to be a useful intermediate surrogate marker for preventive or
therapeutic interventions.

Historically, the assessment of breast density has been performed using conventional x-ray
mammography with either a screen-film detector (screen-film mammography) or, more
recently, a digital detector [full-field digital mammography, (FFDM)]. Qualitative,
categorical assessment of breast density includes the four categories (N1, P1, P2, and DY) of
Wolfe’s method (Wolfe, 1976a, Wolfe, 1976b) with N1 being a breast that is primarily
adipose tissue with little glandular tissue; P1 being a breast of mostly adipose tissue with
dense glandular tissue under nipples; P2 being a breast with prominent ducts occupying at
least ¼ of the breast; and DY being a breast containing mostly dense glandular tissue.
Another classification is the five categories (I to V) of Tabar’s method (Gram et al., 2005).
More recently the BIRADS (Breast Imaging Reporting and Data System) has been used for
breast cancer risk estimates (ACR, 2003), and methods that are more quantitative for
estimating breast density have been developed. Byng et al (Byng et al., 1996) developed a
semi-automatic interactive thresholding method to segment glandular tissue from fatty tissue
using the pixel intensity histogram of a mammogram (histogram segmentation method,
HSM). The HSM has been the most widely used approach for estimating breast cancer risk
in epidemiologic research. Other methods, such as automatic segmentation based on
Kittler’s optimal threshold procedure by Sivaramakrishna et al., (Sivaramakrishna et al.,
2001) and a multivariate regression model-derived mathematical equation (MATH) using
data recorded in imaging parameters of the FFDM’s DICOM report header by Lu et al. (Lu
et al., 2007) have not been tested for risk estimation. The general consensus is that breast
cancer risk increases with increasing breast density (Boyd et al., 2007, McCormack and dos
Santos Silva, 2006).

However, debates continue regarding the accuracy of breast density measured on
mammograms and, in particular, its sensitivity for assessing intervention efficacy. The
strength of mammographic breast-density measurement for breast cancer research and risk
prediction is the low cost and the wide-spread use of mammograms. The weaknesses
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include, but are not limited to, a variable compression thickness and a variable projection of
the breast in order to convert 3-D breast tissue into a 2-D image. Because the purpose of
mammography is to detect breast cancer and not to measure breast density, the radiation
dose, duration of exposure, and several other instrument settings of the mammographic
instrument are routinely varied according to the density of the breast of the woman being
imaged. This is done in order to obtain a mammogram with sharp contrast for detecting
breast cancer embedded in the glandular tissue. These necessary variations in instrument
settings during mammogram acquisition, based upon the breast density of the woman, while
desirable and essential for breast cancer detection, seriously confound and compromise
breast density assessment as shown by Lu et al (Lu et al., 2007) and critiqued by Kopans
(Kopans, 2008). We are not aware of any epidemiologic studies of breast cancer risk
estimates or risk predictors using mammograms that have controlled for the inherent
variations of instrument-imaging parameters. Thus, mammography may not be sensitive
enough to detect small changes in breast density resulting from interventions, and potential
radiation risks prevent mammograms from being used in vulnerable young population. The
above points have long been recognized as problems for the field of breast imaging and the
use of mammographic density as a surrogate biomarker for breast cancer risk. Breast
magnetic resonance imaging (MRI) has been suggested to be an attractive alternative for the
measurement of breast density, as discussed below.

MRI increasingly is becoming a recommended imaging modality for the detection and
diagnosis of breast cancer (Orel and Schnall, 2001, Berg et al., 2004, Warner et al., 2004,
Kriege et al., 2004, Wright et al., 2005, Lehman et al., 2005, Kuhl, 2007). In fact, the
American Cancer Society has recently updated their guidelines for breast screening with
MRI as an adjunct to mammography for screening in high-risk populations (Saslow et al.,
2007). MRI has the potential to quantify fibroglandular tissue with a much higher degree of
accuracy and precision than x-ray mammography for the following reasons. First and
foremost, MRI provides a 3-D image of the breast without compression. In contrast, the 2-D
projection imaging modality of x-ray mammography suffers the problem of overlapping
anatomy and the inability to see structures in 3-D. Second, MRI can be easily optimized to
improve the differences in contrast (i.e., MRI signal intensity) between the fibroglandular
and adipose tissue. Rather than relying on differences in x-ray attenuation, MRI sequences
can be tuned to be sensitive to differences in tissue T1 relaxation rates (T1), consequently
producing excellent tissue discrimination (Merchant et al., 1993, Graham et al., 1996,
Boston et al., 2005). Oftentimes, tuning an MRI sequence is as simple as changing the image
acquisition parameters, such as the echo time (TE) and/or the repetition time (TR). On the
other hand, signal intensity variations in x-ray mammography are a direct result of variations
in x-ray attenuation that correlates with the amount of fibroglandular tissue in a breast.
Because of radiation dose and other image-acquisition limitations, it is much more difficult
to optimize a mammography system to maximize the image contrast between fibroglandular
and adipose tissue. This results in necessary variation in mammography instrument settings
specific to a woman’s breast density. The setting variation is a serious confounder in
epidemiologic breast density studies. Unlike mammography, MRI criteria for breast imaging
can be applied independent of a woman’s breast density. Third, in mammography it is more
difficult to ensure that the entire breast under compression is in the image, particularly areas
near the chest wall. MRI, on the other hand, can visualize the entire breast without the
discomfort of marked compression and without excluding breast tissue near the chest wall.
Finally, a clinically important argument in favor of MRI is that MRI does not expose the
patient to ionizing radiation. MRI eliminates the likelihood of secondary (radiation-induced)
carcinogenesis and allows for earlier screening of vulnerable populations such as pre-
pubertal girls and women less than 30 years old.
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Efforts, therefore, have been made by several research groups to use MRI of the breast for
estimation of the content of fibroglandular tissue, as summarized in Table 1 (Poon et al.,
1992, Graham et al., 1996, Lee et al., 1997, Klifa et al., 2004, Klifa et al., 2010, Wei et al.,
2004, Boston et al., 2005, Khazen et al., 2008, Thompson et al., 2009, Eng-Wong et al.,
2008, Ertas et al., 2009, Nie et al., 2008, Nie et al., 2010b, Nie et al., 2010a). Table 1 shows
that T1-weighted MRI is the most widely used protocol. There are three basic conceptual
approaches for estimating glandular tissue volume. These are graphical user interactive
threshold-based segmentation of glandular tissue from fat tissues, the use of a clustering
algorithm, or by a logistic function approach. Some studies have tested the reliability of
MRI protocols against results obtained from mammograms. However, large scale
application of these methods to epidemiologic studies for estimating breast cancer risk is
still limited, due partly to the cost of MRI and the amount of time needed to do the
quantification. In this report, we describe a unique method in which breast MRI may be used
to accurately, reproducibly, and objectively estimate fibroglandular tissue volume and %-
glandular tissue (%-G). In this study, we also validated a unique approach for computing %-
G from a mathematical algorithm (MATH) that was developed from a multivariate
regression model equation that contains all mammogram imaging parameters that are
significant and strong predictors for %-G.

Materials and Methods
Study Design

Samples for this method-development study were from women who enrolled in past clinical
trials and clinical research projects at the University of Texas Medical Branch (UTMB). The
baseline screening mammograms and breast MR images for this study were obtained from
subjects enrolled between 2002 and 2004. Digital mammograms and breast MR images were
acquired less than two months apart from a total of 98 pre-menopausal and 3 post-
menopausal women, none of whom had apparent mammographic abnormalities. These
subjects had varying mammographic density during baseline observation periods. Because
mammographic density is known to vary with the menstrual cycle, all premenopausal
women were imaged during the luteal phase of their cycles. Digital mammograms were
acquired using a GE Senographe 2000D FFDM unit (General Electric Healthcare Institute,
Waukesha, WI). Breast MRI was performed using a GE Signa LX 1.5-Tesla MRI system
(GE Healthcare Institute, Waukesha, WI). All imaging protocols and examinations were
approved by the Institutional Review Board of UTMB and by the Human Research
Protection Office of the US Army Medical Research and Materiel Command. All image
acquisitions, transfers, manipulation, and processing were compliant with HIPAA
regulations. Written informed consent was obtained from each participant.

Full-field Digital Mammography (FFDM) Imaging Protocol
The digital mammography protocol consisted of two standard projections [cranio-caudal
(CC) and medio-lateral-oblique (MLO) views for each breast]. Left CC views were
quantified for total breast area (TArea), fibroglandular area (GArea), adipose area (FArea), and
%-G (=GArea/ TArea) using a modification of the histogram-segmentation method (HSM) of
Byng et al (Byng et al., 1996) as described in detail by Lu et al., (Lu et al., 2007).
Alternatively, %-G also was computed using a mathematical algorithm (MATH) (Lu et al.,
2007) omitting the HSM step. The MATH algorithm is from a multivariate regression model
equation containing all mammogram imaging parameters that are significant and strong
predictors for %-G.
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Breast Magnetic Resonance Imaging (MRI) Protocol
Several breast MRI protocols were evaluated for sufficient contrast differentiation between
the fibroglandular and adipose tissues in the breast and for signal uniformity. When the
project began in late 2002, two clinically-used pulse sequences for breast MRI, the 3-D T1-
weighted gradient-echo (3DGRE) and the short tau inversion recovery pulse sequences
(STIR) were selected and modified (Table 2). Because signal uniformity was absolutely
essential for measuring breast density, a dedicated breast MRI coil was used only to support
and position the breasts in the 3DGRE protocol, but signal was acquired only from the body
coil to produce uniform images. The breast coil, however, was used in the STIR protocol to
improve MR signal. These protocols were applied initially to a small group of 3 pre-
menopausal and 3 post-menopausal women by conducting 2 to 7 MRI exams for each
woman on separate occasions. Then later, these two MRI protocols were applied once to
another group of 95 pre-menopausal women for a reproducibility and validity study.

Each protocol was designed to ensure that the MRI phase encoding artifacts, caused mainly
by cardiac motion, would not appear in the field of view (FOV) of the breast. Table 2 shows
the relevant scan parameters for the two pulse sequences. The FOV of 320 mm and matrix
size of 256 × 256 were applied most often, but adjustments were made for some women to
accommodate different breast sizes. However, the reconstructed matrix size was 512 × 512
for 3DGRE and 256 × 256 for STIR. Slice thickness was kept constant, but the number of
slices varied with breast size.

The 3DGRE, a standard gradient-echo pulse sequence routinely used for clinical imaging,
was optimized for best contrast and uniformity of adipose and fibroglandular tissues (Table
2). Figure 1A illustrates a typical image generated by the 3DGRE and the image contrast
between adipose and fibroglandular tissue. Adipose tissue appears brighter than the
fibroglandular tissue, largely due to its greater hydrogen content relative to fibroglandular
tissue. The difference in voxel brightness (signal intensity) was sufficient to permit tissue
segmentation of fibroglandular tissue from fatty tissue and for computing the %-G. The time
to complete the 3DGRE pulse sequence on each subject was about 3 min.

STIR, an inversion recovery MRI protocol used clinically for the suppression of signal from
adipose tissue, was initially chosen for this study because it was the most suitable fat-
suppression technique available in 2002. [The IDEAL protocol (Yu et al., 2006) for fat-
suppression was not available when the enrollment of study subjects began in 2002.] With
STIR (Table 2), the inversion time, TI = 150 ms, effectively neutralized the signal from
adipose tissue, as shown in Figure 1B where adipose tissue is dark and fibroglandular tissue
is bright. Other similar fat-suppression sequences have been successfully applied to clinical
breast MRI scenarios and applications (Merchant et al., 1992, Holden et al., 1996, Niitsu et
al., 2003).These were tested but were found to be unsatisfactory for reproducible signal
uniformity. Because STIR was a 2-D image acquisition, it acquired 3 interleaved slices in
order to provide adequate contrast and also signal uniformity for the entire breast. Thus,
STIR was the longer of the two MRI protocols. It took approximately 15 min to complete.
The total scan time for the entire breast MRI exam was about 20 min.

3-D Volume-rendered Model Generation from MR images
The breast MR images were transferred across a secure PACS network to a GE 3-D
Advantage Windows Workstation (ADW), software version 4.1, for post-processing and 3-
D volume-rendered model generation. The 3-D ADW is a dedicated system designed
specifically for reconstructing image data collected from MRI. Using 3DGRE as an
example, a graphical display of the steps taken to generate the 3-D breast model is shown in
Figure 2.
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Anatomical data were acquired for the entire torso using a large anatomical FOV and the
body coil for imaging (Fig. 2A). Figure 2A shows one of the transferred axial 2-D images of
the breast. Contiguous axial slices through the breast region were obtained. There were ~112
slices for the 3DGRE pulse and ~60–90 slices for the STIR pulse, depending on the size of
the breast. An initial coarse region of interest (ROI) was obtained by isolating the breast
from the remaining torso (Fig. 2B). The ROI for 3DGRE showed that the fibroglandular
tissue in the breast appeared dark compared to the brighter adipose tissue. The musculature
of the chest wall also appeared dark but was removed from the breast ROI so that it would
not be included in the summation of the segmented fibroglandular breast tissue.

Under the guidance of an experienced mammographer, the breast ROI was trimmed further,
slice-by-slice, to remove the chest wall and other non-breast tissue (Fig. 2C) leaving mostly
the breast tissues and the surrounding air which is seen as the faint “salt and pepper”
appearance in Figures 2A – C. In order to remove all low MR signal pixels representing air,
the higher MR signal pixels of the breast were subtracted from Figure 2C (breast + air)
resulting in a difference image representing mainly air. Low MR signal pixels found within
the breast boundary were removed to form an “air only” image (Figure 2D). This “air only”
image was subtracted from the image in Figure 2C to yield a “breast only” image. A final
refined trimming along the visual contour of the breast perimeter (Figure 2F) resulted in
image representing only the breast ROI (Fig. 2E). The MR images recorded with each MRI
protocol were reconstructed into a 3-D volume image of the breast (Fig. 2F). All of the
above image-processing procedures were performed using GE’s proprietary ADW software
and have not been automated and required some degree of user interaction. These same steps
shown in Figure 2A–D also were applied to STIR images to segment the breast ROI.

Curve-fitting and Estimation of Glandular Tissue from Breast MR Images
The final segmented 3-D volume-rendered breast model (Fig. 2F) was exported to a personal
computer for curve-fitting analysis. A program was written to extract the MRI voxel signal
intensities, but not the voxel location information, from the 3-D model and generate the
corresponding voxel signal intensity histograms. The curve-fitting process for the
histograms generated for 3DGRE and STIR models was performed using a commercially
available peak-fitting program, PeakFit 4.0 (SyStat Software Inc., San Jose, CA), as
described below.

In curve analyses, a two-compartment model of breast tissue composition was assumed.
However, voxels containing a varying mixture of fat and gland, the partial volume effect, are
well-known and unavoidable phenomena in imaging (Laidlaw et al., 1998, Ruan et al., 2000,
Santago and Gage, 1995). For the 3DGRE pulse sequence, the observed histogram of MRI
signal intensities usually showed two major peaks with a valley between the two peaks (the
histograms in the middle column, Fig. 3) in which the right peak was classified as adipose
tissue while the peak that was the most to the left and the intermediate peak were classified
as “non-adipose” and voxels were summed to represent fibroglandular tissue (for more
details, see Results). The curve fitting algorithm attempted to minimize the residual errors,
assuming a Gaussian distribution for all peaks. Because the fat peak is usually the larger of
the peaks and also the more symmetrical peak, its shape more easily fits a Gaussian
distribution, regardless of its peak size. The fat peak area was isolated first from the higher
MRI intensities during curve-fitting. After subtracting (i.e., the ‘lock function’ in the PeakFit
software) the area of the fat peak from the complete histogram, two additional Gaussian
peaks were optimally fit over the remaining fat-subtracted peak area. The “Fast Peak Fit
with Numeric Update” option of the Peakfit program was used to achieve the final fits. The
area under the two left curves represents the relative abundance of glandular tissue.
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The Smoothing function of the Peakfit program was used to reduce the noise associated with
the STIR pulse sequence of the breast. For STIR, the observed histograms of MRI signal
intensities typically show one major peak (adipose) at lower voxel signal intensities and a
much broader peak with long tails at intensities higher than those from adipose tissue (third
column in Fig. 3). Curve fitting analysis demonstrated a minimal residual error when four
curves were fitted to the MR signal histograms rather than three curves assumed for 3DGRE
models. First, the adipose peak, often the most symmetrical peak, was optimally fitted with a
Gaussian distribution (the largest low-signal peak). After subtracting the fat peak area from
the entire histogram, a smaller Gaussian distribution peak, representing possibly the residual
air in the 3-D model, was fitted to an area left of the adipose peak. The air peak area was
excluded in the final calculation of the two breast-tissue types. Finally, two Gaussian peaks
were optimally fitted to the remaining brighter peak area to the right of the adipose peak,
and the two peak areas were considered to represent the fibroglandular tissue. The ADW
software has a function that performed volume analysis for the resampled/reconstructed 3-D
model. The reconstructed voxel size (voxel sizerec) is the size of voxel in mm in both x and
y directions. The voxel ratio is the ratio between the size of the voxels in the z-direction and
in the x-direction. The voxel size and the voxel ratio of the reconstructed 3-D model were
recorded in the model DICOM header report, and were retrieved for calculating voxel
volume (mm3) and breast tissue composition according to the following equations.

(Equation

1.1)

[where: voxel ratio= slice thickness/(voxel sizerec)]

(Equation 1.2)

(Equation 1.3)

(Equation 1.4)

(Equation 1.5)

Mammographic Density (Breast Density) from Mammograms
Total breast area (TArea), dense breast area (GArea), fatty tissue area (FArea), and %-G for
each mammogram were estimated by two different approaches, as previously detailed (Lu et
al., 2007). One was by a manual labor-intensive HSM algorithm and the other by direct
computation from mammogram imaging parameters retrieved from the DICOM report
header of each imaged breast using a MATH algorithm derived from a multivariate
regression model.

Briefly, for the HSM method, x-ray signal intensity data from the FFDM DICOM header
were exported to generate a pixel signal intensity histogram of the imaged breast (first
column, Fig. 3). A graphical user interactive-intensity threshold-based segmentation of
glandular tissue from fat tissue was performed to obtain the %-G (%-GHSM), the gland area
(dense breast area, GAreaHSM,), fat area (FAreaHSM), and total breast area (TAreaHSM)). We
hypothesized that volumes from the glandular area, fat area, or total breast area from a 2-D
mammogram can approximate the product of the respective tissue areas from the
mammogram and the compression thickness as follows.
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(Equation 2.1)

(Equation 2.2)

(Equation

2.3)

Compression thickness was retrieved from the FFDM DICOM header and k2 represents a
normalization factor of 9.96 × 10−6 cm2/pixel for converting a mammogram pixel area to a
metric area.

The second approach, a MATH algorithm, involves no manual segmentation of breast
tissues (Lu et al., 2007). The %-G (%-GMATH) was computed according to Equation 2.4
shown below. The MATH algorithm consisted of individualized mammogram acquisition
parameters that were statistically the most significant predictors of %-G by multivariate
regression model analysis. The most significant imaging parameters that are predictors of %-
G are pre-exposure dose, pre-exposure thickness, radiation dose, pre-exposure kvp,
anatomical mean intensity, threshold (‘Thresh’), final exposure thickness, compression
force, sensitivity, filter material, and anode material. The coefficients in the equation were
determined from multiple regression analysis. Note that Equation 2.4 represents an updated
model derived from additional mammograms added to those used in Lu et al., (Lu et al.,
2007).

(Equation

2.4)

For the definition of predictor variables and their corresponding DICOM tag, see Lu et al.,
(Lu et al., 2007). The material for the variables ‘filter material’ and ‘anode material’ is either
molybdenum or rhodium. The molybdenum and rhodium were coded 0 and 1, respectively,
when using equation 2.4 to calculate %-G. Glandular volume (GVolMATH) and fat volume
(FVolMATH) were derived using the following equations. For total breast volume TVolHSM of
Equation 2.3 was used.

(Equation 2.5)

(Equation 2.6)

Statistical Analyses
The main outcomes of interest in this study were volumes of fibroglandular (gv), adipose
(fv), and total breast tissues (tv), and %-G (also referred to as %-breast density). All
outcomes were calculated using four different methods, two from MRI protocols (3DGRE
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and STIR) and two from mammography protocols (HSM and MATH). The means and
standard deviations (SD) were obtained for all outcomes of interest estimated by the four
different methods. The reproducibility of within-image values analyzed by different persons,
repeated analyses by the same person, and between-replicate images (replicate imaging by
an instrument) for measurements of all outcomes of interest by the four methods were
assessed by linear regression analyses (Rsqr and regression slope) and intra-class correlation
coefficients (ICC). The statistical analysis was performed using the SAS statistical software
package version 9.2 (SAS Institute Cary, NC).

The MIXED procedure in SAS® was used to estimate ICC values. ICC, a ratio of intra-
method (σb) to intra- and inter-method variations (σw

2) [ICC = σb
2 / (σw

2 + σb
2)], is

routinely used to assess the reproducibility of laboratory assays or diagnostics tests when the
analysis on the same study subject is repeated randomly. The higher the ICC for a method
when compared to a reference method, the more in agreement and reliable it is, when
compared to a gold standard or, in our case, a reference method. SigmaPlot version 12
(Systat, Richmond, CA) was used to plot all regression curves between any two different
methods for measuring %-G, gv, fv, or tv and for generating regression coefficients (Rsqr),
regression slopes, and 95% confidence interval bands (CI).

Results
Several MRI protocols were evaluated, but only the two listed in Table 2 were selected for
further reproducibility and reliability analyses. Figure 1 shows the intensity contrast between
3DGRE (Fig. 1A) and STIR (Fig. 1B). Glandular tissue appears dark in 3DGRE and bright
in STIR. Using the steps described in Figure 2A–F, 3-D breast models were constructed
requiring about 30 min to complete. Figure 3 shows corresponding representative
mammograms (data in the first/left column) with representative middle MR slices of 3-D
models made from 3DGRE (data in the middle column) and STIR (data in the third/right
column) for three women with varying %-G. Each row of images is from the same woman,
and it has the corresponding pixel /voxel signal intensity histograms beneath each of the
mammogram, 3DGRE, and STIR images. As shown, the signal intensity histograms for
mammograms tended to exhibit many more peaks with irregular shapes compared to the two
dominant peaks amendable for Gaussian distribution curve fits for 3DGRE and STIR.
3DGRE histograms tend to have two distinct peaks when compared to STIR. The glandular
peak areas from STIR tended to be broader than those from 3DGRE. Each curve-fitting took
about 2–5 min to complete.

Curve-Fitting and Spatial Location of the Fitted Curves
Figure 4 illustrates the steps taken to separate the voxel peak area of glandular breast tissue
from that of fatty breast tissue using a 3DGRE model as an example. In curve analyses, a
two-compartment model of breast tissue composition was assumed. Figure 4A represents the
retrieved unfitted MRI signal intensity histogram of a 3DGRE model. Figure 4B shows a
Gaussian-distributed glandular tissue peak (shaded gray), while Figure 4C shows a
Gaussian-distributed fatty tissue peak (shaded gray). The summation (shaded gray) of the
two peaks from panels B and C is shown in Figure 4D with a curve-fitting Rsqr of 0.92
leaving an unfitted white area (marked *) between the curve in panel A (square symbols)
and the shaded sum peak area. The addition of a third Gaussian peak (marked *), as shown
in Figure 4E, to the sum peak in Figure 4D was necessary to achieve a nearly perfect curve
fit Rsqr of 0.999, as shown in Figure 4F.

To understand the nature of the three fitted Gaussian curves in Figs. 4B, 4C and 4E, we used
the mean ±1 SD MRI signal intensity of the middle/3rd peak (Fig. 4E) provided by the
PeakFit report as a guide to map the location for all three Gaussian peaks using the
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interactive thresholding function of GE’s ADW software for segmenting gland and fat
tissues. The spatial location of all voxels with MRI signal intensities ≤ mean -1 SD of the
third peak appeared co-localized with glandular tissue, see green highlights in Figure 5B.
The mean ±1 SD MRI signal intensities of the middle peak mapped to the boundaries of
glands and fat tissue are highlighted green in Figure 5C. All signal intensities ≥ mean + 1
SD of the middle peak appeared in the fat tissue area as the green highlights shown in Fig.
5D. Thus, the middle peak between the gland and adipose tissue contains voxels with a
mixture of fat and gland tissues with varying proportions, i.e., partial volume.

Reproducibility of MRI Protocols
The reproducibility of the MRI protocols was tested in six women (3 pre-menopausal and 3-
post-menopausal), who had breasts with varying mammographic density. These women
provided one screening mammogram and also were imaged two to seven times on separate
occasions within a 2-month period using 3DGRE and STIR protocols for breast tissue
amount (area and volume) and composition measurements. Table 3 shows the results (mean
and SD) of measures of %-G, gland volume, fat volume, and total breast volume of the left
breast. At the present time, there is no known standardized method for measurement of
breast tissue composition, and mammographic density is currently the most widely used
measure. Thus, values from mammograms were used as references for reproducibility and
validity studies described herein. Mammograms provide breast tissue area (a 2-D measure),
while MRI provides breast tissue volume (a 3-D measure). To properly compare values from
these two radiologic methods, breast tissue volumes from mammograms were estimated by
an approximation approach (for more details, see below) using a product of a breast area
multiplied by the compression thickness (in mm), while adjusting for a factor (k2) to
normalize pixel area to a cm2 unit. The compression thickness is routinely recorded in each
digital mammogram DICOM header. As shown in Table 3, the CVs (SD/mean) are usually
<5% for repeat MRI exams across a wide range of mammographic density, with some
having a 10% to 15% CV. Those with higher CVs tended to be associated with differences
in breast positioning. The thickness of a compressed breast is likely to exhibit a gradient
with the center of the breast being thicker than the edge of the breast. Moreover, when a 3-D
breast is compressed into a 2-D object, the projected 2-D area will undoubtedly give a larger
surface area than the projection of a 3-D object into a 2-D area without compression. These
two factors, together, contributed to overestimation of breast volume using the
approximation approach taken by us to calculate breast volume. As shown, volumes
estimated from mammograms tend to be higher than MRI volumes. The CVs for replicate
analyses of the same image by a rater were within 5% (Results not shown).

Validity and Reproducibility of MR Pulse Sequences
The validity and reproducibility of the two MRI protocols for measuring volumes and the
glandularity of breast tissues were investigated further on a multiethnic cohort of 95 women.
This cohort was 58% Caucasian, 22% Hispanic, 17% African American, 2% of unknown
ethnicity, and 1 Asian, age = 35.8 ± 2.5 yr, weight = 74.6 ± 14.8 kg, and height = 162.7± 6.2
cm. For the validity study, the slope, regression equation, and Rsqr of the ordinary least
square regression analyses, and the ICC values were estimated for each breast density index
of interest (i.e., %-G, gv, fv, and tv) between measurements by any two of the four
modalities used. The four modalities are 3DGRE, STIR, HSM, and MATH. The graphic
results of these analyses displayed in table-like format are graphically shown in Figure 6. A
slope of 1.0 indicates an equivalent relationship between measures. A deviation from 1.0
indicates the extent to which one measure (y-axis) under-estimates or overestimates the
values relative to the other reference measure (x-axis). ICC is an index of agreement and
reliability. ICC values were greater than 0.75, generally indicating a moderate to high level
of agreement between two comparison groups (Laude et al., 2004).
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For %-glandular tissue (all panels in column A, Fig. 6), all slopes approximate 1 for
comparison between the two MRI protocols (~0.9 in Fig. 6A1), between each MRI vs. the
HSM mammogram (~1.0, Figs. 6A2–3), and between each MRI vs. the MATH algorithm
(~1.1, Figs. 6A4–5) and between the MATH and the HSM (~0.8, Fig. 6A6). Because the
compressed thickness of the breast during mammography varied with the breast density of
the woman being imaged, the volume of the breast from a mammogram was estimated by a
simple arithmetic approach, i.e. taking the product of the mammogram’s breast area and
compression thickness. For glandular tissue volume comparisons (the column B panels, Fig.
6), the two MRI protocols gave the same measurement amounts (slope=0.96, Fig. 6B1) but
gave 30%– 40% smaller volumes than those measured by mammograms (slope=0.64–0.74,
Figs. 6B2–5). The gland volume measurement from the MATH was 13% less than HSM
data (slope=0.87, Fig. 6B6). Fat volumes (all panels in column C in Fig. 6), however, were
about the same, e.g., slopes=0.94–1.1, independent of the methods used for measurement.
Similarly, total volumes (column D in Fig. 6) measured between the two MRI protocols
(Fig. 6D1) and between each type of MRI and the mammogram (Figs. 6D2–3) were also the
same (slopes=0.94–1.0). Note that there is only one mammogram for each woman, i.e. an
identical total breast area/volume estimate for MATH and HSM, therefore, correlation
between these two methods is omitted. The correlation graph between 3DGRE and MATH
is the same as in Fig. 6D2, and the correlation graph between STIR and MATH is the same
as in Fig. 6D3.

The ICCs are all greater than 0.75 (Fig. 6A–D), a cut-off value for being considered as a
reliable and reproducible measure (Laude et al., 2004), and they were 0.86–0.92 for %-
glandular tissues (panels in column A), 0.77–0.91 for glandular volumes (panels in column
B), 0.89–0.99 for fat volumes (column C), and 0.89–0.98 for total volume (column D),
indicating strong measurement reliability of all methods. The mammograms and MR images
from these 95 women were analyzed for the amount of different breast tissues by two
different analysts to test for inter-rater variability. The slopes, Rsqr, and ICC were all greater
than 0.95 (Results not shown) indicating little inter-operator variability and excellent
reproducibility between various raters.

Discussion
Two robust breast MRI protocols were developed for measuring breast tissue glandularity
that are comparable with methods for estimating breast density from mammograms (Fig. 6).
We showed that replicate breast images can be acquired reproducibly on separate occasions,
indicating stability of the MR instrument (Table 3) and reliability and reproducibility of
analysis protocols (Fig. 6). The two MRI protocols are complimentary because one,
3DGRE, produces predominantly a low MR signal for fibroglandular tissue (middle column
in Fig. 3) while the other protocol, STIR, produces a high MR signal for fibroglandular
tissue (right column in Fig. 3). Other fat-suppression MRI protocols were evaluated at the
beginning of this research and were found to be unreliable compared to STIR for our
purposes because of lack of signal homogeneity that could not be corrected. Imaging time in
this study is short, about 20 min, which made it more tolerable for the research subjects and
it did not adversely affect the routine MRI clinical schedule. The methods do not require
contrast material and can be used repeatedly on all subjects, including the vulnerable
population of younger females. Our imaging protocols are similar to that of T1 contrast
clinical protocols and are in line with most published breast MRI protocols (reviewed in
Table 1) for breast tissue composition analyses. However, our tissue composition analysis
protocol, utilizing commercially available software, is simplified.

The necessary tissue compression during mammography produces projected breast images
that often contain a variable mix of glandular and fatty tissues, i.e. pixels are neither pure
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glandular nor pure adipose tissue. The consequence of this tissue overlapping is a pixel
signal-intensity histogram with multiple peaks (see the first column, rows 4 and 6, Fig. 3).
Due to the multiplicity of peaks, it is difficult to apply the curve-fitting method to quantify
glandular and fatty tissues on mammograms. The MR voxel signal is acquired 3-D, which
reduces the problem of voxel signal from tissue overlapping. For this reason, the MRI voxel
signal-intensity histograms (all histograms in the second and third columns, Fig. 3 and Fig.
4) typically tend to be more symmetrical and often exhibit one major peak (in a fatty breast)
or two major peaks (in a breast with more glandular relative to fat tissue). Often, one of the
peaks, e.g., for fat tissue, showed a reasonable bell-shaped Gaussian distribution, which
greatly facilitated the easy application of commercially available peak-fit software to
segment glandular tissue from fat tissue, as shown in this paper (Fig. 4).

The tissue volume measurement by the Gaussian-distributed curve-fitting method (Figs. 3–
4) has not been reported previously for segmenting glandular tissue from fat tissue. The two
most commonly applied algorithms in MR image analyses for tissue content are either
interactive visually-guided tissue segmentation using threshold signal intensity or variations
of fuzzy c-means for clustering tissue types (reviewed in Table 1). Both of these have some
elements of subjectivity, and automation is still being attempted. In contrast, our curve-
fitting procedure utilizes readily available commercial software for spectrum analyses. It is
more objective, highly reproducible (Table 3 and Fig. 6), and far less labor-intensive when
compared to other approaches reviewed in Table 1. Our curve-fitting protocol, as shown in
Figure 4, can be readily adapted to analyze other MR pulse sequences that can generate a
homogenous image signal.

For measuring the amount of glandular tissue, we (and others) assume that the breast
contains two major tissue types, fibroglandular and adipose, but it also contains other minor
tissue types such as blood vessels, connective tissue, and fibroblasts, which may not exhibit
a similar signal intensity as the glandular tissue under these two different MRI protocols.
This could explain, in part, why the non-fat peak area with higher signal intensity in STIR
(third column in Fig. 3) exhibited a much broader peak than the fat peak of STIR at the
lower signal intensity. The non-fat peak area in STIR is also much more difficult to
approximate by curve-fitting compared to that in 3DGRE. In contrast, the voxel signal
intensity of the adipose tissue peak from both 3DGRE and STIR (Figs. 3–4), in general, is
easier for curve-fitting. Importantly, the Gaussian approximation technique allowed us to
separate all MR voxel signal intensity histograms into three Gaussian-shaped peaks with
residuals being minimized to a Rsqr>0.998.

In curve-fitting, we showed that there is a shoulder peak area (marked * in Fig. 4D) with
intermediate voxel signal intensity between the two Gaussian shaped fat and gland peaks
(Fig. 3–4) that can be fitted into a third Gaussian-distributed peak (* peak, Fig. 4E), which is
needed to be considered as part of the completed histogram in order to minimize the residual
errors and to achieve a good curve-fitting Rsqr >0.998 (compare Fig. 4F vs. Fig. 4D). The
shoulder peak is present in both MRI protocols. Figure 5 shows the spatial location of all
three Gaussian curves. It is clear that the spatial location of the third peak (in Fig. 4E)
predominantly existed in the boundaries between glandular and fatty tissues, as shown in
Figure 5C. This result would strongly suggest that this third Gaussian peak (Fig. 4E)
consisted of partial volume voxels with a varying proportion of glandular and fatty breast
tissues, while the peak in Fig. 4B consists of pure glandular tissue voxels and the peak in
Fig. 4C consists of pure fatty tissue voxels. This partial volume effect is unrelated to the
overlapping gland and fat tissue projection in a mammogram. Our results are consistent with
the partial volume studies performed by several other groups. Santago and Gage modeled
partial volume with Gaussian statistics (Santago and Gage, 1995). Ruan et al. showed that
brain with three tissue types generated five possible Gausssian curves, three for each pure
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tissue, and two for every two mixed tissues (Ruan et al., 2000). Laidaw et al. elegantly
demonstrated the presence of a partial volume voxel peak to be found between the signal
intensities of the tissue types represented within the mixed tissue voxels (Laidlaw et al.,
1998). If the partial volume assumption is true, our approach of summing the intermediate
peak area together with the major gland peak area as gland tissue may contain some bias.
Because gland is usually the smaller compartment of the two breast tissue types, slight
variation of the ‘true gland volume’ in the third peak will contribute to a more variable
correlation when gland volumes were compared between two different methods of
measurement, as seen in Figure 6B1–6. This may also explain why, when any two methods
are compared against each other (panels in the same row, e.g. Figs. 6A1,B1,C1 and D1),
correlation (be it regression slope or ICC) was always much better with regard to total breast
volume (column D panel, Fig. 6) and total adipose volume (column C panel, Fig. 6) than
fibroglandular tissue volume (column B panel, Fig. 6) For example, ICC is 0.86 for gland
volume (Fig. 6B1) and >0.98 for fat volume and total breast volume (Figs. 6C1, D1) for a
3DGRE vs. STIR comparison.

The histogram profiles of the MRI voxel signal intensity of our study participants (Fig. 3)
were very similar to the histogram profiles of voxel T1 times published by Boston et al.
(Boston et al., 2005). This is not surprising, because the different mean signal intensities
produced by fat and glandular tissue do correlate with the different inherent T1 times of each
tissue. Using a Gaussian-distribution algorithm, we segmented fat from glandular tissue,
while Boston et al. (Boston et al., 2005) used an empirical logistic model approach (Table 1)
that performed the segmentation based on inherent differences of T1 relaxation times
between fat and gland. In spite of the differences in the tissue segmentation methods, the
final curve fitting shapes and distributions of the segmented fat and gland peaks are
strikingly similar between our approach and those of Boston et al. (Boston et al., 2005).
Direct comparison between our approach and other segmentation approaches listed in Table
1 will be of interest for additional validation.

Other studies have compared percentage glandular tissue measured from 2-D mammograms
with those from 3-D breast MRI and found the Pearson correlation coefficient to range from
0.75 to 0.90 (Table 1). Our Rsqr values shown in Fig. 6A1–5, ranging from 0.76 to 0.80, are
within the reported ranges. This is, however, the first study to report a direct comparison of
breast tissue volumes (gland, fat, and total breast) measured from a 2-D mammogram (be it
from HSM or MATH) and two 3-D MRI protocols (3DGRE and STIR). We approximated
breast tissue volume from mammograms by simply multiplying mammogram area (gland,
fat, or total breast) with pre-recorded breast compression thickness available from every
digital mammogram’s DICOM header. There are two breast compression thicknesses
recorded in the header, one for pre-exposure (pilot exposure) and one for final image
exposure. The compression thickness between pre-exposure and final exposure is not
necessarily the same. By an empirical approach, we found that pre-exposure compression
thickness is a much better compression thickness to use for deriving mammogram volume
estimates that correlated better with MRI volume estimates (data shown in Fig. 6).
Therefore, our approximation approach should be considered as a feasible and an excellent
alternative for volume measurement from a 2-D image. Our approach is supported by the
high regression Rsqr (all >0.9), regression slope (all~1.0), and ICC (all>0.9) for total
volume (Figs. 6D2–3) and fat volume estimates (Figs. 6C2–C5) when comparing
mammogram volumes against MRI. The corresponding statistics for gland volume
comparison between mammogram and MRI data also is strong (Figs. 6B2–B5), e.g., all Rsqr
>0.7, all ICC>0.75, and slopes ~0.7. Thus, the gland volumes estimated from MRI are about
30% (slope, ~0.7) less than those from mammograms. This can be a consequence of variable
overlapping gland and fat tissue compression during mammography.
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We reported that %-glandular tissue from mammograms can be estimated using a statistical
modeling derived MATH algorithm (Equation 2.4) (Lu et al., 2007). In this study, the
validity of such an approach was further assessed by comparing results calculated from the
MATH with those obtained from two MRI protocols (Fig. 6A4–5, 6B4–5, and 6C4–5). Rsqr
values are between 0.74–0.90 and ICCs between 0.78–0.93. The regression slopes are ~1.0
for fat volume comparison (Figs. 6C4–5), ~1.1 for %-gland comparison (Figs. 6A4–5), and
~0.7 for gland volume comparison (Figs. 6B4–5). These statistics show that the
mathematical algorithm is valid for estimating %-gland and breast tissue amount. This
procedure can be easily automated and could be applied to future epidemiologic studies.

There are several strengths of this study. All participants had time-matched MR images and
mammograms. The tissue composition analysis using commercial peak-fit software is easy
to implement for other clinically used pulse sequences that produce sharp tissue contrast and
signal uniformity in images. The mathematical equation is an efficient and reliable
alternative to current published methodology that applies interactive thresholding
segmentation. An area requiring improvement for facile application of breast MRI for
research is the isolation of the breast region of interest from MRI. All published protocols
(reviewed in Table 1), including those in this study, required considerable time and effort to
isolate the breast ROI.

In summary, two highly reproducible, reliable, objective, and robust methods for quantifying
fibroglandular tissue were presented that combined the use of customized breast MRI
protocols and a curve-fitting routine. We also showed that breast tissue volumes can be
easily estimated from the product of mammogram area and breast compression thickness,
obtained from the DICOM header of a mammogram report. A mathematical algorithm that
can be used to instantly calculate the density of a woman’s breasts as soon as her
mammogram is acquired is presented and validated in this study. These methods, together,
are expected to facilitate investigations when using breast density as a surrogate biomarker
in breast cancer research.
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Abbreviation used

2-D 2-dimensional

3-D 3-dimensional

3DGRE 3-D gradient-echo
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STIR short tau inversion recovery

TE echo time

TR repetition time

TI inversion time

FOV field of view

FFDM full field digital mammography

MRI magnetic resonance imaging

ICC intra-class correlation coefficient

SD standard deviation

CV coefficient of variation

ROI region of interest

T1 T1 relaxation rate

%-G %-glandular tissue or %-breast density

gv glandular breast tissue volume

fv fatty breast tissue volume

tv total breast tissue volume

DICOM Digital Imaging and Communications in Medicine

HSM histogram segmentation method

MATH mathematical algorithm obtained from a multivariate regression model
equation
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Figure 1.
Central axial slice of a volunteer’s left breast using A) 3DGRE and B) STIR MR pulse
sequences. For pulse sequences, consult Table 2.
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Figure 2.
Steps taken to generate a 3-D volume-rendered breast model. 2A, Entire scan field of view
consisting of both breasts and torso anatomy; 2B, A coarse segmentation to isolate the breast
region of interest; 2C, More precise trimming to remove the chest wall and other non-breast
tissue from each individual slice; 2D, Surrounding air image removed from the previous
image; 2E, View of the breast slice image after subtracting air image in 2D from image in
2C. A final trimming is performed to complete the breast segmentation from the rest of the
patient’s anatomy. 2F, the final 3-D view of the breast model completed for volume
measurement analysis.
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Figure 3.
Mammogram (first column), 3DGRE pulse sequence (second column), and STIR pulse
sequence (third column) breast images and, beneath each image, the corresponding signal
intensity histograms from 3 women with ~20% G (first two rows for subject 192), ~40% G
(third-fourth rows for subject 396), and 60% G (fifth-sixth rows for subject 275).
Histograms for 3DGRE and STIR have 2 curves, the upper curve representing unfitted
(dots) and fitted (line) curves and the bottom curve representing segmented peaks.
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Figure 4.
Gaussian curve-fitting analysis of the MRI signal intensity histogram to estimate
fibroglandular and fatty breast tissues. (A) histogram from a representative 3DGRE breast
model; (B) Gaussian curve fit for fibroglandular breast tissue type (shaded); (C) Gaussian
curve fit for fatty tissue type (shaded); (D) sum of the Gaussian curve fit for B and C
(shaded) with an Rsqr of 0.92 and an unfitted area (*) representing a region of MRI signal
intensities between fibroglandular and fatty tissue types; (E) Gaussian curve fit
corresponding to the unfitted area (*) in (D); (F) the sum of the Gaussian curve fit (B+C+E)
achieving curve fitting Rsqr of 0.999.
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Figure 5.
Tissue segmentation based on MRI signal intensity extracted from Gaussian curve fitting
analysis. (A) Central slice of a representative breast model; (B) segmented fibroglandular
tissue type (green) determined by the Gaussian curve fit (Fig. 4B); (C) segmented tissues
(green) representing the Gaussian curve fit to the unfitted area (*) (Fig. 4E); (D) segmented
fatty tissue type (green) determined by the Gaussian curve fit (Fig. 4C).
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Figure 6.
Reliability and reproducibility relationship between any two of the four different methods of
measuring %-glandular tissue (panels A1–A6), glandular volume (panels B1–B6), fat
volume (panels C1–C6), and total breast volume (panels D1–D3) in 95 women. Linear
regression (Rsqr, regression equation and slope with 95% confidence interval and prediction
lines) and intra-class correlation (ICC) analyses are shown. Four methods of measurements
for (x, y) paired comparison are 3DGRE, STIR, mammogram by histogram segmentation
(HSM), and mammogram from a multivariate regression equation (‘mathematical model’,
MATH). Volume from each mammogram is taken from the product of mammogram area
and breast compression thickness.
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Table 1

Review of literature reporting breast tissue composition analyses using breast magnetic resonance imaging
(MRI).

Studies MRI Protocol Method for Gland
Measurement from MR
Images

Validation with Mammographic
Density

General Comments

(Poon et al.,
1992)

T1 by Look-Locker
technique;
T2 by multiple echo
sequences;
and relative water
content by a
pair of fat- and
water-
suppressed images

Relative water content of
whole breast; T1 and
T2 relaxation time for
middle slice of breast
only;
and fourth moment of T2
pixel histogram

Yes, with 4 categories of Wolfe's
classification (n=23 women)

Mean relative water to fat
content, mean T1
relaxation time, and fourth
moment of T2 relaxation
time can distinguish DY and
N1 patterns of Wolfe,
but not mean T2 relaxation
time; not used in
epidemiologic studies.

(Graham et
al., 1996)

MR spectrum by
hybrid Dixon
method,
conventional
frequency
encoding to obtain
1D image of
fat and water; T2
decay from
breast volume of
interest only
by a CPMG
sequence of hard
pulse

Relative water and fat
content estimated from
MR spectrum peak area,
and first moment of
continuous distribution of
T2 decay curve by a
software

Yes, r>0.60 with semi-automatic
interactive thresholding segmentation
in
n=42 mammograms

Water to fat content
associated with
sociodemographic risk
factors for breast cancer,
mean T2 decay associated
only with family hitory of
breast cancer and BMI.

(Lee et al.,
1997)

T1 weighted
spoiled gradient
echo fast low-angle
shot
sequence

Manual segmentation of
each slice; semi-
automatic, assuming a two
compartment model
by solving two equations
(mean MR intensity of
the breast × total breast
volume = fat volume ×
fat MR intensity + gland
volume × gland MR
intensity; and total breast
volume=fat volume +
gland volume)

Yes, r=0.63 with visual scoring in steps
of 5% from 5%–95% in n=40 women

%-Glandular tissue
associated with age change

(Klifa et al.,
2004) (Klifa
et al., 2010)

3D fat suppressed
spoiled
gradient echo pulse
sequences,
non-contrast
imaging

Semi-automatic
identification of breast
ROI
(Bezier splines and
Lapalacian of Gaussian
Filter); quantification of
gland tissue by
unsupervised fuzzy c-
means clustering, manual
delineation, and/or
segmentation of signal
intensity histogram by
interactive thresholding
algorithm.

Yes, r>0.75 with visual 4 categorical
scoring (n=30), semi-automatic
thresholding segmentation (n=10) and
manual delineation of dense area and
automatic pixel counting (n=35) of
film-
screen mammograms

Good reproducibility on
replicate images; not
validated for studying breast
cancer risk factors

(Wei et al.,
2004)

Coronal 3D SPGR
(spoiled
gradient recalled
echo) pre-
contrast T1-
weighted

Semi-automatic isolation
of breast ROI,
interactive thresholding
segmentation of gland
from fat in MR images
slice-by-slice

Yes, r=0.91 using an in-house software
Mammogram Density ESTmator based
on interactive thresholding
segmentation
and with visual scoring by radiologist

Not used for studying risk
factors of breast cancer

(Boston et
al., 2005)

3D spoiled gradient
echo
inversion recovery
sequence for

Segmentation of T1
histogram into gland and
fat
using a logistic function
that described the

No, concpetual approach developed
with phantom and tested in human
cases

Empirical logistic model
allowed for accurate
segmentation of fat and
parenchyma in breast
phantoms
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Studies MRI Protocol Method for Gland
Measurement from MR
Images

Validation with Mammographic
Density

General Comments

T1 map
construction

probability of a voxel
containing glandular tissue
to be a function of T1 of
the voxel, mean T1
times of fat and gland
peaks, respectively, and
maximum slope of the
logistic curve.

(Khazen et
al., 2008)
(Thompson
et al., 2009)

Pre-contrast T1
weighted MR

Interactive thresholding
segmentation, corrected
for non-uniformity using
proton density map
(MRIBview software)

Yes, r>0.75, visual scoring using 21
point-scale and segmentation by an
interactive thresholding algorithm
using
Cumulus software (n=138 in 2008
study
and n=513 in 2009 MARIB study with
matched MRI and film-screen
mammogram)

Mammograms overestimate
breast density,
protocol time consuming
(n=138), applied to
MARIBS study (n=513) that
validated the
association of breast density
with several known
risk factors for breast cancer
(in 2009 study)

(Eng-Wong
et al., 2008)

T1-weighted
spoiled gradient-
echo with fat
suppression per
protocol by Yao et
al., 2005

User interface software to
automatically segment
breast region of interest
from the rest of body
organs, fuzzy c-means
based on pixel distance
to edge and pixel MR
signal intensity to classify
tissues into three types,
gland, fat and skin (Yao et
al., 2005)

Yes, r>0.7 by a semi-automatic
interactive thresholding segmentation
of
pixel intensity histogram of film-screen
mammograms (n=20 women)

Raloxifene treatment for 1–
2 yrs did not affect
mammographic density
(n=20), but decreased
glandular tissue volume
measured by MRI in 27
women (not a randomized
trial)

(Ertas et al.,
2009)

Proton density
weighted and
pre- and post-
contrast T1
weighted images
acquired
using 3D spoiled
gradient echo
pulase sequences, a
modification of
Khazan et al 2008

Segmentation by
Interactive thresholding
based
on signal intensity
uniformity corrected pre-
contrast T1 weighted
image using a software
MRIBView; automated
fuzzy c-means clustering
based on dual phase T1
estimate histograms,
i.e., mean T1 estimate of
pre-contrast histogram
and the post-initial
enhancement changes
(n=20)

No Compostions of breast
tissue correlated well
between results from
interactive thresholding
histogram segmentation
method and two points
fuzzy c-means clustering
algorithm on pre-contrast
signal intensity histogram
and post-initial
enhancement changes; not
validated for breast
cancer risk factors in
epidemiologic studies

(Nie et al.,
2008) (Nie et
al., 2010a)
(Nie et al.,
2010b)

Non-fat saturated
T1-weighted,
fast 3D SPGR pulse
sequence

Semi-automatic isolation
of breast ROI (n=11)
and skin removal (n=50),
fuzzy c-mean
classification to exclude
air/lung, B-spline curve-
fitting to exclude chest
wall muscle; adaptive
FCM to isolate dense
tissue

No In 2010 study (n=321), age
and race were found to
be strong predictors of gland
tissue content.
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Table 2

Image acquisition parameters for the two breast MR imaging protocols.

Scan Parameter 3DGRE STIR

Acquisition Type 3-D 2-D

Pulse Sequence Gradient Echo Inversion Recovery

Slice Thickness (mm) 1.5 (interpolated) 2.0

Interspace Gap (mm) 0 0 (interleaved ×3)

TR (ms) 5.9 6050

TE (ms) 1.4 12.9

Inversion Time (ms) N/A 150

Receiver Bandwidth (kHz) 31.2 15.6

Signal Averages (NEX) 2 1

Echo Train Length 0 4

FOV (mm × mm) 320 × 320 320 × 320

Matrix Size 256×256 (Recon: 512×512) 256×192 (Recon:256×256)

Phase Encode Direction ROW ROW

Flip Angle (°) 10 90

Scan Time (min) 3.0 14.5
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